ATOMIC WEAPONS ESTABLISHMENT

ANE REPORT NO. 0 18/89

Source Mechanisms of Some Large Earthquakes

 Determined using the Relative Amplitude MethodR M Rogers

*R G Pearce

* Department of Geology and Geophysics, University of Edinburgh

CONTENTS

Page
SUMMARY 3

1. INTRODUCTION 3
2. THE RELATIVE AMPLITUDE MOMENT TENSOR PROGRAM (RAMP) 4
2.1 Synopsis of the method 4
2.2 Source representation 5
2.3 Graphical representation of results 5
3. PROCESSING METHOD 6
4. RESULTS 6
4.1 The shallow earthquakes 7
4.1.1 Introduction 7
4.1.2 Group A earthquakes 7
4.1.3 Group B earthquakes 8
4.2 The intermediate-depth earthquakes 8
4.3 The deep earthquakes 10
5. COMPARISON WITH OTHER SOLUTIONS 11
5.1 Introduction 11
5.2 General 11
5.3 The shallow earthquakes 12
5.4 The intermediate-depth and deep earthquakes 13
5.5 Concordant solutions 14
6. DISCUSSION AND CONCLUSIONS 14
6.1 RAMP results 14
6.2 Comparison of RAMP and other results 16
APPENDIX A: RELATIVE AMPLITUDE MEASUREMENTS 18
APPENDIX B: SEISMOGRAMS AND GRAPHICAL SUMMARY 71 OF RESULTS
REFERENCES 198
TABLES 1-6 200
FIGURES 1-8 207

SUMMARY

This report describes the application of the Relative Amplitude Moment Tensor Program (RAMP) to a group of 51 large earthquakes originally drawn up for study at the General Assembly of the International Association for Seismology and Physics of the Earth's Interior (IASPEI) in 1985. RAMP is designed to determine the range of moment tensors compatible with the observed relative amplitudes of $P, p P$ and $s P$, and three components of direct S. The moment tensor encompasses any seismic source, which may include an explosive (isotropic) component as well as a non-double couple deviatoric component.

All the earthquakes are found to be compatible with the conventional double couple model, though not to the complete exclusion of other source types. Constraint on the isotropic component is almost invariably tighter than on the deviatoric component, and is dependent on the nature of the data available. Constraint on the orientation of the source is generally much tighter than on source type.

The solutions obtained using RAMP and those obtained by other methods are compared. Solutions obtained using the first motion method and the Multi-channel Signal Enhancement (MSE) method, which depend most heavily upon the form of the P wave agree most closely with the P wave data used in RAMP. Solutions obtained using the Centroid-Moment Tensor (CMT) method, which is biased towards the S waveform, agree more closely with the S wave observations used in RAMP. However, most of the solutions from all three of these methods lie outside the range of moment tensors found to be compatible using RAMP.

1. INTRODUCTION

Several methods are now available for determining the moment tensor of an earthquake; the moment tensor is a convenient way of describing the force system acting at an earthquake source. Usually the source is assumed to be a point in space and time. Pearce and his co-workers $(1,2,3,4,5)$ have developed a method that makes use of the relative amplitudes of observed seismic phases such as $P, p P$ and $s P$. Kuch of the early stimulus for this work came from interest in developing methods for distinguishing between earthquakes and explosions on the basis of their radiated seismic signals - methods that might be used for the verification of compliance with test ban treaties.

Initially the relative amplitude method used only data from P seismograms and assumed that the source mechanism was a double couple. The solutions are then all those double couple orientations that are compatible with the observations. The method has now been developed to the stage where the range of solutions covers all those that can be represented by a symmetric moment tensor (ie, sources in which angular momentum is conserved - a reasonable restriction) and includes amongst other source types the explosion and implosion, compensated linear vector dipoles (CLVDs) and tensile cracks, as well as the conventional double couple.

Examples of the application of the relative amplitude method for distinguishing between earthquakes and explosions are given elsewhere (eg, Pooley et al (6), McLaughlin et al (7)). The purpose of this report is to compare moment tensors obtained using the "Relative Amplitude Moment Tensor Program" (RAMP) with those obtained by other methods to determine the strengths and weaknesses of the various methods. The incentive to do this arose from discussions at the General Assembly of IASPEI (International Association for Seismology and Physics of the Earth's Interior) held in Tokyo in 1985. Fifty-one earthquakes (the "IASPEI list") were selected for study at that Assembly and participants were invited to produce focal mechanism solutions for them.

The IASPEI list earthquakes are taken from a wide range of locations and depths worldwide (although 42 were less than 100 km deep). All the earthquakes are large, only eight having $m_{b}<6.0$; the source hypocentres and magnitudes are listed in table 1. Comparisons are made between the RAMP results and the results derived using first motion (Needham (8)), centroid-moment tensor (CMT) (Ekstrom et al (9)) and multi-channel signal enhancement (MSE) (Sipkin (10)) methods.

In order to ensure that all participants had a sound base from which to work, waveform data were made available through the United States Geological Survey (USGS). The data consisted of digital three component seismograms from a number of stations worldwide, though the densest coverage was in the United States. Long and short period seismograms were both available for all of the stations, and for some there were also intermediate period records. These digital seismograms were distributed to participants on standard half-inch digital magnetic tapes, together with the requisite software for recovering the desired data. A waveform catalogue showing the printed seismograms was also made available (Zirbes and Moon (11)).

The CMT and MSE methods, like RAMP, used the digital data made generally available to all IASPEI participants, while the first motion data employed by Needham (8) includes additional stations.
2.

THE RELATIVE AMPLITUDE MOMENT TENSOR PROGRAM (RAMP)
The Relative Amplitude Moment Tensor Program (RAMP) was first introduced by Rogers and Pearce (12), and more fully described by Pearce and Rogers (4) and Rogers (5); the following provides a brief summary.

2.1 Synopsis of the method

The method is designed to reveal all possible moment tensors for a seismic event, using as its input observations of the relative amplitudes of the phases $P, p P$ and $S P$, and of the three components of direct S at a series of teleseismic stations. The method is able to test all source types resolvable into three orthogonal dipoles; this includes the pure explosion and source types having an explosive or implosive component.

Each relative amplitude observation takes the form of maximum and minimum permissible amplitudes for a phase, and its polarity. Since only relative amplitudes are considered, the amplitude limits may be specified in any units, so long as all phases to be considered together are measured in the same units. The polarity may be specified as positive, negative, or unknown, or it may be specified as the same as or opposite to the
polarity of another observed phase. In practice, S waves are tested separately from $P, p P$ and $s P$, because of uncertainty over the relative attenuation of P and S waves over the transmission path. Normally, S wave data is limited in effect to observations of the polarity (or relative polarity) of the horizontal components (Pearce and Rogers (4)).

For each mechanism under test, the theoretical ratio between the amplitudes of each possible pair of the specified phases is calculated, and if it falls within the limits inferred from the measured bounds, then the mechanism is deemed to be "compatible" with the observations; otherwise it is "incompatible". This operation is repeated for each station at which phases are specified. Those mechanisms compatible with all the specified phase pairs are said to be "fully compatible" with the dataset.

2.2 Source representation

The source is described in terms of the source type and its orientation, which are expressed by separate parameters. The orientation is described by three angles; $0, \sigma$ and ψ. In the case of a double couple these correspond to the strike, dip and slip angles of the source, respectively. For other source types, the physical meaning of the angles is less clear, but they retain the same relationship with the principal axes of stress.

The source type is described by two parameters, T and $k . T$ expresses the deviatoric component of the source type (ie, variation between double couple, CLVD, and negative CLVD), and k the proportion of volume change in the source (implosive or explosive component). The total moment tensor is given by:

$$
M=(1-|k|)\left[\begin{array}{ccc}
\min (2,2-T) & 0 & 0 \\
0 & \max (-2,-(2+T)) & 0 \\
0 & 0 & T
\end{array}\right]+k\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

It is seen that the separate expression of the orientation allows the source type to be expressed as a diagonalised moment tensor, independent of the orientation. Since no information on absolute amplitudes is used, no parameter is required to describe the magnitude of the source, and hence only five parameters are used.

2.3 Graphical representation of results

Compatible mechanisms are represented using two types of graphical display; the vectorplot (Pearce (1)) and the source type plot (Pearce and Rogers (4), Hudson et al (13)).

The vectorplot (figure 1) is used to display those orientations of a given source type found to be compatible. A vector is drawn for each compatible orientation, in the position corresponding to its 5 (dip) and ψ (slip) angles, and at an angle from the vertical equal to o (strike).

The source type plot (figure 2) represents a projection of the five-dimensional parameter space onto the two dimensions used for the source type. Circles are drawn on the plot, centred on those source types found to have at least one compatible orientation. Their size is proportional to the number of orientations found to be compatible for the particular source type.

3. PROCESSING METHOD

Because the earthquakes are large, long period seismograms are used; the dominant frequencies of the radiation from large earthquakes are outside the passband of short period seismometers. The surface-reflected phases cannot be reliably observed on long-period seismograms for shallow earthquakes because the $P, p P$ and $s P$ arrivals interfere. For this reason, in the absence of broadband seismograms, the solutions presented here for the shallow earthquakes are derived using only P wave polarity and S wave polarisation data. However, as will be shown, even these data provide a significant constraint on the source parameters, particularly the source orientation; in some cases the source type is also well defined.

The search grid is normally set at 10° intervals in the three orientation parameters, 0.25 in T and 0.2 in k; in a few cases where very little constraint is imposed by the data on orientations, the angular increment is increased to 15° in order to reduce processing time and storage space requirements. Similarly, in a few cases where constraint is very strong, increments of 5° or even 2° are used. These values are chosen to permit solutions to be computed within a reasonable time span without restricting the search space.

Because the response of the long period seismometers at stations in the SRO network was subject to problems of non-linearity, the relative amplitude bounds made from such stations are substantially widened. However, seismograms from these stations may still be capable of providing usable relative amplitude information, albeit with wider bounds. These are assessed by individual examination.

4. RESULTS

The earthquakes are divided into three groups according to their depths: "shallow" (depth < 100 km), "intermediate" (100 to 300 km) and "deep" (> 300 km). This classification reflects the differences in the way that the data can be used, and hence the quality of results expected; for the shallow earthquakes, $p P$ and $s P$ are hidden in the P wave coda and are generally unidentifiable; at intermediate depth the separation is great enough to permit approximate amplitudes to be assigned to many of the $p P$ and $s P$ arrivals; for the deep earthquakes these phases are well separated and the presence of coda brings few problems.

In order to simplify assessment of the results, the earthquakes are further classified according to the degree of constraint imposed by the data on the source mechanism. For source type and orientation separately, each of the 51 earthquakes is placed into one of three categories, with an approximately equal number of earthquakes in each, representing "strong", "average" and "weak" constraint. For source type, compatibility of less than 10\% of source types is defined as "strong" constraint, while compatibility of more than 50% of source types is defined as "weak" constraint. To classify the constraint on orientation, the proportion of orientation space found to be compatible is calculated
for each source type, and the mean of the non-zero values is found. This procedure is adopted because it eliminates the effects of constraint on source type, and mitigates the effects of rotational symmetry as T or k approaches 1. A mean value of less than 0.1% is defined as "strong" constraint, while a mean of over 0.6% is defined as "weak" constraint. It is recognised that such a system of classification is inevitably arbitrary; however, it is intended only to provide an approximate guide to the quality of each result in the context of the group.

Appendix A contains the relative amplitude bounds specified for each observed phase, for all 51 earthquakes. A graphical summary of the results for each earthquake appears in appendix B, which also includes graphical representations of the mechanisms derived by Ekstrom et al (9), Sipkin (10) and Needham (8).

4.1 The shallow earthquakes

4.1.1. Introduction

It is normally impossible to extract relative amplitude information from P waves because of the masking of the surface reflected phases $p P$ and $s P$ by the coda of the initial P wave arrival; therefore only the P wave polarity is specified, with arbitrary wide amplitude bounds (typically 1 to 100 units). In addition to these first motion data, the polarities of the S wave in the horizontal components may also be used; polarity information may be read for direct S waves from sources at any depth with little or no variation in quality.

For the following discussion, it is convenient to divide the shallow earthquakes into two groups. of the 42 earthquakes, 21 have all identifiable P wave wave first motions of the same polarity. These are referred to as "group A", while the remaining 21 earthquakes have mixed first motion polarities, and fall into "group B". This division corresponds with the difference in constraint upon source type and orientation to be expected from the two types of P wave first motion dataset, though additional constraint is provided by the S wave polarity observations. The members of each group are identified in table 2.

4.1.2 Group A earthquakes

The fact that the P wave polarity is the same at all stations at which it is observed unambiguously indicates that the likely orientation is an approximately 45° dip slip type (for a double couple - other orientations may be applicable for other source models), but rotations about a vertical axis are completely or almost completely undefined by P wave data. Depending on the distribution of stations on the focal sphere, other orientations may also be compatible with the observations.

Given the lack of constraint imposed by P wave polarities alone, it is not surprising to find that the source type and orientation constraints for the great majority of these earthquakes fall into the "weak" or "average" categories (see table 2); two typical examples are shown in figure 3. In fact, there is only one exception, namely earthquake 26 (figure 4), for which the constraints on both source type and orientation are found to be "strong". Such a result can only be achieved when the S wave observations provide the major constraint. This is borne out by the distribution of compatible source types - only source types with $T=0.0$ are fully compatible, whereas the source type is much
less strongly defined in k, reflecting the fact that S waves convey no information about k, and P wave first motions can generally impose little constraint on T.

4.1.3 Group B earthquakes

The contrast in the quality of the results between group A and group B earthquakes is immediately apparent from table 2. Whereas in group A, only one earthquake achieves a "strong" rating for constraint on either source type or orientation, and most of the classifications are "weak", the position is almost exactly reversed in group B. Only three of the 21 earthquakes in this group have the constraint on either source type or orientation classified as "weak" (earthquakes 9, 31 and 51, discussed individually below), and more than half of the individual classifications are "strong".

In the case of earthquake 9 , only six stations are used in the analysis, which fall into two groups of three on the focal sphere (figure 5). The first group lies in the north-western quadrant, and shows positive first motion at all three stations, while the second group lies in the southern part of the focal sphere. The most westerly of these stations also shows a positive first motion, while the remaining two show a negative P wave polarity. Thus there is a constraint on the position of one of the nodal surfaces of the P wave radiation, but very little constraint is placed upon its alignment or its shape.

For earthquake 31, thirteen stations are used, of which four show a negative and eight a positive P wave first motion (the remaining station is only used for observations of S wave polarity). The stations are distributed in three well separated groups on the focal sphere; one in the north-west, one in the north-east and one in the south (figure 6). The southern group of stations show a negative first motion; the remaining groups show a positive first motion. Thus one P wave nodal surface is constrained to run roughly east-west and to have a steep dip; however, the position of the intermediate axis of stress, and the form of the nodal surfaces near it are not well defined. No value of T is prohibited, and the source type constraint is classified as "weak", the orientation constraint being in the "average" category.

For earthquake 51, only P wave first motions are used. This is because the earthquake appears to be a double earthquake, the second part being much larger than the first, for which the solution is presented. This means that the S waves for the first earthquake are unclear, being obscured by the coda of the preceding phases and of low amplitude compared with the immediately following S waves from the second sub-event. Of the P wave observations, all but one are positive, with one station (AFI) in the south-east of the focal sphere showing a negative first motion (figure 7). This constrains the source to have at least one steeply dipping nodal surface. Steep dip-slip double couples can satisfy the observations, as can a very small range of strike-slip orientations.

4.2 The intermediate depth earthouakes

At depths greater than about 100 km , the separation in time between the P wave and the $p P$ arrival, and between $p P$ and $s P$, begins to allow some measurements to be made of the surface reflected phases in addition to the direct P and S used for the shallower earthquakes. However, particularly if $p P$ has a relatively high amplitude, it may still
not be possible to make proper measurements of $s P$. Similarly, a small $p P$ phase will still be difficult to measure in the coda of a relatively large P wave.

Three of these earthquakes (Nos. 18, 27 and 36) are discussed in more detail by Rogers and Pearce (12). The remaining two, earthquakes 43 and 46, were omitted from that study because of apparent waveform complexity. Choy and Engdahl (14) confirm from broadband records that earthquake 46 is indeed complex. They further suggest that earthquake 27 is also complex, and that earthquakes 18 and 36 show evidence of multiple arrivals. However, this is not directly evident in the long period data used by Rogers and Pearce (12) and in this study.

Earthquake 18 is the only earthquake out of the 51 to be relocated in depth for the purposes of this analysis. This is done on the basis of $P-p P$ delay times observed on long period records from several stations, which are in clear disagreement with the NEIC depth of 180 km . The revised depth is set to 120 km . Choy and Engdahl (14), using broadband data, also found the earthquake to be shallower than the published figure, but redetermined the depth as 138 km . They also suggest that the earthquake was complex, having a strong second sub-event, differently oriented from the first, giving rise to systematic variations in the relative amplitudes of the two P arrivals across the focal sphere. This is not apparent from the long period seismograms used by Rogers and Pearce (12) and in this study. Despite the widening of the bounds on all relative amplitudes observed at SRO stations (see section 3), the constraint on orientation space is found to be "strong", while that on source type is "average". These categorisations reflect the fact that two stations, close together, show a positive first motion, while the remaining nine are negative. Thus the course of one nodal surface is constrained over a small part of its length, but the region close to the intermediate axis of stress is not well defined.

Earthquake 27 is located in the Tonga Islands region. All but one of the stations show a negative first motion, while the polarity of the first motion at the remaining station is unclear, apparently being near-nodal. The depth of the source allows measurements to be made of the amplitudes of the surface reflected phases, but the bounds must still be widened because of interference from the coda of P, and of $p P$ in the case of $s P$, so that the constraints on the source type and orientation are only "average".

Earthquake 36 is in the USSR - Afghanistan border region. All of the P wave first motions are of positive polarity, indicating a dip slip type orientation; furthermore, the amplitude bounds of the surface reflected phases reflect once again the presence of coda from preceding phases. There is thus limited information contained in the $P, p P$ and $s P$ measurements. Nevertheless, a solution is obtained with "strong" constraint on both source type and orientation, largely on the strength of the constraint imposed by the S wave data (Rogers and Pearce (12)).

Earthquake 43 is located in the Banda Sea, which means that the station coverage available at teleseismic distances is limited; eight stations are used, all of which are contained in a 215° arc of azimuth, leaving the western side of the focal sphere almost completely unsampled. In addition, despite the source being at 178 km depth, the relative amplitudes of $P, p P$ and $s P$ are not clear, possibly due to source complexity. Thus, apart from S wave data, the observations from several
stations are restricted to P wave first motions, and where relative amplitude bounds are specified, they allow a wide range of amplitude ratios. All the observed P wave first motions are of positive polarity. These difficulties restrict the constraints on both source type and orientation to the "weak" category, orientations being grouped around the 45° dip slip type.

Source complexity also adversely affects the data for earthquake 46, which occurred in the Hindu Kush region. However, the station coverage is slightly better than for earthquake 43, having 10 stations used. Once again, all P wave observations are of positive polarity, indicating an approximately 45° dip slip orientation. Only very wide P, $p P$ and $s P$ relative amplitude bounds can be specified for six stations, the remaining four yielding only P wave first motion data. Constraints on source type and orientation are both classified as "average".

4.3 The deep earthquakes

These four earthquakes (listed in table 2) have been studied by Stimpson (15), but using only the $P, p P$ and $s P$ data. The results presented here represent the constraint imposed by Stimpson's P-group data with the further inclusion of the S wave horizontal component polarity data described previously. This section summarises the results; a more complete discussion of the $P, p P, s P$ data and results is provided by Stimpson (15).

It is found that the solutions are constrained very strongly by clearly observable $P, p P$ and $s P$ phase amplitudes. Even so, the S wave observations provide a significant additional constraint in all four cases, generally reducing the size of the compatible region of solution space determined using only $P, p P$ and $s P$ by 40 to 60%.

Earthquake 14 occurred in the east USSR - north east China border region. Because of low signal to noise ratios, $P, p P$ and $s P$ relative amplitudes are measured at only five stations (Stimpson (15)). At three of these stations, the first motion is positive, and at two negative. However, S wave polarity observations can be made for ten stations. Despite the small data set, the constraints on both source type and orientation are both classified as "strong", the source type being close to the double couple and the orientation near pure dip slip.

Earthquake 28 is located in the Peru-Brazil border region. The first motions at all 16 stations are negative, indicating an approximately $45^{\circ} \mathrm{dip}$ slip orientation. Although the constraint on orientation falls into the "strong" category, the source type constraint is "average". The value of k is between - 0.4 and 0.0 ; the value of T is between ± 0.5. This clearly represents better constraint on source type than is found for the majority of similarly orientated (group A) shallow earthquakes.

Earthquake 47 occurred near the South coast of Honshu, Japan. Eleven stations are used for S wave data, while eight provide $P, p P$ and $s P$ measurements; most of the stations used are grouped in the north and east of the focal sphere. All observed P wave first motions are positive. The constraints on both source type and orientation are in the "strong" category. The addition of S waves provides much tighter constraint on the source type than was achieved by Stimpson (15) using only P group data.

Earthquake 49 is located in the Mindanao, Philippine Islands region. Six stations are used to provide $P, p P$ and $s P$ observations, of which four have a negative first motion and two positive. S wave polarisation data are taken from three stations. The constraints on both the source type and orientation are classified as "strong".
5. COMPARISON WITH OTHER SOLUTIONS

5.1 Introduction

In this section we compare the results obtained from RAMP with those obtained by Ekstrom et al (9), using the CMT method, by Sipkin (10), using the KSE method, and by Needham (8), using the P wave first motion ("FM") technique. The procedure used is to run RAMP, using the same data as before, but testing explicity the compatibility of the "best" solutions obtained by these authors (shown in table 3 using RaMp-type parameters). The agreement between the RAMP solutions and the "best" solutions of the other authors is then expressed by the number of observations with which the latter are incompatible; these can be divided into P-wave and S-wave observations for further analysis. Solutions falling within the range of solutions derived using RAMP will have no incompatible observations.

It should be noted that these methods do not provide as much flexibility as RAMP in specifying the source type. For the first-motion method, a double couple source is assumed, while the CMT and MSE methods allow a generalised source type but without volume change (in RAMP terms, k is assumed to be zero).

5.2 General

The number of " P " (ie, $P, p P, s P$) and S observations with which each of the CMT, MSE and FM solutions is found to be incompatible is given in table 4.

Eight CMT and a different eight MSE solutions fall within the range of compatible solutions found using RAMP. Taking all 51 earthquakes as a whole, the CMT results are incompatible with 100 P observations and $62 S$ observations, while the MSE solutions are incompatible with $68 P$ observations and $92 S$ observations. It is therefore clear that there is a significant difference of emphasis between the two inversion procedures. This may be attributed to the different data used by each algorithm. The CMT method uses the entire seismogram up to the onset of the fundamental mode surface wave, and in consequence its results are biased towards matching the S waveform preferentially because of its large amplitude, and thus usually large residuals. The MSE algorithm does not depend upon the direct S waveform at all; it matches only the P waveform from each seismogram.

The value of $|T|$ is in general larger in the CNT solutions than in the MSE solutions - in only 14 cases out of the 51 is $|T|$ larger in the USE solution. This is in agreement with results reached using other earthquakes by Sipkin (16), who suggests that the discrepancy may be due at least in part - to the fact that the CNT data includes a large proportion of signal from between the arrivals of specific phases. These sections would have a reduced signal to noise ratio, while the MSE data are formed only of the isolated P wave group, where the signal to noise ratio is relatively high.

The solutions obtained by Needham (8) differ from those of Ekstrom et al and Sipkin in three important respects. Firstly, they are derived using a traditional P wave first motion technique, rather than waveform inversion methods. Secondly, they assume a priori a double couple source type throughout, and thirdly, data from additional stations have been used to augment those supplied in digital form by the USGS.

As might be expected, the results from this method show much greater agreement with the P observations than with those of S. The 48 solutions presented are found to be incompatible with a total of 107 S observations and only $36 P$ observations. No solution is offered for three of the earthquakes where, because data are sparse, neither nodal plane can be properly constrained. There are only four earthquakes for which the FM solutions are completely compatible with all the observations used in the RAMP analysis; however, 26 solutions are fully compatible with the P wave observations used in RAMP. The total number of incompatible observations is thus slightly fewer than those for the COT and MSE methods, but the bias towards observed P wave compatibility is stronger even than for the MSE method. This is probably due to the fact that both the FM and RAMP methods rely solely on direct observation of specific seismogram features - indeed, the RAMP data may be seen as a superset of the FM data. Discrepancies between the FM solution and RAMP P wave observations may be at least partly explained by the fact that there are sometimes internal inconsistencies in the FM dataset. An example of this is provided by earthquake number 1 (see Rogers and Pearce (12)). For a number of the FM solutions, the slip angle is given as 90° (ie, the slip vector is directly up- or down-dip), when the position of one nodal plane cannot be constrained accurately by the data available. This may be responsible for many of the S wave incompatibilities (see for instance earthquakes 20,21 and 30).

5.3 The shallow earthquakes

Table 5 shows a summary of the number of incompatible P and S wave observations found for the CMT, MSE and FM solutions for the shallow group A and group B earthquakes. For the FM solutions, the main feature of interest is that there are substantially more incompatible S wave observations in group A than in group B. Group A consists mostly of approximately 45° dip silp earthquakes, which are generally not well constrained by first motion observations; in particular, the slip angle is often set to 90° because it camnot be defined by the data. If this is different from the true slip angle, then the S wave polarisation directions at any point on the focal sphere may be in error. In group B, which consists almost entirely of strike-slip earthquakes, the orientation is usually well defined by first motion data, so the errors arising in the S wave radiation pattern are generally small.

The MSE results show a similar behaviour with regard to S wave compatibility; however, there are many more P wave observations found to be incompatible with the MSE solutions for group B than for group A. As strike-silp orientations are generally well defined by P wave polarities, this seems likely to be caused by the use of a whole-waveform matching technique, which is liable to yield solutions that do not necessarily match observable seismogram features. This is perhaps shown up particulary for strike-slip orientations because there are more stations close to P wave nodes, where a mismatch of polarity does not necessarily entail a large error in absolute amplitude.

A different pattern is shown by the CAT results, for which the number of incompatible S waves is almost the same for both groups of earthquakes, being rather fewer than for the FM and MSE methods. However, the number of P wave incompatibilities is much larger for group B. Indeed, in group A, the CMT results suffer fewer than half the number of P wave incompatibilities of the other methods; in group B the figure is more than double that for either of the other methods. Such a pattern must be due to the S wave domination of the CMT solution. P waves provide much less information about the position and shape of the nodal surfaces for group A earthquakes than for group B; thus the use of S waves greatly increases the amount of information available. However, in the case of group B, there is much information to be gained from P waves, upon which the CNT method places less weight, matching preferentially the form of the generally higher-amplitude S waves. Once again, the frequent proximity of stations to P wave nodes in group B earthquakes means that the polarity of low-amplitude P waves may be incorrectly modelled.

5.4 The intermediate-depth and deep earthquakes

There are five intermediate-depth earthquakes in the IASPEI list. The results from the FM method show incompatiability with a total of seven P and five S phase pairs for all five earthquakes. The only one of these for which the FM solution is incompatible with more than two phase pairs is number 18, a steep dip-slip earthquake, for which three P and two S phase pairs are incompatible.

The MSE results show less close agreement overall, being incompatible with a total of sixteen P and four S phase pairs for the five earthquakes. However, this includes one earthquake, number 27, again a steep dip-slip earthquake, for which there is complete compatibility with the RAMP data. As with the $F M$ results, earthquake 18 shows most incompatibility, being incompatible with nine P and one S wave phase pairs.

The overall agreement of the CTT results is similar to that for the KSE results. A total of nineteen P and two S wave phase pairs are found to be incompatible for the five earthquakes. Closest to full compatibility is the solution for earthquake 36 , an approximately 45° dip-slip earthquake, for which one P phase pair is incompatible. As with the MSE and FM methods, earthquake 18 is least well matched with the RAMP solution, having nine P wave and one S wave phase pairs incompatible. These are not the same phase pairs as for the MSE solution even though they are equal in number.

Comparisons of the RAMP solutions with those for the CMT and FM methods for the deep earthquakes were made by Stimpson (15), who included only P, $p P$ and $s P$ in his data.

The FM solutions for earthquakes 14, 28 and 49 are in close agreement with the observations used for RAMP. A total of seven phase pairs (four P and three S) are incompatible for the three earthquakes combined. For earthquake 47, six P and three S phase pairs are found to be incompatible. In this case, a steep dip slip orientation is derived, with dip and slip angles very similar to the compatible orientations for RAMP; however, the strike is inconsistent, being around 10° east of that compatible with the RAMP data.

The CWT results also show good agreement for three earthquakes and less good agreement for one. For earthquakes 14,47 and 49 there is a total of $11 P$ and no S phase pairs found to be incompatible. For earthquake 28 there are thirteen P phase pairs incompatible, and one S. This is an approximately 45° dip slip earthquake, with the majority of stations grouped in the north-west of the focal sphere. Although all the stations show a negative first motion, the CMT solution shows a P wave nodal surface passing through the north-western cluster of stations. For all four earthquakes the strong bias toward S wave matching is clearly preserved.

The MSE results show a total of fourteen P and three S wave phase pairs to be incompatible for the four deep earthquakes combined. Most incompatible phase pairs (four P and two S) are found for earthquake 49, a dip slip earthquake for which few stations may be used, and fewest (two P and no S) for earthquake 28 , also dip slip in character but with many more observations available.

5.5 Concordant solutions

Thirteen of the 51 earthquakes yield solutions which encompass either the CMT, KSE or FM solution, or a combination of these (see table 6). Twelve of these are shallow earthquakes, the exception being number 27, of intermediate depth, for which only the MSE solution is fully compatible. Of the twelve shallow earthquakes, nine fall into group A, and three into group B.

It will be seen from table 6 that all but one of the fully compatible CMT solutions are from group A; the fully compatible USE and FM solutions are evenly divided between groups A and B. As the major constraint on the RAMP solutions is normally provided in group A by S wave observations and in group B by P wave observations, these distributions reflect again the bias of the CMT method towards S wave domination, and of the MSE and FM methods towards P wave domination.

For only one earthquake (number 38) are all three solutions compatible with the observations used for RAMP. By the assessment criteria outlined above, this is one of the least well constrained of the 51 earthquakes, using RAMP.

6. DISCUSSION AND CONCLUSIONS

6.1 RAMP results

It has been clearly shown that the degree of constraint on the source mechanism, and particularly on the source type, is directly related to the capacity of the seismograms to yield well defined relative amplitude measurements. With very few exceptions, the shallow earthquakes yield the least constraint and the deep earthquakes the most.

The constraint on the shallow earthquakes is very much in line with what is to be expected from the nature of the data; that is, the group B earthquakes are much better resolved in both orientation and source type than the group A earthquakes. Examination of the orientations of the group B earthquakes classed as having "strong" constraint in both source type and orientation shows that all but one of them (number 24) which has a steep dip slip orientation) are strike-slip or near strike-slip type earthquakes. It is not surprising to find that the
strike-slip earthquakes tend to be the best resolved in source type at shallow depths. The general impossiblity of reliably observing the surface reflected phases, and consequent virtual "first motion" nature of the solution, means that any source which has both of its P wave nodal surfaces passing between the stations on the lower focal hemisphere is almost certain to be better resolved in source type than one which does not.

The intermediate-depth earthquakes, which are all dip-slip in character, are generally better resolved than similarly orientated (normally group A) shallow earthquakes. This is to be expected as increased depth makes possible the use of the surface-reflected phases $p P$ and $s P$, though the relative amplitude bounds on these phases are generally widened to allow for the presence of the coda of P, and, for $s P$, the coda of $p P$. Furthermore, in some cases the improvement in constraint is not as great as might be expected since source complexity and non-linearity of instrument response further limit the accuracy with which relative amplitude bounds may be measured.

The deep earthquakes as a group yield, as expected, the most tightly constrained solutions: the constraint on both source type and orientation falls into the "strong" category for three out of the four earthquakes. This reflects the fact that the surface-reflected phases are well separated, even on long-period seismograms, for earthquakes at great depth. However, even where the surface-reflected phases may be measured with confidence, the degree of constraint available may still be dependent upon the relationship of the nodal surfaces to the stations. It is notable that the one earthquake for which the source type constraint is "average" (number 28) is one of the 45° dip-slip type. The similarly oriented earthquake 47 attains "strong" constraint on source type largely by virtue of the constraint offered by S wave observations.

Examination of the figures showing the results for the 51 earthquakes shows that in many cases - indeed for a typical result - the source type plot shows poor constraint in T, often allowing at least some solutions for any value of T. However, it is frequently found that the constraint in k is considerably better. This confirms the pattern observed elsewhere (Rogers (5), Pearce and Rogers (4)). Also in agreement with previously observed trends is the usually high degree of constraint on the orientation; only a very small percentage of orientation space is permitted for any given source type, even at the peak of the distribution of compatible solutions. That the constraint on orientation is closer than that on source type is borne out by the qualifying values for the constraint categories "strong" and "average". For source type, the values are 10 and 50%, but for orientation they are 0.1 and 0.6%.

In sumary:
(a) In general, he shallow earthquakes are least tightly constrained, and the deep earthquakes most tightly constrained. This reflects differences in the available data. However, it is important to note that for smaller sources, such as lower magnitude earthquakes or explosions, it would be possible to make observations usable in RAMP from short period seismograms, on which the $P, p P$ and $s P$ phases would remain discrete at very much shallower depths. Whole waveform inversion methods, such as the CNT and KSE methods, are designed only to operate on long period records (Driewonski et al (17), Sipkin (18)).
(b) For the shallow earthquakes, the constraint available in group B is much greater than in group A. This is because for group A there is no direct evidence about the position of either nodal surface, whereas for group B, at least one nodal surface may be constrained.
(c) At intermediate depth, measurements of the relative amplitudes of $P, p P$ and $s P$ can generally be made, and these increase the constraint on the solutions. However, the bounds must generally be widened to take account of the presence of signal coda.
(d) The deep earthquakes, for which the surface-reflected phases are not subject to interference with the direct P coda, are generally well constrained in both orientation and source type. However, constraint appears still to be partly dependent upon the orientation of the source.
(e) As found in other studies, the constraint on orientation is usually much tighter than that on source type. For source type, there is generally stronger constraint on k than on T.

6.2 Comparison of RAMP and other results

Comparison of the RAMP results with those obtained by other authors shows that the observed data used in RAMP agree most closely with the most heavily weighted part of the data used in other methods - P observations for the FM and MSE techniques, and S observations in the case of the CMT method. This is particularly illustrated by the differences in compatibility found between the group A and group B shallow earthquakes. For most earthquakes, the solutions obtained by other methods lie outside the region of fully compatible RAMP solutions.

It may at first appear surprising that, for the intermediatedepth and deep earthquakes, the MSE and FM solutions show more incompatibility with P phases than with S phases, as this runs against the pattern found for the shallow earthquakes. However, the nature of the RAMP data for the deeper earthquakes is somewhat different; whereas for shallow earthquakes it is normally only possible to observe the polarity of the direct P and S waves, for deeper earthquakes it is also possible to determine the relative amplitudes of $P, p P$ and $s P$. Therefore, for a mechanism to be compatible, it must satisfy not only the polarity observations, but also the relative amplitude measurements, which will reduce considerably the range of compatible mechanisms. The nature of S wave data is the same for earthquakes at all depths. For deep earthquakes, this effect will also exaggerate the tendency of the CMT method to match S wave preferentially.

Sipkin (16) carried out a comparison of the results obtained using CMT and FM methods with XSE results (differences between CMT and FM solutions were not presented). Differences in orientation were measured by deriving a unit vector representation of the source moment tensor, and computing the differences between the vector directions. (Clearly, such a technique cannot be used for measuring differences between RAMP and other solutions, since RAMP does not yield a single "best" mechanism). It was concluded from this study that the agreement between the different methods was generally good, but that for shallow earthquakes, there was closer agreement for strike-slip than for dip-slip earthquakes. This was
ascribed to lack of constraint on the FM dip-slip solutions and poor resolution of the vertical dip-slip components of faulting by the CMT method. It was acknowledged, however, that the KSE results for shallow strike-slip earthquakes may be poorly resolved.

There would thus appear to be a discrepancy between the expectations of Sipkin and the results of testing CMT, MSE and FM solutions against RAMP data, discussed above. This may be explained by two factors. Firstly, sipkin made comparisons between waveform inversion solutions and FM solutions, which do not include S wave data, as RAMP solutions do. This means that the comparison is often made against a solution which embodies an assumed position for an unconstrained nodal plane. Secondly, the comparisons have been made in different ways, and the correlation between the vector difference and the "number of observation incompatibilities" will in general be subject to station distribution. This difference may be increased by the fact that the RAMP solutions frequently occupy regions of irregular shape in solution space. Thus a mechanism which lies just outside the limit of compatibility may be further from the centroid of the compatible region than one lying well outside it (figure 8).

To summarise:
(a) Other authors' solutions generally agree most closely with the part of the RAMP data which is weighted most heavily by the other methods; P waves for FM and MSE, and S waves for CMT.
(b) For most of the earthquakes, the results obtained by other authors lie outside the region of fully compatible mechanisms found using RAMP.
(c) When relative amplitudes can be measured for the surface-reflected phases, all other methods show an increase in the number of incompatible P phase pairs. This reflects the greater constraint imposed on the RAMP solution when relative amplitude bounds can be measured.
(d) There is an apparent discrepancy between the findings of sipkin (16) and this study. Sipkin found that better resolution was achieved by the CMT method for shallow strike-slip earthquakes, and by the MSE method for shallow dip-slip earthquakes. However, it is found here that the CMT results are more compatible with the RAMP observations for the shallow group A earthquakes, and YSE results are more compatible for the shallow group B earthquakes.

APPENDIX A
RELATIVE AMPLITUDE MEASUREMENTS

$\begin{array}{ccc}\cdots & \text { P(N) } & \cdots \cdots \\ \cdots & \text { Min } & \text { Max } \\ \text { U } & 0.500 & 100.000 \\ + & 0.500 & 100.000 \\ U & 0.500 & 100.000 \\ U & 0.500 & 100.000 \\ + & 0.500 & 100.000 \\ + & 0.500 & 100.000 \\ - & 0.500 & 100.000 \\ U & 0.500 & 100.000\end{array}$
Pol Min Max
$\begin{array}{ccc} & & \\ \text { Pol } & \text { Min } & \text { Max } \\ & & \\ \text { U } & 0.500 & 100.000 \\ \text { U } & 0.500 & 100.000 \\ \text { U } & 0.500 & 100.000 \\ \text { U } & 0.500 & 100.000 \\ \text { U } & 0.500 & 100.000 \\ \text { U } & 0.500 & 100.000 \\ \text { U } & 0.500 & 100.000 \\ \text { U } & 0.500 & 100.000\end{array}$
NEIS depth 10.0 km
01.01 .80
Azores Islands
$\begin{array}{lr}\text { Latitude } & 38.81500 \\ \text { Longitude } & \mathbf{- 2 7 . 7 8 0 0 0}\end{array}$
Pol M1n Max
BCAO - 0.500100 .000
KONO - $\quad 0.500100 .000$
ZOBO - 0.500100 .000
ANMO - 0.500100 .000
GRFO - 0.500100 .000
ANTO - 0.500100 .000
BOCO - 0.5001100 .000
KAAO - 0.500100 .000
\％ 1 最
$\begin{array}{lll}1 & 1 & 1 \\ - & - & \\ 0 & 0 & 0 \\ 0 & 0 & 8 \\ - & \ddots & - \\ 8 & 8 & - \\ 0 & 0 & 0 \\ 8 & 8 & 8\end{array}$

$\begin{array}{lr}\text { Latitude } & 37.60000 \\ \text { Longitude } & -118.84000\end{array}$
Callfornia－Nevada border region

N
N
0
0
8

啫
灾

2
20
0
0
0
0
0
0
0
0
0
0

Pol	Min	Max
-	1.000	100.000
-	1.000	100.000
-	1.000	100.000
U	1.000	100.000
v	1.000	100.000

Pol	Min	Max
-	1.000	100.000
+	1.000	100.000
U	1.000	100.000
+	1.000	100.000
-	1.000	100.000

Nepal 29.07.80 las04 NEIS depth 18 km

Latitude	29.59800
Longitude	81.09200

	Pol	Min	Max												
nwao	+	1.000	100.000	U	1.000	100.000				U	1.000	100.000	+	1.000	100.000
ANTO	+	1.000	100.000	U	1.000	100.000				+	1.000	100.000	U	1.000	100.000
bcao	+	1.000	100.000	U	1.000	100.000				+	1.000	100.000	-	1.000	100.000
GRFO	+	1.000	100.000	U	1.000	100.000				+	1.000	100.000	-	1.000	100.000
ctao	+	1.000	100.000	U	1.000	100.000				-	1.000	100.000	+	1.000	100.000
majo	+	1.000	100.000	U	1.000	100.000				+	1.000	100.000	+	1.000	100.000
tato	+	1.000	100.000	U	1.000	100.000				U	1.000	100.000	S	1.000	100.000
guno	+	1.000	100.000	U	1.000	100.000				+	1.000	100.000	+	1.000	100.000

Po 1	Min	max
S	1.000	100.00
v	1.000	100.00
0	1.000	100.00
S	1.000	100
	1.000	100

Po1	Min	Max
U	1.000	100.000
-	1.000	100.000
0	1.000	100.000
0	1.000	100.000
-	1.000	100.000

Algeria	10.10.80 1as05	NEIS depth 10.0 km	
Latitude	36.19500		
Longitude	1.35400		
	P		pr
Pol	Min Max	Po1	Min Max
anmo	1.000100 .000	v	1.000100 .000
BOCO	1.000100 .000	0	1.000100 .000
bcao	1.000100 .000	U	1.000100 .000
zobo	1.000100 .000	0	1.000100 .000
JAS	1.000100 .000	0	1.000100 .000

LON - 1.000100 .000
KONO - 1.000100 .000
GRFO - 1.000100 .000
ZOBO - 1.000100 .000

Pol Min Max

U $1.000 \quad 100.000$ U 1.000100 .000 U 1.000100 .000 U $1.000 \quad 100.000$

Pol Mi
$-\quad 1.000100 .000$
$+\quad 1.000100 .000$

U $1.000100 .000 \quad-\quad 1.000100 .000$

Pol	Min	Max
-	1.000	100.000
+	1.000	100.000
+	1.000	100.000
U	1.000	100.000
-	1.000	100.000

Long Itude $0099 \varepsilon \cdot G 1$
$00716 \cdot 07$ Latitude Southern Italy 23.11 .80

$\begin{array}{lll}000 \cdot 001 & 000 \cdot 1 & 0 \\ 000 \cdot 001 & 000 \cdot 1 & 0 \\ 000 \cdot 001 & 000 \cdot 1 & n \\ 000 \cdot 001 & 000 \cdot 1 & - \\ 000 \cdot 001 & 000 \cdot 1 & - \\ 000 \cdot 001 & 000 \cdot 1 & -\end{array}$ xow uTw Iod

Po1	Min	Max
*	1.000	100.000
-	1.000	100.000
-	1.000	100.000
+	1.000	100.000
-	1.000	100.000

\cdots	Po1	Min
		Max
-	1.000	100.000
-	1.000	100.000
U	1.000	100.000
U	1.000	100.000
U	1.000	100.000
+	1.000	100.000

Near East	Coast of Honshu,	Japan	18.01 .81	12309	NEIS depth 33 km
Latitude	38.64000				
Longitude 142.75000					
----	- P --------	-	pP --		sP
Pol	min Max	Pol	Min Max	Po 1	Min Max
KONO	1.000100 .000	v	1.000100 .000		
ctao	1.000100 .000	U	1.000100 .000		
SNZO	1.000100 .000	0	1.000100 .000		
GRFO	1.000100 .000	0	1.000100 .000		
nwao	1.000100 .000	0	1.000100 .000		
Anto	1.000100 .000	0	1.000100 .000		

?

$\begin{array}{ll}000 \cdot 001000 \cdot 1 & + \\ 000 \cdot 001000 \cdot 1 & + \\ 000 \cdot 001000 \cdot 1 & - \\ 000 \cdot 001000 \cdot 1 & n \\ 000 \cdot 001000 \cdot 1 & n \\ 000 \cdot 001000 \cdot 1 & - \\ 000 \cdot 001000.1 & + \\ 000.001 & 000 \cdot 1\end{array}+$
$\stackrel{\circ}{-}$
$\frac{3}{3}$

1
\vdots
\vdots
\vdots
3
\vdots
\vdots

x*W UIW IOd

Pol	Min	Max
-	0.100	$\mathbf{1 0 0 . 0 0 0}$
-	0.100	100.000

Pol	MIn	Max
+	0.100100 .000	
+	0.100100 .000	
+		
+	0.100100 .000	
+	0.100100 .000	

Po1	M1n	Max

06.07.81 1as11 33 km

$x \times \mathrm{um}$ tod

00679° OII- opnif8uo7
$002 L Z \cdot L E-\quad$ apnif7EI

W
0
0
0
0
0
0
0
0
0
0
0
0
0

\sim

xew ulw Iod
xew UIW
las 12 NEIS depth 10.0 km
$\stackrel{8}{3}$

를

Pol	Min	Max
0	1.000	100.000
-	1.000	100.000
	1.000	100
	1.000	100
-	1.000	100.000
	1.00	100.

Pol	Min	Max
0	1.000	100.000
+	1.000	100.000
*	1.000	100.000
U	1.000	100.000
+	1.000	100.000
	1.000	100.000

NEIS depth 24.0 km
las13
22.11 .81

PoI

Luzon, Phillppine Islands
Latitude $\quad 18.75200$
120.83900
Longitude 120.83900
Pol Min Max

$000 \cdot 001000 \cdot 1 \quad 0 \quad 000 \cdot 001000 \cdot 1 \quad n$

 $000 \cdot 001000 \cdot 1$

----- $S(E)$
Po $1 \quad$ min xen ----- (3)S ------

Pol	Min	Max
S	1.000	100.000
-	1.000	100.000
S	1.000	100.000
S	1.000	100.000
0	1.000	100.000
S	1.000	100.000

Pol	Min	Max
v	1.000	100.000
-	1.000	100.000
U	1.000	100.000

$000 \cdot 001000$ I
$000 \cdot 001000 \cdot 1$ S
xow UIW IOd

Pol	M1n	Max
S	1.000	100.000
+	1.000	100.000
+	1.000	100.000
0	1.000	100.000
U	1.000	100.000
U	1.000	100.000

Pol	Min	max
U	1.000	100.000
+	1.000	100.000
+	1.000	100.000
U	1.000	100.000
+	1.000	100.000
	1.0	100.000

 Max
 Pol Min
$\begin{array}{lcc} & \text { Pol } & \text { Min }\end{array}$ Max
NEIS depth 30.7 km
05.08.82 1as17
Santa Cruz Islands
Latitude $\quad \mathbf{- 1 5 . 5 9 7 0 0}$
Latitude
Longitude

South of Honshu, Japan 06.09 .82 las 18 NEIS depth 176 km : depth used 120 km

Latitude	29.32500
Longitude	140.36000

	Pol	Min	Max												
SNZO	+	0.000	4.500	*	10.000	15.000	U	0.000	80.000	U	0.000	1.000	S	0.000	1.000
ANmo	-	2.000	30.000	+	2.000	10.000	U	0.000	30.000						
ANTO	-	3.500	45.000	U	0.000	12.000	U	0.000	10.000						
COL	-	1.500	22.000	+	0.000	3.000	*	0.000	5.000	U	0.000	1.000	S	0.000	1.000
Ctao	+	0.000	6.000	*	8.000	25.000	U	0.000	50.000						
GAC	-	4.500	65.000	U	0.000	12.000	U	0.000	10.000						
GDH	-	8.000	100.000	U	0.000	6.000	U	0.000	15.000	U	0.000	1.000	-	0.000	1.000
JAS	-	1.000	40.000	+	5.000	30.000	U	0.000	100.000	U	0.000	1.000	-	0.000	1.000
KEV	-	13.000	150.000	U	0.000	10.000	+	2.000	10.000	U	0.000	1.000	0	0.000	1.000
KONO	-	19.000	210.000	U	0.000	30.000	U	0.000	20.000	U	0.000	1.000	0	0.000	1.000
LON	-	0.500	12.000	U	0.000	1.800	U	0.000	15.000	U	0.000	1.000	S	0.000	1.000

Pol	Min	max
-	1.0	100.000
-	1.000	100.00
-	1.000	100.000
s	1.000	
	1.00	100.000

$\sum_{0}^{\text {\% }}$	
:	

Western Arabian Peninsula

Latitude	14.70100
Longitude	44.37900

Pol Min max
TATO - 1.000100 .000
NWAO -1.000100 .000
MAJO - 1.000100 .000
SLR - 1.000100 .000
BCAO - 1.000100 .000
Po1 Min

XEN UIW IOd

x=W UTW IOd
O

00SEI•SL 00576•6E 00576.6E эрnifien NEIS depth 16.1 km

O 1	M1n	Max
+	1.000	100.000
-	1.000	100.000
-	1.000	100.000
+	1.000	100.000
0	1.000	100.000
+	1.000	100.000
+	1.000	100.000
S	1.000	100.000
-	1.000	100.000
+	1.000	100.000
0	1.000	100.000
0	1.000	100.00

Pol	Min	Max
-	1.000	100.000
*	1.000	100.000
+	1.000	100.000
-	1.000	100.000
U	1.000	100.000
0	1.000	100.000
U	1.000	100.000

$\begin{array}{ll}\text { Pol } \\ \text { Pol } & \text { Min } \\ \text { Max }\end{array}$

Costa	Rica		.04.83	les21	NEIS depth 37 km
Latit	tude		. 71700		
Long 1	tude	-83	. 12300		
	Pol	M1n	Max	Pol	Min Max
GRFO	+	1.000	100.000	v	1.000100 .000
HON	+	1.000	100.000	U	1.000100 .000
LON	+	1.000	100.000	U	1.000100 .000
KEV	+	1.000	100.000	U	1.000100 .000
RSSD	+	1.000	100.000	U	1.000100 .000
BER	+	1.000	100.000	U	1.000100 .000
TOL	+	1.000	100.000	U	1.000100 .000
AFI	+	1.000	100.000	U	1.000100 .000
COL	+	1.000	100.000	U	1.000100 .000
KONO	+	1.000	100.000	0	1.000100 .000
zово	+	1.000	100.000	0	1.000100 .000
ANMO	+	1.000	100.000	U	1.000100 .000
RSON	+	1.000	100.000	U	1.000100 .000
RSNY	+	1.000	100.000	U	1.000100 .000
SCP	+	1.000	100.000	U	1.000100 .000
GAC	+	1.000	100.000	0	1.000100 .000

000*001	000*1	n	$000 \cdot 001$	000 ${ }^{\circ}$ t	
$000 \cdot 001$	000*1	-	$000 \cdot 001$	000 ${ }^{\circ} \mathrm{I}$	
$000 \cdot 001$	000* 1	-	000 001	000 ${ }^{\text {I }}$	+
$000 \cdot 001$	000*1	+	000.00t	000 ${ }^{\circ} \mathrm{I}$	
$000 \cdot 001$	000* 1	S	$000 \cdot 001$	$000{ }^{\circ} \mathrm{I}$	0
000*001	000* I	n	$000 \cdot 001$	000 1	+
$000 \cdot 001$	000*1	+	000 001	000 1	
$000 \cdot 001$	000*1	S	000.001	000 ${ }^{\circ} \mathrm{I}$	0
000*001	000*1	n	000 001	000 ${ }^{\circ}$ I	+
000.001	000*1	-	$000 \cdot 001$	$000 \cdot 1$	+
xew	utw	[0d	rew	UTw	[0d
--	(3) 5	--	------	(N)S	

000.001 000'1	n	000*001 000.1	OCV
000.001 000'I	n	000.001 000'1	LVL
000.001 000*	n	000*001 000\%	439
000*001 000*	n	000.001 000't	АЗ,
000.001 000'1	ก	000.001 000\%1	- ONOX
000.001 000'I	ก	000.001 000' 1	0V10
000.001 000*1	ก	000.001 000.1	OZNS
000.001 000't	0	000.001 000*	Ody9
$000 \cdot 001000 \cdot 1$	n	000.001 000 1	OVMN
$000 \cdot 001000 \cdot 1$	n	000.001 000'1	0v>s
$000 \cdot 001$ 000'I	\cap	000.001 000'	- Owno
000*001 000*	ก	000.001 000't	- olny
x日w utw	IOd	Ken uiw	Iod
dd		-------- d -	

0022L•76	2pn7t8uo7
00EzL - S	อрп717e]

Latitude Longitude		$\begin{array}{r} 10.41900 \\ -62.76400 \end{array}$	
	Po1	Min	Max
anto	-	1.000	100.000
bcao	-	1.000	100.000
GRFO	-	1.000	100.000
GAC			
KONO	-	1.000	100.000
KEV	-	1.000	100.000
TOL	-	1.000	100.000
BER	-	1.000	100.000
Anmo	-	1.000	100.000
SCP	-	1.000	100.000
COL	-	1.000	100.000
LON	-	1.000	100.000
HON	-	1.000	100.000
RSSD	-	1.000	100.000

$$
\begin{array}{ccc}
\hline- & -- & \text { pP } \\
\text { Po1 } & \text { Min } & \text { Max } \\
& & \\
\text { U } & 1.000 & 100.000 \\
\text { U } & 1.000 & 100.000 \\
\text { U } & 1.000 & 100.000 \\
& & \\
\text { U } & 1.000 & 100.000 \\
\text { U } & 1.000 & 100.000 \\
\text { U } & 1.000 & 100.000 \\
\text { U } & 1.000 & 100.000 \\
\text { U } & 1.000 & 100.000 \\
\text { U } & 1.000 & 100.000 \\
\text { U } & 1.000 & 100.000 \\
\text { U } & 1.000 & 100.000 \\
\text { U } & 1.000 & 100.000 \\
\text { U } & 1.000 & 100.000
\end{array}
$$

$$
\begin{array}{ll}
\text { Poi Min } & \text { Max }
\end{array}
$$

Pol	MIn	Max
-	1.000	100.000
U	1.000	100.000
-	1.000	100.000
U	1.000	100.000
-	1.000	100.000
-	1.000	100.000
-	1.000	100.000
-	1.000	100.000

Southern Iran 18.04.83 ias24 NEIS depth 64 km

$\begin{array}{ll}\text { Letitude } & 27.79300 \\ \text { Longitude } & 62.05400\end{array}$

	Pol	Min	Max												
COL	*	1.000	100.000	U	1.000	100.000				+	1.000	100.000	+	1.000	100.000
majo	-	1.000	100.000	U	1.000	100.000				+	1.000	100.000	U	1.000	100.000
bCaO	-	1.000	100.000	U	1.000	100.000				+	1.000	100.000	U	1.000	100.000
TOL	+	1.000	100.000	U	1.000	100.000				U	1.000	100.000	S	1.000	100.000
BER	+	1.000	100.000	U	1.000	100.000									
KEV	+	1.000	100.000	U	1.000	100.000				U	1.000	100.000	0	1.000	100.000
KONO	*	1.000	100.000	U	1.000	100.000				-	1.000	100.000	+	1.000	100.000
tato	-	1.000	100.000	U	1.000	100.000				+	1.000	100.000	U	1.000	100.000
GRFO	+	1.000	100.000	U	1.000	100.000				U	1.000	100.000	0	1.000	100.000
NWAO	-	1.000	100.000	U	1.000	100.000				U	1.000	100.000	0	1.000	100.000
gumo	-	1.000	100.000	\mathbf{U}	1.000	100.000				+	1.000	100.000	U	1.000	100.000

$\cdots \cdots-\cdots$	S(E)	$\cdots \cdots$
Po1	Min	Max
0	1.000	100.000
0	1.000	100.000
0	1.000	100.000
0	1.000	100.000
-	1.000	100.000
0	1.000	100.000
	1.000	100.000
0	1.000	100.000

Pol	Min	Max
v	1.000	100.000
v	1.000	100.000
U	1.000	100.000
U	1.000	100.000
-	1.000	100.000
0	1.000	100.000
-	1.000	100.000
U	1.000	100.000

	Pol	Min	Max	Po1	Min	Max	Pol	MIn
Max								

$\begin{array}{lll}000 \cdot 001 \\ 000 \cdot 1 & n \\ 000 \cdot 001 & 000 \cdot 1 & n\end{array}$
$\begin{array}{ll}0 & n \\ - & - \\ 8.8 \\ 8 & 0 \\ \circ & 0 \\ 0.8 \\ 80 & 0\end{array}$

$\stackrel{\circ}{\circ}$ 즠․ xew

Near West Coast of Honshu, Japan 26.05 .83 Las26 NEIS depth 23.7 km

\cdots	Pol	Min
	Max	
0	0.000	1.000
0	0.000	1.000
0	0.000	1.000
	0.000	1.000

Tonga Islands			01.06 .83
Latit	tude	-17.	. 03800
Long 1	Itude	-174.	60500
	Pol	Min	Max
ctao		5.000	8.000
anmo		27.000	33.000
LON		20.000	29.000
HON		8.000	11.000
LEM		18.000	26.000
RSCP		20.000	40.000
RSNT		11.000	22.000
JAS		19.000	27.000
Majo	-	12.000	18.000
zobo	v	0.000	10.000
NWAO	-	13.000	28.000

 ب-

$\stackrel{\circ}{-}$

$\begin{array}{lr}\text { Lat Itude } & -9.51200 \\ \text { Longitude } & -71.25900\end{array}$
Peru - Brazil Border Region

${ }_{\substack{\mathbf{B} \\ \chi}}$

Pol	Min	Max
S	1.000	100.000
0	1.000	100.000
S	1.000	100.000
5	1.000	100.000
s	1.000	100.000
s	1.000	100.000
S	1.000	100.000
+	1.000	100.000
S	1.000	100.000
0	1.000	100.000

Pol	Min	Max
\mathbf{v}	1.000	100.000
U	1.000	100.000
\mathbf{u}	1.000	100.000
U	1.000	100.000

\section*{| $=$ |
:---
8
8
8
8
8
8

Pol	Min	Max
s	1.000	100.000
S	1.000	100.000
0	1.000	100.000
S	1.000	100.000
S	1.000	100.000
0	1.000	100.000
+	1.000	100.000
U	1.000	100.000

Pol	Min	Max
0	1.000	100.000
U	1.000	100.000
U	1.000	100.000
U	1.000	100.000
v	1.000	100.000
v	1.000	100.000
0	1.000	100.000

Po1	M1n	Max	Pol	Min	Max
U	1.000	100.000			
U	1.000	100.000			
0	1.000	100.000			
U	1.000	100.000			
U	1.000	100.000			
U	1.000	100.000			
U	1.000	100.000			
U	1.000	100.000			
U	1.000	100.000			
U	1.000	100.000			
U	1.000	100.000			
U	1.000	100.000			

1as31 NEIS depth 44.1 km

E8. $20 \cdot 21$ exeiv unayznos
莴
NEIS depth 37 km

Pol	M(${ }^{S(E)}$	Max
-	1.000	100.000
-	1.000	100.000
-	1.000	100.000
-	1.000	100.000
0	1.000	100.000
0	1.000	100.000
-	1.000	100.000
-	1.000	100.000
U	1.000	100.000
-	1.000	100.000
+	1.000	100.000

Pol	Min	Max
+	1.000	100.000
+	1.000	100.000
+	1.000	100.000
+	1.000	100.000
U	1.000	100.000
U	1.000	100.000
+	1.000	100.000
+	1.000	100.000
+	1.000	100.000
+	1.000	100.000
U	1.000	00.

Pol	M1n	Max

$\begin{array}{ll}000 \cdot 001000 \cdot 1 & n \\ 000 \cdot 001000 \cdot 1 & n\end{array}$
$000 \cdot 001000 \cdot 1$

1.000100 .000

$000 \cdot 001$ $000 \cdot 001$ $000 \cdot 001$	$000 \cdot 1$ $000 \cdot 1$ $000 \cdot 1$	s s s
000-001	000't	n
000'001	$000 \cdot 1$	s
$000 \cdot 001$	000'I	
000-001	$000 \cdot 1$	
00.001	$000 \cdot 1$	0
00.001	000'1	
000-001	000'1	s
000-001	$000 \cdot 1$	s
000 001	000 1	0
\cdots	atw	$\mathrm{I}^{\circ} \mathrm{d}$

$$
\begin{aligned}
& \text { Southern Alaska } 07.09 .83 \\
& \\
& \text { Latitude } \\
& \text { Longitude } \\
& \text { Lo.97600 } \\
& \hline
\end{aligned}
$$

Pol	Min	Max
-	1.000	100.000
+	1.000	100.000
-	1.000	100.000
-	1.000	100.000
0	1.000	100.000
U	1.000	100.000
U	1.000	100.000
0	1.000	100.000
0	1.000	100.000
v	1.000	100.000
0	1.000	100.000

8 8 8 8 -8

 1.000100 .000 1.000100 .000 1.000100 .000 1.000100 .0001.000100 .000 | 88 |
| :--- |
| 88 |
| 8 |
| 8 |
| 8 |
| 8 |
| 8 | 1.000100 .000

1.000100 .000 1.000100 .000

1.000100 .000 | 8 |
| :--- |
| 8 |
| 8 |
| 8 |
| 8 |
| 8 | 8

8
\vdots
8
8

8 | 8 |
| :--- |
| 8 |
| 0 |
| 8 |
| 8 |
| 8 |

Pol
Pol Min Max
说 응

Afghanistan - USSR border 12.09 .83 ias 36 Depth (NEIS) 208.8km

Latitude
 Longitude 71.08200

	Pol	M1n	Max	Pol	Min	Max	Pol	Min	Max
COL	+	18.000	20.000	-	12.000	25.000	U	0.000	40.000
SLR	+	12.000	17.000	-	2.000	16.000	U	0.000	8.000
RSNT	+	15.000	17.000	-	8.000	22.000	U	0.000	60.000
GAC	+	9.000	11.000	-	0.000	16.000	U	0.000	15.000
Majo	+	28.000	30.000	U	0.000	20.000	U	0.000	30.000
TOL	+	5.000	9.000	-	0.000	17.000	U	0.000	8.000
LEM	+	9.000	14.000	U	0.000	8.000	-	15.000	40.000
Tato	+	14.000	16.000	-	0.000	15.000	-	11.000	34.000
KONO	+	4.000	6.000	U	0.000	30.000	U	0.000	100.000
BCAO									
LON									

Pol	Min	Max	Pol	Min	Max
-	0.000	1.000	0	0.000	1.000
-	0.000	1.000	-	0.000	1.000
-	0.000	1.000	+	0.000	1.000
+	0.000	1.000	+	0.000	1.000
-	0.000	1.000	-	0.000	1.000
-	0.000	1.000	-	0.000	1.000

Po1	M1n	Max
*	1.000	100.000
*	1.000	100.000
*	1.000	100.000
+	1.000	100.000
+	1.000	100.000
0	1.000	100.000
s	1.000	100.000

\cdots	Po1	Min
	Max	
+	1.000	100.000
+	1.000	100.000
+	1.000	100.000
+	1.000	100.000
+	1.000	100.000
U	1.000	100.000

Depth (NEIS) 14.8 km

$\begin{array}{lll}\text { U } & 1.000 & 100.000 \\ \text { U } & 1.000 & 100.000 \\ \text { U } & 1.000 & 100.000 \\ \text { U } & 1.000 & 100.000 \\ \text { U } & 1.000 & 100.000 \\ \text { U } & 1.000 & 100.000 \\ \text { U } & 1.000 & 100.000 \\ \text { U } & 1.000 & 100.000 \\ \text { U } & 1.000 & 100.000 \\ \text { U } & 1.000 & 100.000 \\ \text { U } & 1.000 & 100.000 \\ \text { U } & 1.000 & 100.000 \\ \text { U } & 1.000 & 100.000\end{array}$
Near Coat of Northern Chile

RSCP +1.000100 .000
JAS +1.000100 .000
SCP +1.000100 .000
BOCO +1.000100 .000
ANMO +1.000100 .000
SNZO +1.000100 .000
RSON +1.000100 .000
RSNY + 1.000100 .000
RSSD +1.000100 .000
LON +1.000100 .000
TOL +1.000100 .000
SLR +1.000100 .000
GAC +1.000100 .000
 + + + + + + +

[^0]Near Coast of Northern Ch1le $\quad 04.10 .83$ lae38

끌 픕 $\frac{7}{8}$

------- dd $-\cdots-\cdots$

1
\vdots
\vdots
0
\vdots
\vdots
\vdots
\vdots
\vdots

Pol	M1n	Max
+	1.000	100.000
U	1.000	100.000
-	1.000	100.000
U	1.000	100.000
U	1.000	100.000
U	1.000	100.000
0	1.000	100.000
U	1.000	100.000
0	1.000	100.000
U	1.000	100.000
U	1.000	100.000
0	1.000	100.000
U	1.000	100.000

Pol Min Max
$\begin{array}{ccc}\cdots & & \text { pp } \\ \text { Pol } & \text { Min } & \text { Max } \\ & & \\ \text { U } & 1.000 & 100.000 \\ \text { U } & 1.000 & 100.000 \\ \text { U } & 1.000 & 100.000 \\ \text { U } & 1.000 & 100.000 \\ \text { U } & 1.000 & 100.000 \\ \text { U } & 1.000 & 100.000 \\ \text { U } & 1.000 & 100.000 \\ \text { U } & 1.000 & 100.000 \\ \text { U } & 1.000 & 100.000 \\ \text { U } & 1.000 & 100.000 \\ \text { U } & 1.000 & 100.000 \\ \text { U } & 1.000 & 100.000 \\ \text { U } & 1.000 & 100.000 \\ \text { U } & 1.000 & 100.000 \\ \text { U } & 1.000 & 100.000\end{array}$
NEIS depth 10 km
17.10.83 Las39
North Atlantlc Ocean
Latitude $\quad 37.58800$
Long 1 tude
$\begin{array}{llll}\text { GDF } & - & 1.000 & 100.000 \\ \text { KONO } & + & 1.000 & 100.000 \\ \text { ZOBO } & + & 1.000 & 100.000 \\ \text { SLR } & - & 1.000 & 100.000 \\ \text { BDF } & + & 1.000 & 100.000 \\ \text { RSNY } & - & 1.000 & 100.000 \\ \text { RSSD } & - & 1.000 & 100.000 \\ \text { RSNT } & - & 1.000 & 100.000 \\ \text { RSCP } & - & 1.000 & 100.000 \\ \text { JAS } & - & 1.000 & 100.000 \\ \text { LON } & - & 1.000 & 100.000 \\ \text { COL } & - & 1.000 & 100.000 \\ \text { SCP } & - & 1.000 & 100.000 \\ \text { GAC } & - & 1.000 & 100.000 \\ \text { ANMO } & - & 1.000 & 100.000\end{array}$

000.001	000 1	n
000.001	000* 1	-
000.001	000't	n
xew	uiw	$\mathrm{T}^{\mathbf{0}} \mathrm{d}$

Pol	M1n	Max
0	1.000	100.000
-	1.000	100.000
-	1.000	100.000
-	1.000	100.000
*	1.000	100.000
U	1.000	100.000
-	1.000	100.000
-	1.000	100.000
*	1.000	100.000
U	1.000	100.000

Pol	Min	Max
U	1.000	100.000
-	1.000	100.000
-	1.000	100.000
U	1.000	100.000
-	1.000	100.000
-	1.000	100.000
U	1.000	100.000
-	1.000	100.000
-	1.000	100.000
	1.000	100.000

 Pol Min Max
 | Turke | | 30.10 .83 | 3 1as41 | NEIS | depth | 11.6 km |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Latit | tude | 40.3 | 33000 | | | |
| Long 1 | tude | - 42.1 | 18700 | | | |
| | Pol | Min | Max | Pol | Min | Max |
| KONO | - | 1.0001 | 100.000 | U | 1.000 | 100.000 |
| TOL | + | 1.0001 | 100.000 | U | 1.000 | 100.000 |
| SLR | - | 1.0001 | 100.000 | U | 1.000 | 100.000 |
| MAJO | + | 1.0001 | 100.000 | U | 1.000 | 100.000 |
| COL | - | 1.0001 | 100.000 | U | 1.000 | 100.000 |
| LEM | + | 1.0001 | 100.000 | U | 1.000 | 100.000 |
| RSCP | - | 1.0001 | 100.000 | U | 1.000 | 100.000 |
| тато | + | 1.0001 | 100.000 | U | 1.000 | 100.000 |
| RSNY | - | 1.0001 | 100.000 | U | 1.000 | 100.000 |
| RSSD | - | 1.0001 | 100.000 | U | 1.000 | 100.000 |
| RSNT | - | 1.0001 | 100.000 | U | 1.000 | 100.000 |
| BER | - | 1.0001 | 100.000 | U | 1.000 | 100.000 |
| GDH | - | 1.0001 | 100.000 | U | 1.000 | 100.000 |
| SCP | - | 1.0001 | 100.000 | U | 1.000 | 100.000 |
| GAC | - | 1.0001 | 100.000 | U | 1.000 | 100.00 |

은
픕

Pol	Min	Max
0	1.000	100.00
S	1.000	100.000
0	1.000	100.00
0	1.000	100.
0	1.000	100.0

Pol	Min	Max
U	1.000	100.000
U	1.000	100.000
U	1.000	100.00
+	1.000	100.000
U	1.000	100.

\cdots	Min	Max
Pol	MIn	
-	5.000	50.000

NEIS depth 178.5 km

$\stackrel{m}{\underset{~}{g}}$

Banda Sea	24.11 .83
Latitude	-7.48100
Longltude	128.16700
Pol	Min Max
tato + 10	10.00020 .000
HON	1.00010 .000
tav	1.000100 .000
AFI	1.000100 .000
majo	1.000100 .000
SNZO	1.000100 .000
nwao	1.000100 .000
gumo	1.000100 .000

KEV
majo
Kono
gumo
grfo
tau
SLR
tato
bcao
ctao
nhao

\section*{| 0 |
| :--- |
| 0 |
| 3 |
| 5 |
| 8 |}

Longitude
00258 －9－จคกาเフロา Chagos Archipelago Region
$\begin{array}{lll}\mathrm{U} & 1.000 & 100.000 \\ \mathbf{U} & 1.000 & 100.000\end{array}$

000．001 000．1 \quad n000 ． 001000°

${ }^{\circ}$
픕
界
줒중

Pol	Min	Max
-	1.000	100.000
-	1.000	100.000
S	1.000	100.000

Pol	M1n	Max	Pol	M1n	Max

U	1.000	100.000
U	1.000	100.000

Northwest	Africa $\quad 22.12 .83$
Latitude	11.86600
Longltude	-13.52900

	Pol	Min	Max
KEV	-	1.000	100.000
bCaO	-	1.000	100.000
RSSD	-	1.000	100.000
BDF	-	1.000	100.000
Kono	-	1.000	100.000
RSCP	-	1.000	100.000
GRFO	-	1.000	100.000
ANMO	-	1.000	100.000
RSNT	-	1.000	100.000
GDH	-	1.000	100.000
SCP	-	1.000	100.000

Hindu Kush Region $30.12 .83 \quad 1$ as46 NEIS depth 214.5 km
$\begin{array}{ll}\text { Latitude } & \mathbf{3 6 . 3 7 2 0 0} \\ \text { Longitude } & \mathbf{7 0 . 7 3 8 0 0}\end{array}$

	Pol	Min	Max												
KONO	+	10.000	100.000	U	0.000	10.000	U	10.000	100.000	U	1.000	100.000	0	1.000	100.000
gumo	+	6.000	10.000	-	7.000	18.000				-	1.000	100.000	+	1.000	100.000
RSNT	*	10.000	100.000	U	0.000	10.000	U	10.000	100.000	U	1.000	100.000	-	1.000	100.000
GDH	*	10.000	100.000	U	0.000	10.000	U	10.000	100.000	U	1.000	100.000	0	1.000	100.000
KEV	*	10.000	100.000	U	0.000	10.000	U	10.000	100.000	U	1.000	100.000	0	1.000	100.000
COL	*	10.000	100.000	U	0.000	10.000	U	10.000	100.000						
tato	+	1.000	100.000	U	1.000	100.000				U	1.000	100.000	S	1.000	100.000
GRFO	*	1.000	100.000	U	1.000	100.000									
NWAO	+	1.000	100.000	U	1.000	100.000				U	1.000	100.000	*	1.000	100.000
bсá	*	1.000	100.000	U	1.000	100.000									

PoI	Min	Max
-	1.000	100.000
0	1.000	100.000
S	1.000	100.000
-	1.000	100.000
-	1.000	100.000
+	1.000	100.000
-	1.000	100.000
*	1.000	100.000
U	1.000	100.000
+	1.000	100.000
0	1.000	100.000

Po1	min	Max
+	1.000	100.000
U	1.000	100.000
U	1.000	100.000
+	1.000	100.000
*	1.000	100.000
U	1.000	100.000
+	1.000	100.000
-	1.000	100.000
	1.000	100.000
U	1.000	100.000
U	1.000	100.000

Near	S	Cosst of	Honshu,	Japan	01.01 .8	419847	NEIS	depth	374.2 km
LatIt	tude	33.	40400						
Long 1	tude	de 137.	32200						
		----	-----		pP	--		sP	
	Pol	Min	Max	Pol	MIn	Max	Pol	MIn	Max
Kono	+	8.000	12.000	-	4.000	7.000	0	0.000	25.000
RSSD		11.000	14.000	-	2.000	7.000	0	0.000	35.000
RSNT	+	9.000	12.000	-	1.000	3.000	0	0.000	30.000
KEV		10.000	14.000	-	2.000	5.000	v	1.500	20.000
How	+	5.000	8.000	+	1.000	2.500	U	1.000	25.000
JAS	*	5.000	8.000	+	1.500	4.000	U	0.000	25.000
LON	*	6.000	8.000	-	1.000	6.000	v	2.000	25.000
ctao	-	6.000	10.000	U	1.000	30.000	U	1.000	20.000
GrFo									
NWAO									
COL									
SNzo									
anmo									

$000 \cdot 001 \quad 000 \cdot 1$
$000 \cdot 001 \quad 000 \cdot 1$

$000 \cdot 001$
$000 \cdot 1$
$000 \cdot 001$
$000 \cdot 001$
$000 \cdot 1$
$000 \cdot 001$
$000 \cdot 1$
$\left.\begin{array}{cc}000 \cdot 001 & 000 \cdot 1 \\ 000 \cdot 001 & 000 \cdot 1\end{array}\right]$

MIndanao, Philippine Islands 05.03 .84 las49 NEIS depth 650.6 km

Pol	MIn	Max
U	1.000	100.000
U	1.000	100.000
u	1.000	100.000

000.001000\%	000.007 $000 \cdot 1$	- 103
${ }^{000} \cdot 001000 \cdot 1$	$0^{000} 0001000^{\prime \prime}$	* наэ
$0000001000 \cdot 1$	$000 \cdot 001000 \cdot 1$	Owno
000.001 $000 \cdot 1$	$000 \cdot 001000 \cdot 1$	oven
$000 \cdot 001000 \cdot 1$	$000 \cdot 001000 \cdot 1$	\%บํ
000.001000'1	$000 \cdot 001000 \cdot 1$	
$000 \cdot 001000 \cdot 1$	$000 \cdot 001000 \cdot 1$	寺
000.00t 000't	000.001 $000 \cdot 1$	
$000 \cdot 001000 \cdot \mathrm{t}$	$000 \cdot 000^{000} \cdot 1$	- 701
x*W um	xon utw	1 d
	00६£६•६9 $00882^{\circ} 0$	

끌
8
3
8

Kuril 1s1ands 24.03 .84 1as51 NEIS depth 43.0 km

Lat itude Longitude		$\begin{array}{r} 44.16200 \\ 148.28900 \end{array}$	
	Pol	Min	Max
AFI	-	1.000	100.000
ctao		1.000	100.000
anmo	+	1.000	100.000
SNZO		1.000	100.000
KEV	+	1.000	100.000
NWAO		1.000	100.000
COL	+	1.000	100.000
LoN	+	1.000	100.000
GRFO	+	1.000	100.000
tau	+	1.000	100.000
BER		1.000	100.000
GDH	*	1.000	100.000
RSNY	+	1.000	100.000
GAC	+	1.000	100.000
RSCP	+	1.000	100.000
RSON		1.000	100.000
RSSD		1.000	100.000
RSNT	+	1.000	100.000

Pol Min
max

$$
\begin{aligned}
& -\cdots--S(N) \\
& \text { Pol Min Max }
\end{aligned}
$$

$$
\begin{array}{ll}
-----S(E) & ----- \\
\text { Po1 Min Max }
\end{array}
$$

THIS PAGE LEFT BLANK INTENTIONALLY

APPENDIX B

SEISMOGRAMS AND GRAPHICAL SUMMARY OF RESULTS

NOTE

Appendix B presents a graphical summary of the siesmograms available and the results obtained from RAMP for each of the IASPEI list earthquakes. For each earthquake the following graphics are shown:-
(a) The stations used, plotted on a lower focal hemisphere projection, and the relevant portions of the long period seismograms taken from each. The vertical component seismograms (labelled "V") supply P, and sometimes $p P$ and $s P$ observations, while the east-west ("E") and north-south ("N") component seismograms supply observations of the direct S wave.
(b) A source type plot, showing the proportion of orientation space in which each source type tested is compatible with all the observations.
(c) A vectorplot, showing those orientations in which the double couple source type is compatible with all the observations.
(d) The fault plane solution of Needham (1985), derived from P wave first motion observations.
(e) The solution derived by Ekstrym et al (1987), using the CNT method. The dashed lines show the nodal planes of their "best double couple"; the solid lines show the nodal surfaces for their "best solution". The shaded areas show regions of positive P wave first motion.
(f) The solution derived by Sipkin (1987), using the MSE method. Dashed and solid lines once again represent the nodal surfaces of the "best double couple" and "best solution".

(c) \quad SLIP $\underset{10^{\circ}}{ } \underset{30^{\circ}}{ }$ ANGLE $\underset{60^{\circ}}{ } \operatorname{FAUL} \underset{90^{\circ}}{ } \quad$ PLANE $120^{\circ} \quad T=0 \quad k=0$

(e)

(f)

(c)

120°
150°
180°

(e)
(f)

(e)

IASPEI
event 4
(c) $\quad \underset{10^{\circ}}{ } \underset{30^{\circ}}{ } \underset{60^{\circ}}{\operatorname{AN}} \underset{90^{\circ}}{ } \quad \underset{120^{\circ}}{ } \quad \underset{150^{\circ}}{ } \quad k=0$

(e)

(f)

160°

(£)

GRFO

$N \cdots \sqrt{N}$

(c) SLIP ANGLE IN FAULT PLANE $T=0 \quad k=0$

180°

smom

(c) $\quad \underset{10^{\circ}}{\operatorname{AL}} \underset{30^{\circ}}{ } \underset{60^{\circ}}{\operatorname{ANGLE}} \underset{90^{\circ}}{\operatorname{IN}} \underset{120^{\circ}}{ } \quad \underset{150^{\circ}}{ } \quad k=0$

120°
150°
180°

IASPEI

$n-\eta$ Now End $M m$
$=-n=$
ctao :
$n-\sqrt{\operatorname{man}}$
$\begin{array}{ll:l}\text { GRFO } \\ \mathbf{v}_{\text {whu }} & \end{array}$
N -inmen
E—nrun
$===\cdots$
Engrman

kono indign
n--1 invin
$\mathcal{M V}^{2}$

(c)

(f)

IASPEI

(f)
(e)

ALQ
V ~Mam
$N \rightarrow W$
E
$\bar{\square}$

SCP
v nenturana
Nmon

$\mathrm{N} \longrightarrow \sim$
BOCO

CTAO
V _mmminn
N-MWM

SNZO
$v \sim m m h u$

son s rhgn

(c) SLIP ANGLE IN FAULT PLANE $\quad T=0 \quad k=0$ $\begin{array}{llllllllll}10^{\circ} & 30^{\circ} & 60^{\circ} & 90^{\circ} & 120^{\circ} & 150^{\circ} & 180^{\circ}\end{array}$

(f)
(e)

(c) SLIP ANGLE $\underset{15^{\circ} 30^{\circ}}{\operatorname{IN}} \underset{60^{\circ}}{ }$ FAULT $\underset{90^{\circ}}{ } \quad$ PLANE $\underset{120^{\circ}}{ } \quad \underset{150^{\circ}}{ } \quad k=0$

$$
\begin{aligned}
& i 20^{\circ} \cdot \cdots \begin{array}{c}
\text { STRIKE } \\
\left(155^{\circ} T 0^{\circ} 360^{\circ}\right. \\
\left.\mathbb{N} 15^{\circ} \text { STEPS }\right)
\end{array}
\end{aligned}
$$

180°

(f)

$N \longrightarrow M$ SNZO

$N \rightarrow M \sim m$
TAU

KONO

ANTO

$s \rightarrow v / h r$

(c) SLIP $\underset{80^{\circ}}{ }$ ANGLE $\underset{90^{\circ}}{\operatorname{IN}}$ FAULT PLANE $\quad \begin{gathered}100^{\circ} \\ 1100^{\circ}\end{gathered} \quad k=0$

(e)

(f)

KEV
$v-\sqrt{h} N N^{2}$

(e)

GRFO

JAS

$-\gg 1 \wedge \wedge \wedge 1$
$180^{\circ}-1 / 11111 \times-$

(e)

104
(f)

(£)

GAC

$v=\operatorname{drar}$

$v \rightarrow V / \operatorname{LTH} A$

KEV $\quad \|$ MMMV
$=\mathrm{MOM}$

(c)

(f)

(c) SLIP ANGLE IN FAULT PLANE $\underset{90^{\circ}}{ } \quad T=0 \quad k=0$

(e)

(f)

COL
MAJO

(c)

(c) $\underset{10^{\circ}}{\operatorname{SLIP}} \underset{30^{\circ}}{ } \underset{60^{\circ}}{\operatorname{ANSL}} \underset{90^{\circ}}{\operatorname{IN}} \underset{120^{\circ}}{ } \quad \underset{150^{\circ}}{ } \quad k=0$

$\stackrel{0}{5}$

120°

THIS PAGE LEFT BLANK INTENTIONALLY

(c)

(e)

(f)

GRFO Whr

GAC

 E-monnum

(c)

$$
\begin{aligned}
& \underset{15^{\circ} 30^{\circ}}{\operatorname{SLIP}} \underset{60^{\circ}}{\operatorname{IN}} \underset{90^{\circ}}{ } \quad \underset{120^{\circ}}{ } \quad \begin{array}{cc}
T=0 & k=0 \\
150^{\circ} & k=0
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& 180^{\circ}
\end{aligned}
$$

(f)
(e)

THIS PAGE LEFT BLANK INTENTIONALLY

$N \sim M V N$ $=$

(c)

(f)

RSNY

SCP
$\xrightarrow{\text { N WhM }}$
$v=\int N W^{M}$

COL

$\mathrm{N} \rightarrow \mathrm{M}$ hom

$$
E=M / n
$$

(c) \quad SLIP $\underset{10^{\circ}}{\operatorname{ANGLE}} \underset{30^{\circ}}{\operatorname{IN}} \underset{60^{\circ}}{\operatorname{FAUL}} \underset{90^{\circ}}{\operatorname{PL}} \quad \underset{120^{\circ}}{ } \quad T=0 \quad 150^{\circ} \quad k=0$

120°
150°
180°

(f)

RSNY

(c)

(e)

(f)

THIS PAGE LEFT BLANK INTENTIONALLY

\qquad

$\xrightarrow{\text { anmo }}=\underline{=}$
zOBO

NWAO
CtaO
$\underline{=}$

LEM

MAJO
$\underline{=}$

IASPEI
event 27

(£)

SNZO
v AOMNMMNAVMA

AFI

varnsug

AMMO

$$
v \rightarrow \sqrt{n a n} / \text { her }
$$

LON

(c) $\quad \underset{10^{\circ}}{ } \quad$ SLIP 30° INGE $\underset{60^{\circ}}{ } \quad$ FAULT PLANE $\quad T=0 \quad k=0$

(e)

(f)

this Page left blank intentionally

TATO $V=\sqrt{\text { NWWW }}=$

GRFO

LEM

MAJO

(c)

(e)

THIS PAGE LEFT BLANK INTENTIONALLY

RSNY

SCP

RSSD

LON

ANMO

LEM

KONO
$v \rightarrow d$ Mnarror

$$
\operatorname{KEv} \operatorname{Nans}
$$

BER
$v \rightarrow-\int$ Mrand

THIS PAGE LEFT BLANK INTENTIONALLY

RSNT
V and $\sqrt{ }$

$$
n \cdots w \sqrt{n}
$$

$$
=-M W M
$$

$\xlongequal{\text { LEM }}=$
GRFO V gam

KONO

V BER $\|_{\text {Bran }}$

$\underline{\text { KEV }}=\underline{\sim}$

(c)

(f)

ANMO M NM M
JAS

$\xrightarrow{\text { HON }}$
MAJO

$$
\begin{aligned}
& \text { tato }
\end{aligned}
$$

(c) $\quad \underset{10^{\circ}}{ } \underset{30^{\circ}}{ } \quad \underset{60^{\circ}}{ } \quad \underset{90^{\circ}}{ } \quad \underset{120^{\circ}}{ } \quad \underset{150^{\circ}}{ } \quad k=0 \quad 180^{\circ}$

150°
180°

(f)

(f)

(a)

RSNY

$v \rightarrow \sqrt{V m}$

\qquad

SCP
$v-1 / 2$

(c) $\quad \operatorname{SLIP}$ ANGLE \quad IN $\underset{60^{\circ}}{ } \quad$ FAUL $T_{90^{\circ}}$ PLANE $\quad T=0 \quad k=0$

(f)

(c) SLIP ANGLE $\underset{10^{\circ}}{ } \quad \underset{30^{\circ}}{ } \quad \underset{60^{\circ}}{ } \quad \underset{90^{\circ}}{ } \quad 120^{\circ} \quad T=0 \quad 150^{\circ} \quad k=0$

$$
\text { RSCP } \operatorname{Vand}_{E=M M}^{N \rightarrow M}
$$

vaso man n-mpa

$=\sim M W h$
HON
$v-\int \operatorname{lnam}$

$=\sqrt{\text { AFI }} \sqrt{\operatorname{SN}^{2}}$

IASPEI

120°
STRIKE
10° TO 30°
in 10° STEPS
150°
180°

(f)

BCAO
E~~~~~

$v \rightarrow N$ TATO N NM

TOL
$v \sim N \cdot N / h$

$V \rightarrow M N N N^{M}$

GAC
$v-\sqrt{ } \sqrt{ } N$

(e)
(f)

(e)

(£)

$$
\xrightarrow{\text { Lon }}
$$

$\xlongequal{\text { RSNY }}$

180°.

(e)

(f)

KONO

$V \rightarrow \sqrt{R S C P}$

SLR

$$
v=\sqrt{\text { vanlow }}=
$$

$$
=
$$

RSNY

RSNT
$=$ Noblar

(c) $\quad \underset{10^{\circ}}{ } \underset{30^{\circ}}{ } \underset{60^{\circ}}{ } \quad \underset{90^{\circ}}{ } \quad \underset{120^{\circ}}{ } \quad T=0 \quad 150^{\circ} \quad k=0$

(e)
(f)

this page left blank intentionally

zово

(c)

(f)
(e)

COL

 \qquad

$\underline{=}$

RSCP

RSSD
$v=\sqrt{V} \cdot \operatorname{dN}$

(c) $\quad \underset{10^{\circ}}{\operatorname{SLIP}} \underset{30^{\circ}}{\operatorname{ANGLE}} \underset{60^{\circ}}{\operatorname{IN}} \underset{90^{\circ}}{ } \underset{120^{\circ}}{ } \quad \underset{i 50^{\circ}}{ } \quad k=0$

THIS PAGE LEFT BLANK INTENTIONALLY

LON

E

ZOBO

SNZO
$v \rightarrow \int \operatorname{hnom}^{N} \rightarrow$ Mn

MAJO

(e)

(f)

THIS PAGE LEFT BLANK INTENTIONALLY

$\underline{=}$

(c) $\quad \underset{10^{\circ}}{ } \underset{30^{\circ}}{ } \quad \underset{60^{\circ}}{\operatorname{ANL}} \quad \underset{90^{\circ}}{ } \quad \underset{120^{\circ}}{ } \quad \underset{150^{\circ}}{ } \quad k=0$

(e)
(f)

(c) \quad SLIP $\underset{10^{\circ}}{ } \underset{30^{\circ}}{\operatorname{ANGLE}} \underset{60^{\circ}}{\operatorname{IN}} \underset{90^{\circ}}{ } \underset{120^{\circ}}{ } \quad \underset{150^{\circ}}{ } \quad k=0$

150°
180°

(f)

KONO

BCAO

SCP

$\underline{\text { GDH }}=\underline{\text { MNW }}$

(e)

(f)

(c)

(f)

NHM

SNZO

CTAO

(c) \quad SLIP ANGLE \quad IN FAUL T PLANE $\underset{30^{\circ}}{ } \quad \mathrm{T}=0 \quad \mathrm{k}=0$

(f)
(e)

THIS PAGE LEFT BLANK INTENTIONALLY

Gumo

SNZO

(c) \quad SLIP $\underset{10^{\circ}}{ } \underset{30^{\circ}}{ }$ ANGLE $\underset{60^{\circ}}{\operatorname{IN}} \underset{90^{\circ}}{ } \quad \underset{120^{\circ}}{ } \quad T=0 \quad k=0$

(e)
(f)

(c)

(f)

(c)

(e)
(f)

THIS PAGE LEFT BLANK INTENTIONALLY

REFERENCES

1. R G Pearce: "Fault Plane Solutions using Relative Amplitudes of P and $p P^{\prime \prime}$. Geophys J R Astr Soc, 50, 381-394 (1977)
2. R G Pearce: "Earthquake Focal Mechanisms from Relative Amplitudes of $P, p P$ and $s P$: Method and Computer Program". AWRE Report No. 0 41/79, HDSSO, London (1979)
3. R G Pearce: MFault Plane Solutions using Relative Amplitudes of P and Surface Reflections: Further Studies". Ceophys J R Astr Soc, 60, 459-487 (1980)
4. R G Pearce and R M Rogers: "Determination of Earthquake Moment Tensors from Teleseismic Relative Amplitude Observations". J Geophys Res, 94, 775-786 (1989)
5. R M Rogers: "Earthquake Moment Tensors from Telesiesmic Relative Amplitudes". PhD Thesis, University of Wales (1989)
6. C I Pooley, A Douglas and R G Pearce: "The Seismic Disturbance of 1976 March 20, East Kazakhstan: Earthquake or Explosions?" Geophys J R Astr Soc, 74, 621-631 (1983)
7. K L McLaughlin, D w Rivers and M A Brennan: "Pearce Focal Sphere Analysis of Explosion and Earthquake Mechanisms". Teledyne Geotech Report TGAL-TR-83-4 (1983)
8. R E Needham: "First-motion Focal Mechanism Solutions for the IASPEI Earthquakes". Open-file Report 85-458, United States Geological Survey (1985)
9. G Ekstr®m, A M Dziewonski and $J H$ Woodhouse: "Centroid-moment Tensor Solutions for the 51 IASPEI Selected Earthquakes, 1980-1984". Phys Earth Planet Inter, 47, 62-66 (1987)
10. S A Sipkin: "Moment Tensor Solutions Estimated using optimal Filter Theory for 51 selected Earthquakes, 1981-1984". Phys Earth Planet Inter, 47, 67-79 (1987)
11. M D Zirbes and B J Moon: "Waveform Catalogue for IASPEI Events". Open-file Report 85-219, United States Geological Survey (1985)
12. R M Rogers and R G Pearce: "Application of the Relative Amplitude Moment-tensor Program to Three Intermediate-depth IASPEI Earthquakes". Phys Earth Planet Inter, 47, 93-106 (1987)
13. J A Hudson, R G Pearce and $R M$ Rogers: "Source Type plot for Inversion of the Moment Tensor". J Geophys Res, 90, 765-774 (1989)
14. G L Choy and E R Engdahl: "Analysis of Broadband Seismograms from Selected IASPEI Events". Phys Earth Planet Inter, 47, 80-92 (1987)
15. I G Stimpson: "The Relative Amplitude Moment Tensor Method applied to the IASPEI Deep Earthquakes". Phys Earth Planet Inter, 47, 150-158 (1987)
16. S A Sipkin: "Estimation of Earthquake Source Parameters by the Inversion of Waveform Data: Global Seismicity, 1981-1983". Bull Seism Soc Am, 76, 1515-1541 (1986)
17. A M Driewonski, TA Chou and J H Woodhouse: "Determination of Earthquake Source Parameters from Waveform Data for Studies of Global and Regional Seismicity". J Geophys Res, 86, 2825-2852 (1981)
18. S A Sipkin: "Estimation of Earthquake Source Parameters by the Inversion of Waveform Data: Synthetic Seismograms". Phys Earth Planet Inter, 30, 242-259 (1982)

Hypocentre Parameters for the IASPEI List Earthquakes

No.	Dale	h	mun	s	Latitude	Longitude	Dep.	m_{n}	M_{s}	Region
1	1/1/80	16	42	40.0	38.815 N	27.780 W	10	6.0	6.7	Azores 1s.
2	5/25/80	16	33	44.7	$37.600) \mathrm{N}$	118.840 W	5	6.1	6.1	Calif-Nevada horder reg.
3	6/29/80	7	20	5.5	34.80 N	139.181 E	15	5.8	6.2	Near S. coast of Honshu. Japan
4	7/29/80	14	58	40.8	29.598 N	81.092 E	18	6.1	6.5	Nepal
5	10/10/80	12	25	23.5	36.195 N	1.354 E	10	6.5	7.3	Algeria
6	10/24/80	14	53	35.1	18.211 N	$98.240{ }^{\prime}$	72	6.4		Cent. Mexico
7	11/8/80	10	27	34.0	41.117 N	$124.253{ }^{\prime}$	19	6.2	7.2	Near coast of N. Calif.
8	11/2.3/80	18	34	53.8	40.914 N	15.366 E	10	6.0	6.9	S. laly
9	1/18/81	18	17	24.4	38.640 N	142.750 E	33	6.1	6.9	Near coasi of Honshu. Japan
10	1/23/81	21	13	51.7	30.927 N	101.098 E	33	5.7	6.8	Sichuan Province. China
11	7/6/81	3	8	24.2	22.293 S	171.742 E	33	6.9	7.0	Loyalty Is. reg.
12	10/28/81	4	34	17.8	31.272 S	110.649 W	10	6.2	6.2	Easter Island reg.
13	11/22/81	15	5	20.6	18.752 N	120.839 E	24	6.2	6.5	Luzon. Philippine Is.
14	11/27/81	17	21	45.8	42.913 N	131.076 E	54.3	5.8		E. USSR-N.E. China horder reg.
15	1/3, $2 \times$	14	9	50.5	0.972 S	21.870 W	10	5.8	6.5	Cent. Mid-Atlantic Ridge
16	1/9/82	12	53	51.9	46.984 N	66.656 W	10	5.7	5.2	New Brunsuick
17	$8 / 5 / 82$	20)	32	53.0	12.597 S	165.931 E	31	6.2	7.1	Santa Cruz ls.
1\%	9, 6, 2	1	47	2.7	29.325 N	140.360 E	176	6.5		S. of Honshu. Japan
19	12/13 2	9	12	48.1	14.701 N	44.379 F	5	6.0	6.0	W. Arabian Peninsula
20	2/13/83	1	40	11.0	39.945 N	75.135 E	16	56	6.2	S. Xinjiang. China
21	4/3/83	2	50	1.2	8.717 N	83.123 W	37	6.5	7.3	Costa Rica
22	4/4/83	2	51	34.4	5.723 N	94.722 E	79	6.6		N. Sumatra
23	4/11,83	k	18	10.1	10.419 N	62.764 W	40	6.0	5.9	Near coast of Venezuela
24	4,18,83	10	58	51.3	27.793 N	62.054 F	64	6.5		S. Iran
25	5.21×3	23	42	37.8	36.219 N	120.317 W	10	6.2	6.5	Cent Calif.
24,	$5 / 26 / 83$	2	59	59.6	40.462 N	139.102 E	24	6.8	7.7	Near W. Coast of Honshu. Japan
27	$6 / 1 / 83$	1	59	54.7	17.038 S	174.605 W	179	6.2		Tongals.
2k	$6 / 2 / 83$	20	12	50.7	9.512 S	71.249 W	598	5.9		Peru-Brazil horder reg.
24	$6 / 9,83$	18	46	0.9	51.414 N	174.111 W	21	6.9	5.8	Andreanof is.. Aleutian Is.
311	6/21/83	6	25	27.4	41.346 N	139.099 E	10	6.7	6.9	Hokkaido. Japan reg
31	6/24/83	9	6	45.8	24.176 N	122.402 E	44	6.1	6.7	Taiwan reg.
32	7/12,83	15	10	3.4	61.031 N	147.286 W	37	6.1	6.4	S. Alasha
33	$8 / 6 / 83$	15	43	51.2	40.142 N	24.766 E	2	6.2	7.0	Aegean Sea
54	8/17/83	10	55	54.1	55.867 N	161.287 E	63	6.6		Near E. coast of Kamchatka
35	9/7/83	19	22	5.2	60.976 N	147.500 W	45	6.2	6.2	S. Alaska
36	$9 / 12 / 83$	15	42	8.6	36.502 N	71.082 E	209	6.1		Alghanistan-USSR border
37	10/4/83	18	52	13.3	26.535 S	70.56. W	15	6.4	7.3	Near coast of N. Chile
38	10/9/83	11	25	40.6	26.135 S	70.518 W	16	5.9	6.2	Near coast of N. Chile
39	10,17/83	19	36	21.5	37.588 N	17.520 W	10	6.0	6.3	N. Atlantic Ocean
4)	10/22/83	4	21	35.0	60.665 S	25.451 W	24	6.5	6.8	S. Sandwich Is. reg.
41	10/30/8.3	4	12	27.1	40.330 N	42.187 E	12	6.1	6.9	Turkey
42	11/16/83	16	13	0.1	19.430 N	155.454 W	12	6.4	6.7	Hawaii
43	11/24/83	5	30	34.2	7.481 S	128.168 E	179	6.4		Banda Sea
4	11/30/83	17	46	0.7	6.852 S	72.110 E	10	6.6	7.6	Chagos Archipelago reg.
4.5	12/22/83	4	11	29.2	11.866 N	13.529 W	11	6.4	6.2	N.W. Africa
46	12/30/83	23	52	39.9	36.372 N	70.738 E	214	6.6		Hindu Kush reg.
47	1/1/84	9	3	37.6	33.404 N	137.322 E	374	6.5		Near coast of Honshu, Japan
4K	2/7/84	21	33	20.5	9.924 S	160.455 E	14	6.5	7.5	Solomon is.
49	3/5/84	3	33	51.2	8.136 N	123.765 E	651	6.7		Mindanao. Philippine ls.
5)	3/19/84	20	28	39.8	40.288 N	63.333 E	26	6.5	7.0	Uzbek SSR
51	3/24/84	9	44	2.6	44.162 N	148.289 E	43	6.1	7.1	Kurills.

From the Monthly Listings of the National Earthquake Information Center

TABLE 2

Classification of the IASPEI List Earthquakes

Numbers of the events falling into each category, with constraint on source type and orientation for each

Shallow,	Group A Constraint on		Shallow, Group B Constraint on		
Event No.	Source Type*	Orientation*	Event No.	Source Type*	Orientation*
2	A	W	1	S	S
4	W	W		S	S
5	W	W	7	S	S
6	W	W	9	W	W
8	W	W	10	S	A
11	A	W	12	S	S
13	W	W	15	S	S
16	W	W	17	A	A
21	W	A	19	A	S
22	W	W	20	S	5
23	W	W	24	S	S
26	S	S	25	A	A
30	W	A	29	A	A
32	A	A	31	W	A
34	A	A	33	S	A
35	A	A	39	S	S
37	W	W	40	A	S
38	W	W	41	s	S
44	W	W	42	A	S
45	W	w	48	S	S
50	A	A	51	W	W
Intermediate-depth Constraint on			De	Constraint on	
Event No.	Source Type*	Orientation*	Event No.	Source Type*	Orientation*
18	A	S	14	S	S
27	A	A	28	A	S
36	s	S	47	S	S
43	W	W	49	S	S
46	A	A			

*W = Weak
A = Average
$S=$ Strong (see text)

TABLE 3
Solutions Obtained by Other Authors for the IASPEI Earthquakes All angles are in degrees

Event	Ekstrym et al (CMT)				Sipkin (MSE)				Needham (FM)		
	σ	δ	ψ	T	σ	δ	ψ	T	σ	8	ψ
1	147	82	164	0.12	234	99	15	0.00	60	95	15
2	175	60	111	-0.69	109	72	30	-0.59	5	82	173
3	173	105	162	0.44	199	89	175	0.11	No	solut	
4	288	111	91	0.05	282	115	83	0.03	70	132	120
5	235	131	91	0.20	44	117	65	0.07	60	120	90
6	105	64	78	0.18	117	68	64	0.00	No	solut	-
7	143	85	26	0.20	120	90	1	0.02	50	90	177
8	305	58	83	0.07	158	58	136	0.05	140	20	90
9	203	99	87	-0.06	209	103	112	0.00	190	98	90
10	143	82	170	-0.41	139	92	175	0.03	222	92	0
11	247	91	130	-0.26	288	105	84	-0.01	78	162	90
12	233	93	170	-0.10	62	90	172	0.04	142	101	0
13	130	54	83	0.07	336	52	119	-0.35	140	45	90
14	344	93	112	0.09	339	97	117	0.11	343	95	90
15	170	81	170	0.05	274	89	10	-0.12	0	100	174
16	14	128	63	0.03	335	115	120	-0.61	252	112	50
17	346	113	89	0.13	358	112	125	0.06	341	120	90
18	356	72	144	0.49	354	70	154	-0.01	58	70	35
19	307	48	66	0.31	324	62	71	-0.15	340	75	90
20	320	87	14	-0.30	324	89	7	0.21	245	107	90
21	297	120	92	-0.05	319	117	113	0.24	305	107	90
22	27	125	126	-0.01	32	128	124	-0.09	180	125	140
23	140	58	64	-0.01	312	62	76	-0.11	239	50	130
24	237	55	82	-0.10	156	92	4	-0.36	200	100	22
25	327	130	87	-0.03	123	108	83	0.28	127	110	90
26	204	121	77	-0.24	10	125	109	-0.13	348	112	90
27	36	66	92	0.07	47	63	96	0.24	48	68	90
28	185	53	102	0.27	145	49	85	0.16	150	45	80
29	242	107	89	0.07	234	103	81	-0.02	238	102	90
30	30	131	73	0.32	186	130	96	0.29	196	150	90

TABLE 3 (Continued)

Event	Ekstrum et al (CMT)				Sipkin (MSE)				Needham (FM)		
	σ	8	ψ	T	σ	8	ψ	T	σ	8	ψ
31	268	111	110	-0.16	281	98	76	0.00	260	113	58
32	235	66	117	0.25	249	73	117	0.04	233	65	110
33	228	86	15	0.03	315	89	163	0.00	315	90	170
34	252	127	69	-0.02	34	132	112	0.09	55	117	140
35	225	52	114	-0.49	244	66	111	0.00	15	45	60
36	55	130	96	0.26	38	132	88	0.01	28	132	90
37	345	104	99	0.15	8	119	125	0.02	340	106	90
38	348	111	97	0.04	1	108	117	-0.24	352	106	90
39	179	99	155	-0.11	3	101	149	0.00	9	92	175
40	226	53	88	-0.19	265	89	155	-0.02	350	85	4
41	301	97	15	0.24	34	93	171	-0.13	40	103	167
42	215	93	68	0.24	220	94	55	0.43	215	90	25
43	107	124	61	-0.32	126	117	83	-0.04	285	136	90
44	282	51	100	0.08	281	49	120	0.00	No	solut	on
45	94	54	50	-0.42	272	59	64	0.10	265	68	28
46	283	109	88	-0.07	292	107	104	-0.04	297	118	90
47	341	106	108	0.50	353	100	119	0.00	345	110	100
48	2	108	55	-0.07	352	97	47	0.02	358	103	90
49	38	58	104	0.70	54	60	132	-0.26	45	55	114
50	218	117	90	-0.38	172	121	116	0.06	220	125	90
51	200	106	99	-0.10	225	106	126	0.14	225	115	90

Number of Incompatible RAMP Phase Pairs for other Authors Solutions to the IASPEI Earthquakes

Event Class*		Ekstrom et al (CMT)		sipkin (MSE)		Needham (FM)	
		P	S	P	S	P	S
1	SB	2	0	6	2	2	1
2	SA	0	0	0	2	1	2
3	SB	2	2	0	1	No	solution
4	SA	0	0	0	0	0	6
5	SA	0	0	0	2	0	1
6	SA	0	1	0	2	No	solution
7	SB	0	3	3	2	0	1
8	SA	0	0	1	4	4	1
9	SB	0	0	0	0	1	1
10	SB	3	0	0	0	0	0
11	SA	0	1	3	2	1	1
12	SB	1	0	0	1	1	0
13	SA	0	0	0	2	0	1
14	D	4	0	4	0	1	2
15	SB	3	0	0	3	0	3
16	SA	0	1	0	3	0	5
17	SB	1	2	2	2	0	2
18	I	9	1	9	1	3	2
19	SB	1	2	1	2	0	2
20	SB	4	0	1	2	0	6
21	SA	0	2	0	7	1	11
22	SA	0	0	0	0	0	7
23	SA	0	1	1	2	0	2
24	SB	6	1	3	5	0	4
25	SB	3	4	1	1	1	1
26	SA	0	4	0	4	0	9
27	I	3	0	0	0	2	0
28	D	13	1	2	0	1	0
29	SB	0	1	0	0	0	0
30	SA	0	4	0	3	0	7

TABLE 4 (Continued)

Event Class*		Ekstrom et al (CMT)		Sipkin (KSE)		Needham (FM)	
		P	S	P	S	P	S
31	SB	0	2	0	3	0	3
32	SA	1	2	4		1	1
33	SB	6	3	2	1	1	1
34	SA	1	0	0	1	1	3
35	SA	0	1	1	2	0	0
36	I	1	0	1	1	0	2
37	SA	1	1	0	0	1	0
38	SA	0	0	0	0	0	0
39	SB	9	4	4	4	0	2
40	SB	2	2	0	2	1	2
41	SB	7	3	0	2	0	2
42	SB	1	0	2	0	1	3
43	I	4	1	4	1	1	1
44	SA	0	4	0	5	No	solution
45	SA	0	4	0	1	0	1
46	I	2	0	2	1	1	1
47	D	5	0	4	1	6	3
48	SB	2	1	2	2	0	3
49	D	2	0	4	2	3	0
50	SA	0	2	0	4	0	1
51	SB	1	N/A	1	N/A	0	N/A

*Class: $\quad S A=$ Shallow, Class A I = Intermediate Depth
$\mathrm{SB}=$ Shallow, Class B ;
D = Deep

TABLE 5

Number of Incompatible Phase Pairs for Shallow Earthquakes

	Group A		Group B	
	P	S	P	S
MSE	10	50	26	35
FM	10	59	8	37
CMT	3	28	54	30

TABLE 6

Concordant Solutions

For each method, the solutions for those events marked with a star fall within the region of fully compatible solutions found using RAMP

Event	Class*	Ekstrum et al (CMT)	Sipkin (MSE)	Needham (FM)
2	SA	$*$		
4	SA	$*$	$*$	
5	SA	$*$		
8	SA	$*$	$*$	
9	SB	$*$	$*$	$*$
10	SB	$*$	$*$	
13	SA	$*$	$*$	
22	SA		$*$	$*$
27	I		$*$	$*$
29	SB		$*$	$*$
35	SA			$*$
37	SA	SA		
51	SB			

*Class: $S A=$ Shallow, group $A \quad S B=$ Shallow, group B $I=$ Intermediate depth

[^1]

Implosion $k=-1.0$

FIGURE 2. THE SOURCE TYPE PLOT, ANNOTATED TO SHOW THE POSITIONS OF SEVERAL WIDELY PROPOSED SOURGE TYPES (AFTER ROGERS AND PEARCE (12))

IASPEI event 34
(b) \quad LLIP ANGLE IN FAULT PLANE $\quad T=0 \quad k=0$ $\begin{array}{llllllll}10^{\circ} & 30^{\circ} & 60^{\circ} & 90^{\circ} & 120^{\circ} & 150^{\circ} & 180^{\circ}\end{array}$

FIGURE 3. RESULTS FOR TWO TYPICAL GROUP A EARTHOUAKES
For earthquake 34 , (a) shows a source type plot indicating the number of compatible orientations of each source type, and (b) shows a vectorplot representation of the compatible orientations of the double couple. For this earthquake, constraints on both source type and orientation are classed as "average".

For earthquake 45 , (c) shows a source type plot indicating the number of compatible orientations of each source type, and (d) shows a vectorplot representation of the compatible orientations of the double couple. For this earthquake, constraints on both source type and orientation are classed as "weak".

(b)

FIGURE 4. RESULTS FOR EARTHOUAKE 26
(a) Shows a source type plot indicating the number of compatible orientations of each source type, and (b) shows a vectorplot representation of the compatible orientations of the double couple.

[^2]

FIGURE 7. LOWER HEMISPHERE PLOT SHOWING THE DISTRIBUTION OF STATIONS FROM

UK UNLIMITED

Available from
HER MAJESTY'S STATIONERY OFFICE
49 High Holborn, London W.C. 1
71 Lothian Road, Edinburgh EH3 9AZ
9-12 Princess Street, Manchester M60 8AS
Southey House, Wine Street, Bristol BS1 2BQ
258 Broad Street, Birmingham B1 2HE
80 Chichester Street, Belfast BT1 4JY
or through any bookseller.

Printed in England

[^0]: Longitude
 จрпз12*7

[^1]: FIGURE 1. THE VECTORPLOT, ANNOTATED TO SHOW THE POSITIONS OF MAJOR FAULT TYPES, EACH VECTOR DRAWN ON SUCH A PLOT REPRESENTS A COMPATIBLE ORIENTATION OF A SPECIFIED SOURCE TYPE (AFTER ROGERS AND PEARCE (12)

[^2]: FIGURE 6. LOWER HEMISPHERE PLOT SHOWING THE DISTRIBUTION OF STATIONS FROM WHICH OBSERVATIONS WERE MADE FOR EARTHOUAKE 31

