UK UNLIMITED

ATOMIC WEAPONS ESTABLISHMENT

AWE Report O 2/94

Analysis of Short-period Seismograms from Explosions at the Novaya Zemlya Test Site in Russia

> P D Marshall Mrs D Porter* J B Young Mrs P A Peachell

Recommended for issue by:

A Douglas, Group Leader, Seismic Detection

Approved by:

1

c

H P S Powell, MSED

*Serco Ltd Serco House Hayes Road Southall UB2 5NJ

CONTENTS

			Page			
	SUMMARY		3			
1	INTRODUCTION		3			
2	GEOLOGY OF NOV	AYA ZEMLYA	4			
3	PROCESSING AND	ANALYSIS METHODS	4			
4	EPICENTRE LOCAT	ION	6			
5	DESCRIPTION OF S	EISMOGRAMS	7			
5.1 5.2 5.3 5.4	Eskdalemuir Yellowknife Gauribidanur Warramunga		7 8 9 9			
6	RESULTS		9			
6.1 6.2 6.3 6.4 6.5 6.6	Array Magnitude and m_b^{ML} ψ_{∞} and m_b^{ML} RMS Amplitudes and m_b^{ML} Rise and Fall Times, Pulse Duration and m_b^{ML} M_o and m_b^{ML} Estimates of pP Times from Explosions at NZ					
7	CONCLUSIONS		12			
8	ACKNOWLEDGEME	NTS	13			
	REFERENCES		14			
	TABLES 1 - 12		18			
	FIGURES 1 - 35		34			
	APPENDIX A:	GRAPHS AND TABLES OF INDIVIDUAL MEASUREMENTS MADE ON P AND PCP FROM EXPLOSIONS AT NOVAYA ZEMLYA.	69			
	APPENDIX B:	STATION TIME AND MAGNITUDE EFFECTS WITH 95% CONFIDENCE LIMITS.	123			
	APPENDIX C:	MICROFICHES OF THE PROCESSED P AND PCP GENERATED BY EXPLOSIONS AT NOVAYA ZEMLYA.	140			
	C1:	SEISMOGRAMS FROM NNZ.				
	C2:	SEISMOGRAMS FROM SNZ.				

SUMMARY

P and PcP recorded at four medium aperture seismometer arrays from explosions at Novaya Zemlya (Russia) are analysed. Five seismograms are produced for each P and PcP recording: the short period sum; the short period filtered in the bands 0.5-4 Hz and 1-4 Hz; the broad band; and the broad band corrected for the effects of anelastic attenuation. Each seismogram used in the analysis is illustrated. The estimates made include: the array magnitude m_b ; the arrival time of the free surface reflection; ψ_{∞} (the steady level of the explosion source reduced displacement potential); the seismic moment M_o ; the broad band pulse rise-time, fall-time and duration; and the root mean square (RMS) amplitude in various time windows of the P and PcP codas. The variation in the estimates with maximum-likelihood magnitude (m_b^{ML}) is investigated; m_b^{ML} being estimated using ISC data. The main conclusions are:

(i) the relationship between $\log_{10} \psi_{\infty}$ and m_{h}^{ML} is

 $\log_{10} \Psi_{\infty} = (1.05 \pm 0.08) \ m_{\rm b}^{\rm ML} - (2.08 \pm 0.45);$

- (ii) the rise time of the P pulse scales as $(yield)^{1/10}$;
- (iii) the relationship between $\log_{10}M_0$ and m_b^{ML} is

 $\log_{10}M_{o} = (1.15 \pm 0.18) m_{b}^{ML} + (8.92 \pm 1.05);$

- (iv) the apparent pP-P times differ from station to station whereas the pPcP-PcP times consistently lie in the range 0.4-0.5 s indicating a depth of firing of around 1000 m;
- (v) RMS amplitude is a reliable estimator of relative source size.

INTRODUCTION

1.

Within the area of the former USSR several sites were used extensively for underground nuclear testing. These include the principal test site near Semipalatinsk in East Kazakhstan used apparently for nuclear weapon development, and a test site in the North Caspian Sea area used to develop peaceful nuclear explosion technology for creating underground storage cavities in salt and for decoupling experiments. The third major test site is at Novaya Zemlya (NZ) in the Arctic circle. This remote area was originally used for atmospheric tests of large nuclear explosions presumably to avoid radioactive contamination of populated areas. Between 1966 and 1976 some very large explosions were detonated underground at NZ to avoid presumably the risk of seismic damage that might have occurred if they had been conducted near Semipalatinsk.

The underground explosions at NZ have been fired at two separate sites (figure 1) referred to in this report as the northern NZ (NNZ) and the southern NZ (SNZ) sites. Most of the explosions have been at the NNZ site which is near the Matochkin Shar Strait, which divides NZ into two islands. Only four underground explosions appear to have been fired at the SNZ site which lies near the southern tip of the southern island of NZ.

Short period (SP) P from large underground explosions is generally well recorded at teleseismic distances, particularly by the medium aperture seismometer arrays in Scotland, Canada, India and Australia. Analyses of the seismograms from explosions at East Kazakhstan and North Caspian Sea recorded at these arrays have been published [1,2]. Similar analyses have also been published for explosions at non-USSR test-sites such as the Nevada Test site in the USA, and the French test sites in Hoggar, Algeria and the Tuamotu Archipelago in the South Pacific [3,4,5,6]. The purpose of this report is to present the results of the analysis of P seismograms from underground explosions at NZ (table 1) recorded at the four arrays (table 2).

The recordings for each explosion have been processed to produce not only the SP array sum but also a broad band (BB) record and a BB record corrected for attenuation. A number of measurements, most related to source size, are made on the data including: the seismic magnitude; ψ_{∞} ; the moment M_{o} ; the source-pulse rise and fall times and duration; and the arrival times of the free surface reflections. ψ_{∞} is the steady level of the explosion source reduced displacement potential. Root mean square (RMS) estimates are made of the amplitude in selected time-windows of the P wave and its coda. Pre-signal noise estimates in the six seconds preceding the onset are also made. In addition to an analysis of the P wave, the wave reflected at the core-mantle boundary (PcP) is analysed in a similar manner. In general PcP is a simple arrival with little or no coda.

The report is a catalogue of processed array seismograms and the measurements made. Analyses of the measurements are also given. Ideally any analysis of P waves from explosions would be discussed in terms of the yield of the explosion. However, no yields of explosions at NZ have yet been published. Some information is available from an official Russian source but this has not been used here because the uncertainties in the yields are too large (Fisk et al [7]). As a result the measurements are investigated here as a function of the maximum-likelihood magnitude (m_b^{ML}) derived from International Seismological Centre (ISC) Bulletin data using the method described by Lilwall & Marshall [8].

2.

GEOLOGY OF_NOVAYA ZEMLYA

Novaya Zemlya is a continuation of the Ural mountain chain which does not reach a particularly large elevation. The peak elevation is about 1000 m. The northernmost of the islands is covered with ice. The region is seismically stable indicating that uplift along faults which occurred in the Quaternary period has stopped. The southern portion of the Urals' fold belt is contiguous with the Russian Platform to the west and with portions of the central Asian fold belts to the east. In its northern portion it is contiguous with the Barents median massif in the west and with portions of other fold belts beneath the West Siberian cover which consists of several thousand metres of horizontal sediments. The crustal thickness is some 40 km.

Most of the underground explosions appear to be in shales and limestones of Cambrian age, the oldest rocks in NZ (figure 2). Ordovician and Silurian rocks are extensive and are mainly limestones, greywacke-type sandstones, and shales. Devonian rocks are present but differ in the east and west. The western Devonian is limestones and more rarely sandstones and shales. The eastern Devonian is mainly shales and sandstones. The volcanic rocks of Devonian age which are extensive in the main Ural belt are virtually absent in NZ. The Carboniferous is mainly limestones and the Permian, extensive in NZ, is a varied succession of sandstones, silts and clays, and some coal-bearing strata.

3.

PROCESSING AND ANALYSIS METHODS

The methods used to process the P and PcP data are virtually identical to those used by Lyman et al [3], Marshall et al [2] and Douglas et al [6] in their studies of array recordings of the P waves from underground explosions. However, for completeness the methods are described briefly here.

The SP seismograms are from the arrays at Eskdalemuir, Scotland (EKA), Yellowknife, Canada (YKA), Warramunga, Australia (WRA) and Gauribidanur, India (GBA). The location of the arrays relative to NZ is shown in figure 3. All of the data available in the archives of the AWE seismological centre Blacknest have been used. Most of the data are taken from master tapes of edited digitised analogue recordings; some of the more recent explosions were directly recorded on digital tapes. The dates at which digital recording commenced at the arrays is given in table 2. The sampling interval of all signals processed is 0.05 s. The quality of the data is good even though much of it has been stored on analogue magnetic tapes for many years. Details of the analogue recording systems are given by Mowat & Burch [9]. Some data are taken from experimental BB systems and strong motion (SM) seismometers for which not all the calibration details are known. Nevertheless, the seismograms from these systems are presented because they are often the only data for a particular explosion. A list of available data is given in table 3. Some PcP data are missing because insufficient lengths of recordings were transcribed onto master tapes for archiving.

WRA at 106.0° is in the core shadow for the NZ test-sites which makes detection of P waves from small explosions difficult. The waves that are seen are diffracted arrivals and tend to be relatively complex waveforms. For the large explosions the signal-to-noise ratio (SNR) is very good but data for the small explosions are unavailable.

Deconvolved BB records are obtained for each explosion by passing the SP seismogram through a filter with a response as a function of frequency ω of $|a_2(\omega)|/a_1(\omega)$, where $a_1(\omega)$ is the SP instrument response and $a_2(\omega)$ the BB response. The frequency response of the SP recording system of one array (YKA) and the BB response are shown in figure 4. The SP responses of the other arrays differ slightly from that shown but these differences have been taken into account in the processing. Phase shifts due to the BB instrument are removed by using $|a_2(\omega)|$ rather than $a_2(\omega)$. The resultant seismograms are termed "phaseless seismograms" (Stewart & Douglas [10]). To reduce the noise on the BB seismograms they are passed through a Wiener filter (Douglas & Young [11]); the filter being designed using the spectrum of the noise ahead of the signal and an assumed theoretical signal spectrum. The application of the Wiener filter produces a least squares estimate of the BB displacement, ie, the ground displacement at the recording site.

To produce estimates of the ground displacement at the source, corrections are made for the effects of anelastic attenuation over the path between the source and the receiver by passing the BB seismograms through a filter with a response $[b(\omega)]^{-1}$, where $b(\omega)$ is the response, as a function of frequency, of an attenuation operator. The operator used is that of Carpenter [11] in which $|b(\omega)|$ is exp(- ω t*/2) and the phase spectrum is specified using Futterman's theory [12]. t* is the ratio of travel time to Q, the specific quality factor.

The value of t^{*} used in the processing is 0.15 s at all arrays except for WRA where a value 0.30 s is used to try and compensate for some of the effects of diffraction around the outer core. The effect of diffraction is equivalent to a low pass filter and is thus similar to the effect of attenuation. The value for t^{*} of 0.15 s is the same as that used by Bache et al [14], Douglas [15] and Stewart [1] for explosions on the Russian Platform. The same value has been used for processing PcP; since PcP spends considerably less time in the attenuating upper mantle than the P a larger value of t^{*} is not warranted.

The rise-time, τ_{rise} , fall-time, τ_{fall} , duration and area of the P and PcP pulses (which are used to determine ψ_{∞} and M_o) are all parameters related to the size of the source and are measured on the BB seismogram. The rise time is measured by dividing peak pulse amplitude by the maximum gradient of the leading edge of the P pulse (Stewart [16]). The fall time is determined in a similar way. The pulse duration (T_D) is taken as the time when the seismogram returns to the same amplitude level as its onset. However, if the SNR is low or the pulse is perturbed by secondary arrivals the duration is taken as the time from the onset to the apparent onset of the secondary arrival. H_o , the area under the P pulse, is measured by integrating the pulse for a time T_D beginning at the onset.

Douglas [15] shows that estimates of H_o should not be affected by the amount of attenuation between the source and the receiver. However, in practice H_o is measured on the BB seismogram corrected for anelastic attenuation. The P pulses on such seismograms are of shorter duration and thus are less perturbed by later or scattered arrivals than on uncorrected seismograms. Further, noise interference is minimised.

The value of ψ_{∞} derived from the P-pulse area H_o, is defined as

$$\psi_{\infty} = [kG(\Delta)]^{-1}H_{0}$$

where $G(\Delta)$ is the geometrical spreading factor for P waves propagating to distance Δ , and k is the amplification effect of the free surface. However, this implies that

$$\rho_1 \mathbf{v}_1 = \rho_0 \mathbf{v}_0$$

where ρ_1 and v_1 are the density and P-wave speed respectively for the source material, and ρ_0 and v_0 the values for the recording station. If $\rho_1 v_1 \neq \rho_0 v_0$ then from Carpenter [17] a better estimator of the long term

level is given by

$$\psi_{\infty}^{\text{corr}} = [2G(\Delta)]^{-1} \quad \left[\frac{\rho_{o}v_{o}}{\rho_{1}v_{1}}\right]^{v_{a}} H_{o}$$

taking k to be a factor of 2.

The relationship between ψ_{∞}^{corr} and M_{p} the moment is, following Aki et al [18]

$$M_{o} = 4\pi\rho_{1}v_{1}^{2}\psi_{\infty}^{corr}$$

Estimates of ψ_{∞}^{corr} have been made from H_o (and the area of the PcP pulse) using the tables of $G(\Delta)$ given by Carpenter [17]. The values of ρ_o and v_o at the arrays together with the assumed values of ρ_1 and v_1 are given in table 4.

The individual station measurements of τ_{rise} and τ_{fall} , duration and ψ_{∞} for each explosion are combined to give a best estimates using the least squares matrix factorisation (LSMF) method described by Douglas [19]. It is assumed that the log of the measurements can be represented as the sum of a source effect, a receiver effect and an error term. The LSMF method is used to estimate the effects in the presence of the error.

The magnitude m_b at each array station and the RMS amplitude of selected time windows are determined from the SP P-wave seismograms. The m_b is calculated using the Gutenberg & Richter [20] formula

$$m_{\rm b} = \log_{10} A/T + B(\Delta) + S,$$

where A is the amplitude and T the period of the P wave within the first few cycles after onset. $B(\Delta)$ is a correction for distance. Here the $B(\Delta)$ curve of Lilwall [21] is used. This curve is normalised to that of Gutenberg and Richter. S is a station correction determined by comparing the station magnitude with a network-average magnitude. The effect of T on the estimate of magnitude is investigated. Thus magnitude is determined from A, the amplitude corrected for the instrumental response at period T, and A_o , the amplitude measured on the seismogram taking no account of T. These magnitudes are compared to those derived using A/T.

An example of the output of the analysis procedure is given in figure 5.

4. <u>EPICENTRE LOCATION</u>

The locations of the explosions at NZ have been estimated by the method of Joint Epicentre Determination (JED) (Douglas [22]). Lilwall & Marshall [8] used this procedure to locate NZ explosions which occurred between 1964 and 1983. Here the earlier work has been updated to include the explosions which have occurred between 1983 and 1990.

The method uses P and PKP arrival times taken from the ISC Bulletins to determine the locations relative to a fixed epicentre of one of the explosions. The method is most effective when all the epicentres are from a small area since any departure from the assumed travel-time curve can then be corrected for by a single term for each station. Thus, the NNZ and SNZ test-sites are treated separately.

To use JED at least one explosion epicentre must be restrained at each test site. Unfortunately the true location is not known for any of the explosions at NZ so the selection of one explosion epicentre to restrain must be determined from other evidence. The constrained epicentre used for the northern site is that of the explosion of 29 September 1976. This explosion was well recorded and lies near the centre of the cluster of explosion epicentres. However, the use of the ISC location (73.41°N 54.50°E) results in epicentres straddling the Matochkin Shar Strait. Such a situation is probably not realistic

since this would require the setting up of command and control facilities for conducting nuclear tests on the north and south side of the Strait. The assumption has thus been made that the explosions all occurred in adits in the mountains immediately south of the Strait. For this reason the restrained location was chosen so that the epicentres lie beneath two mountain groups on the south of the Strait. The relocations are some 10-15 km east of those obtained by the ISC. In the absence of any topographic control on the location of the SNZ explosions their epicentres are estimated relative to the ISC epicentre for the explosion of 2 November 1974.

The arrival times are weighted to reduce the effect of gross errors. Gross errors can occur when for example, analysts misread the time code and report the wrong minute giving a P onset which is 1 minute out. Errors such as this are weighted out using the method of uniform reduction (Jeffreys [23]). For NNZ there is sufficient data to enable estimates to be made of the standard deviation of the time residuals for many of the stations and the readings are also weighted according to the standard deviation... The final epicentres are given in table 1 and are shown in figures 6 and 7. The weighted standard deviation of the arrival time residuals is small (0.057 s) which together with the large number of readings results in very small 95% confidence regions (Appendix B) for most of the epicentres. The relative locations will reflect this but absolute locations are tied to the choice of co-ordinates for the restrained epicentre.

5.

DESCRIPTION OF SEISMOGRAMS

Examination of the SP seismograms shows that the NNZ test-site can be divided into three areas. The areas are described here simply as NE, W and S and are shown in figure 8. The SP "average" seismograms at each station from each area is illustrated in figure 30. Whilst no single feature on the seismogram is common to all arrays, two array seismograms from the same explosion are sufficient to indicate a specific epicentral area. Figures 9-29 show the seismograms of the explosions at NNZ grouped by station and area. The trace at the top of the figure is the sum of the seismograms shown beneath. The purpose of the summation is to use, effectively, a source array to see whether there are any significant arrivals from reflectors in the source region. However, it would appear there are none. The summed seismogram is, effectively, the "average" seismogram for the particular region. Each of the figures includes an 'average' seismogram together with the individual BB and BB t* corrected seismogram for each explosion in the specific area.

Five of the explosions analysed are reported by Fisk et al [7] to be multiple explosions. The explosion at the SNZ test-site on 18 October 1975 was identified by Hurley [24] as a double explosion from the appearance of BB P at the four arrays. The appearance of the SP P seismograms from the disturbance at the NNZ test-site on 11 October 1980 led Stewart & Marshall [25] to identify this also as a double explosion. These identifications were later confirmed by Fisk et al [7] who, on evidence provided by the Russians, states that three of the early explosions were also double explosions. The double explosions are indicated in table 11. There is no observable evidence in the seismograms that these early explosions are in fact doubles. This suggests they were fired simultaneously and so close together that the two arrivals cannot be resolved on the seismogram.

At all stations the direction of first motion for both P and PcP is clearly positive; this is expected for an explosion source which has a radially symmetric radiation pattern. Buchbinder [26], however presents observations of PcP at distances of less than 32° which appear to show a dilatational first motion. However, Kogan [27] shows that the readings are in error and that no phase reversal is observed. The clear compressional pulses observed on the BB PcP waves recorded at EKA at an epicentral distance of 29.2° support the Kogan view.

The explosions at NZ are recorded at the four array stations with good SNRs resulting in excellent quality BB conversions. However, variations in the appearance of the seismograms from one array to another do occur.

5.1 <u>Eskdalemuir</u>

The P and PcP as recorded at EKA ($\Delta = 29.2^{\circ}$ from NNZ) are shown in figures 9 to 11 and

21 to 23 respectively. The seismograms are simple at all three areas of the test-site, with those in the NE area being the simplest of all. The three NE explosions for which EKA data are available are all relatively small. The other explosions in this area were very large and the signal saturated the recording system. The seismograms from explosions in the W and S areas are a little more complex due to the presence of what appears to be the free surface reflection, pP, which is clearly observed on the BB recordings. There are no arrivals resulting from variations in wave speed within the upper mantle which give rise to triplication of the P travel time curve. This is in contrast to the extremely complex P seismograms recorded at GBA from explosions at the Chinese test-site in Xinjiang (Jones [28]) at a distance of 29.1° (figure 31).

The smallest explosion detected at EKA from NNZ is that of 9 October 1977 for which m_b^{ML} =4.36 although the array magnitude is 4.65. It is recorded with a SNR of about 6:1 on the 1-4 Hz filtered channel which indicates that explosions at NNZ with an m_b^{ML} of about 3³/₄ should be detected at EKA. The average station magnitude correction for NNZ explosions recorded at EKA is -0.41 ± 0.13.

PcP is a clear arrival on EKA seismograms. From an analysis of the amplitudes and periods of P and PcP it is found that on average the ratio of A/T for P and PcP is about 9 which means that the detection level for PcP from explosions is about $m_b^{ML}4\frac{1}{2}$. PcP has proved to be a useful phase in interpreting seismograms from double explosions.

The P and PcP seismograms of the double explosion of the 11 October 1980 are shown in figures 32 and 33 together with "average" seismograms from nearby explosions. This double explosion was spotted by Stewart & Marshall [25]. They observed that the P seismograms from the 11 October 1980 explosion are different, in detail, from seismograms normally recorded. However, the PcP seismograms are similar to those normally observed. Stewart & Marshall [25] demonstrate by a simple deconvolution of the seismograms, that the pulse shapes produced could be interpreted as being from two simultaneous explosions fired some 7 km apart. The spatial separation causes the appearance of the P seismograms to change with azimuth, but such variation is not observed in PcP because the steeply-descending wavefronts from each explosion are superpositioned. The observed P seismograms from the double explosion can thus be modelled as shown by Stewart & Marshall [25] using the observed PcP as the source function.

5.2 Yellowknife

The remarkable feature of the YKA P seismograms, ($\Delta = 44^{\circ}$ from NNZ), is the complexity of the SP waveform; a surprising observation in view of the simple nature of the explosive source. The P seismograms at YKA are shown in figures 12 to 14 and those for PcP in figures 24 to 26. On first examination many of the PcP waveforms appear, for sources located in the W and NE areas, to be complex. However, this is due to the arrival of PP. Explosions in the S region generate PcP signals which are simple with no PP arrival visible. The difference in distance between the three regions to YKA is small and would not account for the absence of PP in seismograms from the explosions at the S test-site. The take-off angle in the source region is such that PP from the S area propagates through the region beneath the NE area and it is presumably here that the ray path is perturbed in such a way that PP is not observed at YKA. This observation is worthy of further study but this is beyond the scope of this report.

Complexity of P seismograms can be due to a number of different factors (Key [29], Douglas [30], Greenfield [31], Hudson [32], Douglas et al [33] and Douglas et al [34]). The reason for the complexity of the YKA P seismograms is not yet resolved although there have been a number of attempts to explain it (Greenfield [31], Douglas et al [33] and Douglas et al [34]). At present, our preferred explanation is that the direct P-wave has been reduced in amplitude by attenuation in passing through a region of low Q, whereas the scattered energy in the P coda has passed through only high Q material between the source and the receiver. PcP like the P coda has not passed through the low Q region and hence is a simple pulse-like arrival. This hypothesis requires that the P-wave magnitude computed from complex seismograms should be significantly lower than that computed from simple recordings of the same explosion. This is indeed true of the recordings of NZ explosions made at YKA. The average station magnitude at YKA is over half a magnitude lower than the m_b^{ML} (the correction is +0.55 ± 0.13). At YKA the amplitude of PcP is very similar to that of P, whereas at EKA and GBA P is 9 and 6 times larger respectively than PcP.

Further evidence of attenuation of P as the cause of the reduced amplitude is the broadening of the pulse and this is observed in the YKA P seismograms. However, an alternative explanation of the observed broadening is multipathing along the path between NZ and YKA. To test this hypothesis an EKA P seismogram is scaled and added to itself twice with delays of 0.3 and 0.8 s. A $t^* = 0.15$ attenuation filter is also applied. The result is SP and BB seismograms (figure 34) which look like those of a NZ explosion recorded at YKA. A thorough examination of the cause of complexity at YKA is beyond the scope of this report but it is important that the cause be identified if an understanding of explosion generated P seismograms is to be achieved.

The smallest explosion at NZ for which P seismograms are available is that of 9 October 1977. The YKA magnitude is 3.98 whereas m_b^{ML} is 4.36. The SNR is only about 3 which indicates a detection capacity of a little under m_b^{ML4} at YKA for NZ explosions. Given that PcP is recorded with a similar amplitude to P this magnitude represents the limit of detection for PcP too.

5.3 <u>Gauribidanur</u>

The P seismograms, recorded at GBA (figures 15 to 17) at a distance of 61° from NNZ, are simple and similar to those recorded at EKA. The PcP seismograms (figures 25 to 27) are also simple. For all of the NNZ explosions for which data are available at GBA the SNR is high. The station magnitude correction is -0.31 ± 0.21 which indicates that relative to m_b^{ML} the signals are larger than average although. there is greater variation in the mean value than at the other array stations. The explosion of 9 October 1977 is recorded with a SNR of at least 10 which implies a detection capacity for NNZ explosions of about $m_b^{ML} 3\frac{1}{2}$ at GBA. However, for this explosion the GBA magnitude is 5.2 compared with the m_b^{ML} of 4.36 which means that this explosion is recorded with an unusually large amplitude.

Some PcP data are available although limited by an artifact of the automatic signal detector used at GBA. For a period of time the only data available from GBA is the beamed P signal which was of limited duration and included the PcP arrival but was not processed using the PcP velocity. Unfortunately the tapes of continuous data were not available to reprocess using the PcP velocity. However, the PcP data that are available suggests that the amplitude of PcP is about six times smaller than P.

5.4 <u>Warramunga</u>

At 106°, the distance of WRA from NNZ, the P waves are diffracted around the earth's outer core and the amplitudes are significantly reduced relative to amplitudes observed in the 30° to 90° range. Further, the diffraction preferentially attenuates high frequencies so that in general the signals recorded at distances of more than 90° should be of lower frequency than those observed between 30° and 90°. The WRA P seismograms (figures 18 to 20) are complex and, as expected for a diffracted arrival, the period of P is greater than observed on the SP seismograms at the other array stations. The lowest magnitude explosion for which WRA data are available is that of 11 October 1982 with a m_b^{ML} of 5.58. At WRA the amplitude of P is about 4 nms and is recorded with a SNR of about 3. The detection capacity of WRA is thus about $m_b^{ML}514$.

The complexity of the P seismograms is assumed here to be due to discontinuities in wave speed at the core-mantle boundary (CMB). Within the P coda there are two or more discrete arrivals, the first arriving about 6 seconds after the onset. The low amplitude of the initial P-wave probably accounts for the clarity with which the arrivals are observed. Such arrivals have been associated with lateral variations in the"D" region which extends 200-300 km above the CMB. The evidence for this is provided by Vidale & Benz [35] who analysed recordings of the Chinese explosion of 21 May 1992 recorded at stations in Canada and the US in the distance range 85-103°. The arrival time, relative to the P onset, of the large amplitude secondary arrival at WRA is in excellent agreement with the observations of Vidale & Benz [35].

6.

<u>RESULTS</u>

In this section the relationship between the observations made on the seismograms from the

NNZ site and m_b^{ML} is investigated. There is insufficient data from explosions at the SNZ site for the P waves from that site to be analysed. The little data that are available are given in Appendix C.

6.1 <u>Array Magnitude and m_{b}^{ML} </u>

It might be expected that the relationship between the array magnitudes and m_b^{ML} (see table 5 and figures in Appendix A) would not differ significantly from unity. However, for the three arrays EKA, YKA and GBA it seems probable that the slopes are less than 1. For WRA the best estimate of the slope is 1 but the uncertainty in the estimate is so large that the possibility that the true slope is less than 1 cannot be ruled out. One possible explanation of why the slopes of the lines relating m_b to m_b^{ML} are apparently less than unity at EKA, YKA and GBA is that at low m_b^{ML} the m_b estimates are biased high because those signals which by chance would have been recorded by the arrays with below average amplitudes lay below the detection threshold and so were not recorded. However, the smallest magnitude explosions recorded at each array have amplitudes well above the detection threshold so perhaps any bias is minimal.

Alternatively, the array m_b might be picking up evidence of a decrease in the corner frequency of the P pulse with yield which is not seen by m_b^{ML} because most stations that report amplitudes to the ISC have narrower band recording systems and may be on paths of lower Q from NZ than are the arrays.

Sufficient data are available to effectively calibrate PcP amplitudes to estimate an equivalent P wave magnitude. The PcP observations for each array are given in Appendix A in tables and as figures showing $\log_{10}A/T$ against m_b^{ML} . The factor to add to PcP $\log_{10}A/T$ values to determine an equivalent m_b^{ML} for each array is estimated to be

EKA	$+4.31 \pm 0.12$
YKA	$+4.34 \pm 0.22$
GBA	$+4.32 \pm 0.19$

which is a remarkably consistent factor given the range of distance between EKA and GBA (29.2° and 61.2°). The station corrections for the P wave m_b are

EKA	-0.41 ± 0.13
YKA	$+0.55 \pm 0.13$
GBA	-0.31 ± 0.21
WRA	-0.03 ± 0.31

which indicates that for NZ explosions EKA and GBA record above average amplitudes whereas YKA amplitudes are below average. This is in contrast to the amplitudes of PcP recorded at YKA which appear to be normal. Given the station magnitude corrections relative to m_b^{ML} for P and PcP at the array stations it is possible to use either or both phases to make an estimate of m_b^{ML} based on a single station reading.

Conventionally the $\log_{10} A/T$ of the P wave is used to determine m_b . To investigate whether this is the best estimator of source size, some other amplitude measurements have been analysed using unfiltered data and data filtered $\frac{1}{2}$ -4 Hz and 1-4 Hz; namely $\log_{10} A_o$ and $\log_{10} A$. The main conclusions that can be drawn from this analysis (summarised in table 5) are:

- (i) with only one exception $\log_{10}A$ has the largest variance;
- (ii) $\log_{10}A_{o}$ has the minimum variance in almost every example;
- (iii) when $\log_{10} A/T$ is used the variance is only marginally greater than that observed for $\log_{10} A_0$ which suggests that any error introduced by the measurement of T is minimised by dividing by T;
- (iv) the effect of the period of the P wave on the slope and intercept of the relationship between source estimator terms and m_b^{ML} is small.

A problem could arise in the measurement of the period T with for example, a complex Pwave seismogram resulting from multipathing on the path between the source and the receiver. If the arrival of two or more pulses resulted in an apparent period significantly different to the true period this would increase the variance of the observations.

6.2 Ψ_{∞} and m_{E}^{ML}

$$\log_{10}\psi_{e} = (1.05 \pm 0.08)m_{b}^{ML} - (2.08 \pm 0.45).$$

6.3 <u>RMS Amplitudes and m_{b}^{ML} </u>

The RMS amplitude of different time windows of P, PcP and their coda, in two different frequency bands, are shown as a function of m_b^{ML} in the figures in Appendix A. The slope, intercept and variance of the least squares line through the data points are summarised in tables 8 to 10.

If the criterion for the best estimate of relative source size is minimum variance then the RMS amplitudes are almost as good as measurements made using A_o which, like RMS amplitude, is a measure of source size which does not depend on the period of the signal. The variance of the RMS measurements for P are all lower than those for PcP.

In both filter bands the minimum variance observed for RMS amplitudes at EKA and YKA are those which include the direct P, whereas at GBA and WRA it is the amplitudes that exclude P which have minimum variance. This observation is not explained by the complexity of P and its coda at the different array station but is probably related to the nature of the scattering between the source and receiver.

All of the measurements of RMS amplitude of P and its coda are larger than the RMS amplitude of the noise preceding the signal. This can be seen in the figures in Appendix A showing the relationship between RMS amplitudes and m_b^{ML} . [The noise levels are indicated by the asterisks on the graphs]. However, for observations made on PcP, only those made on the first 3 seconds have amplitudes significantly greater than the pre-signal noise. This is because the SNR is low for PcP from low magnitude sources and not because the phase arrives in the coda of the P wave since the PcP-P time varies from about 42 s at GBA to more than 3 minutes at EKA.

The RMS amplitude is a useful measure of relative source size but only at test-sites where a number of explosions have taken place. Relating of RMS amplitudes to yield requires the knowledge of at least one yield at the test site. It is very unlikely that procedures will be developed which will make it possible to predict the relationship between RMS amplitudes and yield for a particular test-site/station pair, or to use the relationship observed at one test-site and apply it to another.

6.4 <u>Rise, Fall and Duration Times Relative to m^{ML}</u>

There are a number of factors that affect the shape of the BB P-pulse and hence the rise and fall times and the duration of the observed pulse. One major factor is the arrival of any reflections from surfaces above the explosion. For example, the pP-P time may be so short that interference between the two arrivals results in a wrong measure of fall-time and duration. The rise-time is the measurement least likely to be affected by later arrivals and so should only be a function of yield and the medium in which the detonation occurred. The relationship between rise-time and yield is a measure of how the source function scales with yield.

For P waves the average slope of the line relating all the observations of rise and fall times and duration to m_b^{ML} is 0.09 ± 0.06 which shows that the observations scale roughly as (yield)^{1/10}, assuming that m_b^{ML} and log yield are linearly related. This result is in agreement with similar measurements made on explosions at the East Kazakhstan test-site (Stewart [1]).

6.5 $\underline{M}_{and} \underline{m}_{\underline{h}}^{\underline{ML}}$

The individual array values of M_o for each explosion are given in Appendix A. The least squares estimate of M_o for each explosion (table 11) were determined using the LSMF method. The relationship between $\log_{10}M_o$ and $m_b^{M_c}$ determined using the York [36] procedure, is

$$\log_{10}M_{\rm p} = (1.15 \pm 0.18)m_{\rm p}^{\rm ML} + (8.92 \pm 1.05).$$

6.6 Estimates of pP Times from Explosions at NZ

The identification of pP has proved difficult for shallow focus explosions in which the pP-P times are very small. It is often possible to identify an arrival (A_{pP}) of opposite polarity to that of the direct P, which could be pP. However, such arrivals are usually much later than expected, given a knowledge of the wave speeds in the material above the explosion and the depth of firing.

For an explosion at shallow depth the pP-P times should be almost the same at all teleseismic recording stations. However, this has proved difficult to demonstrate. The arrival of the first clear negative pulse after P at a number of stations often produces a wide range of times for the arrival of A_{pP} . This is true for the explosions analysed here. This may be because the reflection did not occur directly above the shot point, or because S-P conversions at layers between the shot point and the free surface arrive shortly after the P to produce a complicated pulse which makes recognition of true pP difficult.

An analysis of A_{pPcP} from recordings at EKA, YKA and GBA indicates that the phase is very likely to be the free surface reflection in that its arrival time relative to PcP is consistent at the three arrays, being on average between 0.4 and 0.5 s. This is the same as the A_{pP} -P time measured at WRA which is around 0.5 s. If the P-wave speed in the overburden is assumed to be about 4.0 km.sec⁻¹, a reasonable assumption for the rocks found at NZ (Press [37]), then the estimated firing depth is around 1000 m which is close to the thickness of the overburden available with a horizontal adit at the NNZ test-site. Thus it would appear that the best estimates of the depth are obtained from an analysis of PcP rather than direct P.

The estimates of pP times are about half those determined by Burdick [38] and Burdick et al [39] who use intercorrelation and network spectral methods to determine pP-P times. It is difficult to accept the depth estimates that result from using Burdick's estimates of pP times and wave speeds in the overburden.

7. <u>CONCLUSIONS</u>

Although data from the two test-sites at NZ are available, only for the NNZ site is there sufficient data for a detailed analysis of the P and PcP from the explosions. In the absence of yield data the measurements made are analysed as a function of m_b^{ML} which is assumed to be a good indicator of the relative yield of the explosions. The main conclusions of the study are listed below.

(i) The relationship between $\log_{10}\psi_{\infty}$ and m_b^{ML} is

$$\log_{10} \Psi_{m} = (1.05 \pm 0.08) m_{h}^{ML} - (2.08 \pm 0.45).$$

(ii)

The results of the analysis of rise and fall times and durations indicate that the source scaling is roughly proportional to $(yield)^{1/10}$ which is similar to that found for explosions at the East Kazakhstan test-site.

(iii) The relationship between $\log_{10}M_o$ and m_b^{ML} is

$$\log_{10}M_{\rm o} = (1.15 \pm 0.18)m_{\rm h}^{\rm ML} + (8.92 \pm 1.05).$$

(iv) The apparent pP-P times differ from station to station whereas the pPcP-PcP times consistently lie in the range 0.4-0.5 s indicating a depth of firing of around 1000 m.

(v) The best estimate of source size is given by the P-wave amplitude (A_o) measured on the seismogram uncorrected for the instrumental response at period T. However, in terms of variance the RMS amplitudes are almost as good but only as a measure of relative source size. Such amplitudes are thus useful for test-sites where a number of explosions have occurred but an explosion of a known yield is required to calibrate the test site.

8. <u>ACKNOWLEDGEMENTS</u>

The authors would like to express their sincere appreciation to the staff at the EKA, YKA, GBA and WRA seismometer array stations without whose conscientious efforts to record the data the analysis reported here would not have been possible. The editing of the data and the subsequent processing was only possible with the help of the staff at Blacknest. Professor A Douglas kindly reviewed the manuscript and made many useful suggestions; his help is much appreciated by the authors.

REFERENCES

- 1 Stewart, R C. "P-wave seismograms from underground explosions at the Shagan River test site recorded at four arrays". AWE Report O 4/88, HMSO, London (1988).
- 2 Marshall, P D, Lilwall, R C, Stewart, R C & Marsden, I. "Seismometer array recordings of P-waves from explosions in the North Caspian Sea USSR area". AWE Report O 4/91, HMSO, London (1991).
- 3 Lyman, N S, Douglas, A, Marshall, P D & Young, J B. "P seismograms recorded at Eskdalemuir, Scotland from explosions in Nevada, USA". AWRE Report O 10/86, HMSO, London (1986).
- 4 Gillbanks, T G A, Marshall, P D & Stewart, R C. "P-wave seismograms recorded at Yellowknife Canada from underground explosions in Nevada, USA". AWE Report O 26/88, HMSO, London (1988).
- 5 Stimpson, I G. "Source parameters of explosions in granite at the French test site in Algeria". AWE Report O 11/88, HMSO, London (1988).
- 6 Douglas, A. "P seismograms from explosions in the S Pacific recorded at four arrays". AWE Report (To be published by HMSO) (1994).
- 7 Fisk, D, Alewine, III, R W, Gray, H L & McCarter, G D. "Multivariate seismic calibration for the Novaya Zemlya test-site". PL-TR-92-2251, Phillips Laboratory, Hanscom AFB, Ma, USA (1992).
- 8 Lilwall, R C & Marshall, P D. "Body wave magnitudes and locations of Soviet underground explosions at the Novaya Zemlya test site". AWRE Report O 17/86, HMSO, London (1986).
- 9 Mowat, W M H & Burch, R F. "Handbook for the stations which provide seismograms to the Blacknest seismological centre, United Kingdom". AWRE Blacknest Tech Report 44/47/29, Blacknest, Brimpton, RG7 4RS, UK (1977).
- 10 Stewart, R C & Douglas, A. "Seismograms from phaseless seismographs". Geophys J Roy astr Soc, 72, 517-521 (1983).
- 11 Douglas, A & Young, J B. "The estimation of seismic body wave signals in the presence of oceanic microseisms". AWRE Report O 14/81, HMSO, London (1981).
- 12 Carpenter, E W. "Absorption of elastic waves an operator for a constant Q mechanism". AWRE Report O 43/66, HMSO, London (1966).
- 13 Futterman, W. "Dispersive body waves". J Geophys Res, 67, 5279-5291 (1961).
- 14 Bache, T C, Marshall, P D & Bache, L B. "Q for teleseismic P-waves from Central Asia". J Geophys Res, 90, 3575-3587 (1985).
- 15 Douglas, A. "Differences in upper mantle attenuation between the Nevada and Shagan River test site: can the effects be seen in P-wave seismograms?" Bull Seism Soc Am, 77, 270-276 (1987).
- 16 Stewart, R C. "Q and the rise and fall of a seismic pulse". Geophys J Roy astr Soc, 76, 793-805 (1984).
- 17 Carpenter, E W. "A quantitative evaluation of teleseismic explosion records". Proc Roy Soc, A, 290, 396-407 (1966).
- 18 Aki, K, Bouchon, M & Reasenberg, P. "Seismic source function for an underground nuclear explosion". Bull Seism Soc Am, 76, 131-148 (1968).

- 19 Douglas, A. "A special purpose least-squares programme". AWRE Report O 54/66, HMSO, London (1966).
- 20 Gutenberg, B & Richter, C. "Magnitude and Energy of Earthquakes". Annali Geofis, 9, 1-15 (1956).
- 21 Lilwall, R C. "Empirical amplitude-distance/depth curves for short-period P waves in the distance range 20-180°". AWRE Report O 30/86, HMSO, London (1987).
- 22 Douglas, A. "Joint epicentre determination". Nature, 215, 47-48 (1967).
- 23 Jeffreys, H. "The Theory of Probability". 3rd Edition, Oxford University Press (1961).
- 24 Hurley, R W. "Anomalous seismic signals from Novaya Zemlya". AWRE Report O 21/77, HMSO, London, (1977).
- 25 Stewart, R C & Marshall, P D. "Seismic P-waves from Novaya Zemlya explosions: seeing double!" Geophys J, 92, 335-338 (1988).
- 26 Buchbinder, G G R. "Properties of the core-mantle boundary and observations of PcP". J Geophys Res, 73, 5901-5923 (1968).
- 27 Kogan, S D. "A study of the dynamics of a longitudinal wave reflected from the earth's core". Izv. Akad. Nauk. SSSR, Fiz.Zemli, 6, 3 (1972).
- 28 Jones, K. Personal communication.
- 29 Key, F A. "Some observations and analyses of signal generated noise". Geophys J R astr Soc, 15, 377-392 (1968).
- 30 Douglas, A. "P-signal complexity and source radiation patterns" in VESIAC Report 7885-1-X, University of Michigan, USA (1967).
- 31 Greenfield, R J. "Short period P-wave generation by Rayleigh wave scattering at Novaya Zemlya". J Geophys Res, 76, 7988-8002 (1971).
- 32 Hudson, J A. "Scattered surface waves from a surface obstacle". Geophys J R astr Soc, 13, 441-458 (1967).
- 33 Douglas, A, Marshall, P D, Gibbs, P G, Young, J B & Blamey, C. "P signal complexity reexamined". Geophys J R astr Soc, 33, 195-221 (1973).
- 34 Douglas, A, Marshall, P D & Corbishley, D J. "Absorption and the complexity of P signals". Nature, 233, 50-51 (1971).
- 35 Vidale, J E & Benz, H M. "Seismological mapping of fine structure near the base of the Earth's mantle". Nature, 361, 529-532 (1993).
- 36 York, D. "Least squares fitting of a straight line". Can Jour Phys, 44, 1079-1086 (1966).
- 37 Press, F. "Seismic Velocities" in "Handbook of Physical Constants" Rev Ed S P Clark (Editor) Geol Soc Am Inc, Memoir 97, Page 203 (1966).
- 38 Burdick, L J. "Resolution of the pP paradox at Novaya Zemlya". PL-TR-91-2042. Phillips Laboratory, Hanscom AFB, Ma, USA (1991).

- 39 Burger, R W, Lay, T, Arvesen, C G & Burdick, L J. "Estimating seismic yield, pP parameters and tectonic characteristics at the Novaya Zemlya test site". WCCP-R-85-03 Woodward-Clyde Consultants, PO Box 93245, Fasadena, CA, USA (1985).
- 40 Daly, R A, Manger, G E & Clark, S P. "Density of rocks" in "Handbook of Physical Constants" Rev Ed S P Clark (Editor) Geol Soc Am Inc, Memoir 97, Page 23 (1966).

LIST OF TABLES

- Table 1Epicentres, origin times and magnitudes of the Novaya Zemlya explosions.
- Table 2The arrays.
- Table 3Availability of array data for Novaya Zemlya explosions.
- Table 4P-wave speed and density for the array stations and Novaya Zemlya source region.
- Table 5 Summary of the analysis of P-wave measurements tabulated and presented in graphical form in Appendix A. S indicates slope of the least squares line, I the intercept and σ^2 the variance. DOF gives the degrees of freedom.
- Table 6Summary of the analysis of P RMS amplitudes in different windows, filtered in the
band 0.5-4 Hz. S indicates slope of the least squares line, I the intercept and σ^2 the
variance. DOF gives the degrees of freedom.
- Table 7 Summary of the analysis of P RMS amplitudes in different windows, filtered in the band 1-4 Hz. S indicates slope of the least squares line, I the intercept and σ^2 the variance. DOF gives the degrees of freedom.
- Table 8 Summary of the analysis of PcP measurements. S indicates slope of the least squares line, I the intercept and σ^2 the variance. DOF gives the degrees of freedom.
 - Table 9 Summary of the analysis of PcP RMS amplitudes in different windows, filtered in the band 0.5-4 Hz. S indicates slope of the least squares line, I the intercept and σ^2 the variance. DOF gives the degrees of freedom.
 - Table 10 Summary of the analysis of PcP RMS amplitudes in different windows, filtered in band 1-4 Hz. S indicates slope of the least squares line, I the intercept and σ^2 the variance. DOF gives the degrees of freedom.
- Table 11 $m_{\rm h}^{\rm ML}$, array $m_{\rm h}$, $\log_{10} \psi_{\infty}$ and $\log_{10} M_{\rm o}$ for explosions at NZ.
- Table 12 Station corrections for $\log_{10} \psi_{\infty}$.

TABLE 1.

Epicentres, Origin Times and Magnitudes of the Novaya Zemlya Explosions

Date	Origin time	Latitude [*]	Longitude [*]	Area(km²)	mb ML	NA		
Epicentr	es for northern Nov	aya Zemlya exp	losions estimat	ed relative	to that of	the 29	September	79
640918	8: 0: 0.35±0.78	73-667N±11-1	54.533E± 2.8	43.5	4.19±0.15	6		
641025	7:59:58.10±0.12	73-387N± 1-8	54.994E± 0.5	4.5	4.82±0.13	-8		1
661027	5:57:58.09±0.06	73-387N± 1-1	54.845E± 0.4	1.8	6.49±0.05	23		1
671021	4:59:58.49±0.07	73-390N± 1-2	54.819E± 0.4	2.0	2.3870.02	4(
681107	$10: 2: 5.49 \pm 0.06$	73-387N± 1-1	54.861E± U.3	1.5	6 13±0 04	60		1
691014	7: 0: 6.61±0.06	(3-390N± 1-1	34.196E± 0.3	1.8	6.18±0.05	20		1
701014	5:59:57:57±0-06	73-304N± 1-0	33+U36E± 0+3	1.0	6 67 0 04	51		l
(10927	5:39:33: (3±0.06	(3-393N± 1-1	34+323E± U+3	1.6	6 40+0 04	63		
120828	3,33,36,8(±0,06	(3-386N± 1.0	55 0655, 0 2	1.4	6.97+0.05	52		- 1
730912	6.33.34.81±0.06	(3-514N± 1-0	54 9145 0 3	1.5	6.59120.03	52		
750023	3,33,36,13±0,00	72.224N± 1.0	54.6916+ 0.3	1.4	6.55+0.04	83		1
751023	11:59:50 02+0.05	73.307N± 1.0	55.019E+ 0.3	1.4	6.60+0.04	Řà		
760929	2:59:57.70+0.00	73.360N+ 0.0	54.880F+ 0.0	0.0	5.83+0.04	82		
761020	7:59:58.07+0.07	73.398N+ 1.3	54-821E+ 0.4	2.3	4.98±0.06	39		
770901	2:59:57.97+0.06	73-339N+ 1-0	54.628E± 0.3	1.4	5.66±0.04	84		ſ
771009	10:59:58.12+0.13	73-409N+ 1-8	54.936E± 0.6	4.8	4.36±0.08	28		
780810	7:59:57.93±0.06	73-291N± 1-0	54.892E± 0.3	1.4	6.00±0.04	91		
780927	2: 4:58.60±0.06	73-349N± 1.0	54.685E± 0.3	1.5	5.63±0.04	83		
790924	3:29:58.75±0.06	73-343N± 1-0	54.681E± 0.3	1.4	5.77±0.03	104		1
791018	7: 9:58,75±0,06	73-316N± 1.0	54.825E± 0.3	1.5	5.79±0.04	91		ţ
801011	7: 9:57,47±0,06	73-336N± 1+1	54.949E± 0.3	1.5	5.76±0.04	80		
811001	12:14:57.23±0.06	73-304N± 1.0	54.827E± 0.3	1.5	5.97±0.03	100		
821011	7:14:58.63±0.06	73-339N± 1-1	54.617E± 0.3	1.6	5.58±0.04	87		
830818	16: 9:58.90±0.06	73-354N± 1.0	54.983E± 0.3	1.5	5.91±0.04	.96		1
830925	13: 9:58.22±0.06	73-328N± 1.0	54.550E± 0.3	1.5	5.77±0.03	105		
841025	6:29:58.12±0.06	73-355N± 1.0	54.999E± 0.3	1.5	5.82±0.03	104		
870802	2: 0: 0.20±0.06	73-326N± 1-0	54.611E± 0.3	1.4	5-82±0-03	99		
880507	22:49:58.34±0.06	73-314N± 1.0	54.562E± U.3	1.4	5.58±0.04	92		5
881204	5:19:53.30±0.06	73-366N± 1-0	22.010FT 0.3	1.4	2+83±0+03	94		
901024	14:5(:58.45±0.06	(3-331N# 1+0	34+ (665± U+3	1.4	0.00#0.00	U		
Epicentr	es for southern Nov	vaya Zemlya e×p	losions estimat	ed relative	to that of	the 2	November 1	974
730927	7: 0: 1.12±0.08	70-731N± 1-4	53.836E± 0.5	3,3	5.89±0.05	53		
731027	7: 0: 0.61±0.07	70-780N± 1-3	54.035E± 0.4	2.6	6.98±0.04	58		
741102	5: 0: 0.00±0.00	70-810N± 0-0	53.910E± 0.0	0.0	6.81±0.04	11		1
751018	8:59:59.40±0.07	70-816N± 1-3	53.753E± 0.4	2.6	6+ (5±0+04	65		

* Confidence limits in kilometres

[†] Number of stations used in computing m_b^{ML}

Station	Code	Location	Element	Date	Digital	То	To Novaya Zemlya (North)			
· · · · · · · · · · · · · · · · · · ·			Spacing (km)	Operational	Recording	Δ°	<u>BB°</u>	Az°		
Eskdalemuir Scotland	ЕКА	55° 19′ 59"N 3°09′ 33"₩	0.9	17 May 1962	14 Nov 1983	29.16	30.1	263.7		
Yellowknife Canada	YKA	62°29′ 34"N 114°36′ 17"₩	2.5	26 Nov 1962		44.23	4.4	353.0		
Gauribidanur India	GBA	13°36′ 15"N 77°26′ 10"E	2.5	1 Feb 1966	4 Mar 1979	61.15	352.7	154.7		
Warramunga Australia	WRA	19°56′ 39"S 134°20′ 27"E	2.5	1 Mar 1966	7 Jun 1977	106.00	342.8	105.8		

<u>The Arrays</u>

19

_

TABLE 3.

Availability of Array Data for Novaya Zemlya Explosions

(a) Northern test-site

	Date	El	ζA	YI	KA	GI	BA	WRA
	<u> </u>	Р	PcP	Р	PcP	Р	PcP	Р
1	641025	*	-	*	-		*	-
2	661027(D)	0	*	0	0	0	0	*
3	671021(D)	0	*	*	*	Š	*	*
4	681107	S	*	*	*	*	*	*
5	691014(D)	S	*	0	*	*	-	*
6	701014	0	*	-	-	0	*	*
7	710927	0	*	-	-	Ō	0	*
8	720828	0	*	-	-	-	-	-
9	730912	0	*	-	-	-	-	_]
10	740829	*	*	S	S	-	-	_]
11	750823	0	*	-	-	-	-	-
12	751021	*	*	-	-	*	-	*
13	760929	*	*	*	*	S	*	-
14	761020	*	-	*	*	*		-
15	770901	*	*	*	*	-	_	*
16	771009	*	-	*	*	*	-	_
17	780810	*	*	*	*	*	*	-
18	780927	*	*	*	*	*	-	-
19	790924	-	-	*	*	-	-	*
20	791018	*	-	*	*	-	*	*
21	801011(D)	*	*	*	*	*	*	*
22	811001	*	*	*	*	*	-	*
23	821011	*	-	*	*	*	-	*
24	830818	*	*	*	*	*	-	_
25	830925	*	*	*	*	*	*	-
26	841025	*	*	*	*	*	-	*
27	870802	*	*	*	*	*	_	*
28	880507	*	-	*	*	*	-	*
29	881208	*	*	*	*	*	*	-

(b) Southern test-site

v

1 2 3 4	730927 731027 741102 751018(D)	* 0 S 0	* * S *	* - S 0	* - S -	- - * 0	- *	- * -
		-				-		

Data available and included in the analysis Overloaded data *

0

Data files unavailable -

Strong motion channel available; calibration uncertain therefore not used in analysis. S

(D) Double explosion

TABLE 4.

Array	Density (p _o) (kg m ⁻³)	P wave speed (v _o) (km s ⁻¹)	$\left[\frac{\rho_{a}\nu_{a}}{\rho_{1}\nu_{1}}\right]^{\prime2}$
ЕКА	1800	6.14	1.31
YKA	2670	5.64	1.23
GBA	2800	5.60	1.25
WRA	2800	5.60	1.25

0

¢,

σ

P-wave Speed and Density for the Array Stations and Novaya Zemlya Source Region

The P-wave speed (v_1) and density (ρ_1) in the Novaya Zemlya source region is assumed to be 4.0 km s⁻¹ [ref 40] and 2500 kg m⁻³ [ref 37] respectively. ρ_o and v_o are taken from [ref 2].

		$Log_{10} \psi_{\infty}$			Rise-time sec	5		Fall-times se	с	Duration sec		
Station	S	I	σ²	S	I	σ²	S	I	σ²	S	I	σ²
EKA	0.96	-1.63	0.0158	0.01	-0.85	0.0023	0.16	-1.73	0.0047	0.09	-0.80	0.0017
YKA	1.21	-3.17	0.0393	0.11	-1.21	0.0046	0.15	-1.43	0.0133	0.20	-1.15	0.0044
GBA	0.64	0.37	0.0368	0.13	-1.46	0.0054	0.06	-1.17	0.0102	0.16	-1.13	0.0067
WRA	1.26	-4.19	0.0702	0.07	-0.99	0.0067	0.03	-0.88	0.0056	0.08	-0.55	0.0032
	Period sec			St	ation magnitu	ıde	(0.5	-4) Hz period	1 sec	(0.5-4) Hz magnitude		
Station	S	I	σ²	S	I	σ^2	S	I	σ²	S	I	σ²
EKA	0.05	-0.54	0.0014	0.79	1.60	0.0063	0.04	-0.47	0.0011	0.84	1.29	0.0076
YKA	0.08	-0.59	0.0026	0.84	0.36	0.0127	0.04	-0.43	0.0199	0.80	0.70	0.0110
GBA	-0.05	0.12	0.0045	0.59	2.64	0.0118	0.04	-0.41	0.0163	0.69	2.09	0.0076
WRA	-	-0.02	0.0010	1.00	0.03	0.1063	-0.03	0.12	0.0014	1.03	-0.16	0.1196
	(1-	4) Hz period	sec	(1-4	4) Hz magnit	ude	station magnitude (log ₁₀ A)			station magnitude (log A _o)		
Station	S	I	σ²	S	I	σ²	S	I	σ²	S	I	σ²
EKA	0.06	-0.61	0.0007	0.83	1.31	0.0068	0.83	1.06	0.0090	0.79	1.69	0.0063
YKA	0.05	-0.56	0.0023	0.80	0.64	0.0131	0.91	-0.23	0.0189	0.82	0.57	0.0109
GBA	-0.01	-0.16	0.0014	0.65	2.21	0.0095	0.53	2.76	0.0200	0.59	2.69	0.0108
WRA	-0.01	-0.05	0.0062	1.05	-0.50	0.1249	1.00	0.01	0.1188	1.00	.04	.0990

Summary of the Analysis of P-wave Measurements Tabulated and Presented in Graphical Form in Appendix A. (S indicates slope of the least squares line, I the intercept and σ^2 the variance. DOF gives the degrees of freedom.)

	(0.5-4)	Hz station m	(log ₁₀ A)	(0.5-4) Hz station m $(\log_{10}A_{o})$			(1-4) Hz station m (log ₁₀ A)			(1-4) Hz station m $(\log_{10}A_o)$		
Station	S	Ī	σ^2	S	I	σ²	S	I	σ²	S	Ι	σ²
ЕКА	0.88	0.82	0.0066	0.84	1.38	0.0075	0.89	0.70	0.0070	0.83	1.40	0.0067
YKA	0.85	0.27	0.0374	0.82	0.64	0.0105	0.85	0.08	0.0147	0.80	0.74	0.0130
GBA	0.73	1.68	0.0360	0.64	2.43	0.0085	0.63	2.05	0.0123	0.64	2.34	0.0085
WRA	1.01	-0.04	0.1267	1.06	-0.29	0.1165	1.05	-0.54	0.1476	1.08	-0.62	0.1208
	pP-P (s)		DOF									
Station	S	I	σ²									
EKA	0.35	-2.18	0.0126	12								
YKA	0.17	-1.01	0.0032	18								
GBA	0.09	-0.82	0.0189	12								
WRA	-0.02	-0.15	0.0009	14								

TABLE 5. (continued)

,

•

¢

۶

4

r.

,

8

TABLE 6.

*

٢

ţ.

充

 ϵ'

Summary of the Analysis of P RMS Amplitudes in Different Windows, Filtered in the band 0.5-4 Hz. (S indicates slope of the least squares line, I the intercept and σ^2 the variance. DOF gives the degrees of freedom.)

		RMS (0-3)s			RMS (0-6)s			RMS (0-9)s			RMS (0-15)s		
Station	S	I	σ^2	S	I	σ²	S	I	σ²	S	I	σ²	
EKA	0.88	-2.98	0.0069	0.86	-2.99	0.0072	0.86	-3.02	0.0072	0.85	-3.06	0.0075	
YKA	0.84	-3.47	0.0100	0.77	-3.18	0.0117	0.75	-3.07	0.0109	0.72	-3.02	0.0102	
GBA	0.64	-1.77	0.0105	0.65	-1.92	0.0087	0.64	-1.96	0.0084	0.63	-2.01	0.0077	
WRA	1.04	-5.47	0.1233	0.98	-5.23	0.1087	0.95	-5.09	0.1021	0.90	-4.85	0.0983	
	RMS (3-9)s			RMS (3-15)s			RMS (9-18)s						
Station	S	I	σ^2	S	I	σ²	S	I	σ^2				
EKA	0.75	-2.79	0.0141	0.75	-2.84	0.0139	0.72	-2.80	0.0195				
YKA	0.66	-2.72	0.0169	0.65	-2.72	0.0136	0.60	-2.59	0.0117		:		
GBA	0.63	-2.02	0.0052	0.59	-2.07	0.0051	0.51	-2.00	0.0161				
WRA	0.76	-4.13	0.0771	0.70	-3.77	0.0747	0.57	-3.11	0.0644				

TABLE 7.

r

¢

¢

5

e.

۶

Summary of the Analysis of P RMS Amplitudes in Different Windows, filtered in the Band 1-4 Hz. (S indicates slope of the least squares line, I the intercept and σ^2 the variance. DOF gives the degrees of freedom)

		RMS (0-3)s			RMS (0-6)s			RMS (0-9)s			RMS (0-15)s	
Station	S	I	σ^2	S	I	σ²	S	I	σ²	S	I	σ²
EKA	0.88	-3.01	0.0066	0.86	-3.03	0.0069	0.86	-3.10	0.0069	0.86	-3.16	0.0071
YKA	0.83	-3.49	0.0126	0.77	-3.21	0.0142	0.76	-3.19	0.127	0.73	-3.15	0.0112
GBA	0.64	-1.83	0.0107	0.65	-2.00	0.0089	0.64	-2.04	0.0088	0.64	-2.12	0.0080
WRA	1.06	-5.83	0.1257	0.99	-5.45	0.1168	0.94	-5.16	0.1060	0.86	-4.74	0.1008
	RMS (3-9)s RMS (3-15)s				RMS (9-18)s							
Station	S	I	σ^2	S	I	σ²	S	I	σ²			
EKA	0.79	-3.02	0.0140	0.78	-3.08	0.0135	0.77	-3.13	0.0200			
YKA	0.68	-2.88	0.0185	0.67	-2.88	0.0138	0.63	-2.81	0.0101			
GBA	0.65	-2.36	0.0084	0.62	-2.31	0.0072	0.51	-2.00	0.0161			
WRA	0.78	-4.28	0.0910	0.68	-3.77	0.0859	0.51	-2.81	0.0677			

6

۰.

I	a	bl	e	8.

¢

7

ć

Summary of the Analysis of PcP Measurements. S indicates slope of the least squares line, I the intercept and σ^2 the variance. DOF gives the degrees of freedom

		Log ₁₀ Ψ			Rise-time sec	;		Fall-time sec			Duration sec	
Station	S	I	σ^2	S	I	σ²	S	I	σ²	S	I	σ²
EKA	0.96	-1.37	0.0247	0.03	-0.77	0.0052	-0.08	-1.15	0.0071	-0.05	-0.39	0.0040
YKA	1.42	-4.45	0.0442	0.08	-1.31	0.0041	0.22	-2.07	0.0048	0.14	-1.12	0.0034
GBA	1.29	-3.35	0.1128	0.00	-0.64	0.0041	-0.36	1.38	0.0111	-0.19	0.94	0.0053
		Period sec			Log ₁₀ A/T	-	(0.5	-4) Hz period	lsec	(0.5	-4) Hz Log ₁₀	A/T
Station	S	I	σ^2	S	I	σ²	S	I	σ²	S	I	σ²
EKA	0.08	-0.63	0.0016	0.88	-3.55	0.0129	0.05	-0.44	0.0034	0.96	-4.05	0.0191
YKA	0.04	-0.54	0.0079	1.26	-5.83	0.0405	-0.24	1.10	0.0096	0.86	-3.48	0.0365
GBA	0.07	-0.59	0.0026	1.88	-9.50	0.0283	0.17	-1.14	0.0010	1.94	-9.88	0.0233
	(1-4	4) Hz period	sec	(1-4) Hz Log ₁₀ A/T			Log ₁₀ A			Log ₁₀ A _o		
Station	S	I	σ^2	S	I	ರ ²	S	I	σ²	S	I	σ²
EKA	0.15	-1.12	0.0044	0.89	-3.75	0.0288	0.96	-4.18	0.0133	0.86	-3.36	0.0134
YKA	-0.10	0.29	0.0042	1.01	-4.41	0.0364	1.30	-6.37	0.0317	1.26	-5.75	0.0407
GBA	0.17	-1.16	0.0003	1.78	-9.05	0.0191	1.95	-10.09	0.0357	1.87	-9.38	0.0260

26

¢

	(0	5-4) Hz Log	P ₀₁	;0)	5-4) Hz Log ₁	₀A₀	(1	-4) Hz Log ₁₀	V	(1-	4) Hz Log ₁₀ ,	^
Station	S	I	o²	S	I	م ²	S	I	σ^2	S	I	Q²
EKA	-1.00	-4.49	0.0132	0.94	-3.89	0.0219	1.04	-4.88	0.0364	0.88	-3.64	0.0306
YKA	0.63	-2.38	0.0335	0.97	4.04	0.0407	0.91	4.12	0.0314	1.03	-4.43	0.0358
GBA	2.11	-11.02	0.0252	1.90	-9.56	0.0225	1.95	-10.21	0.0228	1.75	-8.80	0.0178
		pP-P (s)			DOF							
Station	S	Ι	o²									
EKA	0.00	-0.39	0.0008	20								
YKA	0.10	-0.74	0.0050	17								
GBA	-0.44	2.30	0.0150	5								

TABLE 8 (continued)

- wa

Station	ation RMS (0-3)s RMS (0-6)s RMS (0-9)s			RMS (0-15)s	i							
	S	I	σ^2	S	I	σ²	S	I	σ²	S	I	σ²
EKA	0.95	-4.03	0.0143	0.90	-4.14	0.0115	0.86	-3.97	0.0105	0.82	-3.78	0.0110
ҮКА	0.95	-4.28	0.0349	0.85	-3.80	0.0335	0.80	-3.60	0.0300	0.77	-3.51	0.0248
GBA	1.92	-10.04	0.0212	1.89	-9.98	0.0224	1.88	-10.01	0.0213	1.88	-10.11	0.0198
		RMS (3-9)s			RMS (3-15)s			RMS (9-18)s				
Station	S	Ι	σ²	S	I	σ²	S	I	σ²			
EKA	0.73	-3.46	0.0170	0.69	-3.26	0.0169	0.66	-3.11	0.0205			
YKA	0.61	-2.73	0.0233	0.61	-2.79	0.0215	0.60	-2.96	0.0943			
GBA	1.60	-8.65	0.0259	1 69	-9.28	0.0171	1 78	-0.80	0.0098			

Summary of the Analysis of PcP RMS Amplitudes in Different Windows, filtered in the Band 0.5-4 Hz.	
(S indicates slope of the least squares line, I the intercept and σ^2 the variance. DOF gives the degrees of freedom.)	

TABLE 9.

e é

ć r

۲

t.

<u>TABLE 10.</u>

•

Summary of the Analysis of PcP RMS Amplitudes in Different Windows, Filtered in the band 1-4 Ha	*
(S indicates slope of the least squares line, I the intercept and σ^2 the variance. DOF gives the degrees of fr	eedom)

_		RMS (0-3)s			RMS (0-6)s			RMS (0-9)s			RMS (0-15)s	3
Station	S	I	σ²	S	I	σ²	S	I	σ²	S	I	σ²
EKA	0.91	-4.20	0.0229	0.87	-4.05	0.0185	0.84	-3.94	0.0160	0.82	-3.90	0.0147
YKA	0.97	-4.48	0.0316	0.89	-4.14	0.0296	0.84	-3.92	0.0288	0.81	-3.84	0.0260
GBA	1.76	-9.19	0.0196	1.73	-9.16	0.0190	1.74	-9.30	0.0191	1.76	-9.47	0.0186
	RMS (3-9)s			RMS (3-15)s			RMS (9-18)s					
Station	S	I	σ²	S	I	o²	S	I	σ²			
EKA	0.71	-3.49	0.0163	0.72	0.3.56	0.0146	0.73	-3.72	0.0192			
YKA	0.63	-2.99	0.0217	0.63	-3.02	0.0162	0.63	-3.28	0.1616			
GBA	1.57	-8.62	0.0219	1.70	-9.43	0.0184	1.81	-10.19	0.0176			

ş....x

<u>Table 11.</u>

	Date	m ^{ML}	Array m _b	Log₁₀ψ∞	Log ₁₀ M _o	Area
1	641025	4.82	5.15	3.03	14.72	NE
2	661027(D)	6.49	6.42	4.86	16.55	NE
3	671021(D)	5.98	5.92	4.04	15.74	NE
4	681107	6.13	6.24	4.38	16.08	NE
5	691014(D)	6.18	6.23	4.45	16.15	NE
6	701014	6.79	6.55	4.81	16.50	S
7	710927	6.67	6.64	4.85	16.54	NE
8	720828	6.49	6.56	4.95	16.64	NE
9	730912	6.97	6.82	5.13	16.82	S
10	740829	6.58	6.76	4.94	16.63	NE
11	750823	6.55	6.55	4.83	16.52	w
12	751021	6.60	6.44	4.64	16.33	S
13	760929	5.83	5.74	3.93	15.64	S
14	761020	4.98	4.97	3.02	14.73	NE
15	770901	5.66	5.68	3.68	15.38	W
16	771009	4.36	4.69	2.49	14.19	NE
17	780810	6.00	5.95	4.23	15.93	S
18	780927	5.63	5.64	3.87	15.58	w
19	790924	5.77	5.75	3.96	15.66	w
20	791018	5.79	5.78	4.08	15.78	S
21	801011(D)	5.77	5.88	4.11	15.81	S
22	811001	5.97	5.91	4.13	15.78	S
23	821011	5.58	5.48	3.72	15.43	S
24	830818	5.91	5.93	4.19	15.89	S
25	830925	5.77	5.75	4.00	15.70	W
26	841025	5.82	5.87	4.08	15.78	S
27	870802	5.82	5.75	4.14	15.84	w
28	880507	5.58	5.52	3.94	15.64	W
29	881204	5.89	5.92	4.12	15.82	S
	Southarm To	et Sites				

 \underline{m}_{b}^{ML} , Array \underline{m}_{b} , $\underline{\log}_{10}$, $\underline{\psi}_{a}$ and $\underline{\log}_{10}M_{o}$ for Explosions at Novaya Zemlya

	Southern T	est Site:
1	730927	5.89
2	751018(D)	6.75
3	741102	6.81
4	731027	6.98

(D) Indicates double explosion

TABLE 12.

Station	Phase	Correction	n	95% Confidence Limits
EKA	Р	+0.054	14	±0.123
EKA	PcP	-0.274	22	±0.121
YKA	Р	+0.208	20	±0.104
YKA	PcP	+0.192	19	±0.105
GBA	Р	-0.027	13	±0.124
GBA	PcP	-0.153	7	±0.167

s.

0

Station Corrections for log₁₀ ψ_{se}

Captions to Figures

- Figure 1 Location of the two test-sites at Novaya Zemlya.
- Figure 2 The geology of Novaya Zemlya.
- Figure 3 Location of the four medium-aperture arrays relative to Novaya Zemlya.
- Figure 4 Relative amplitude response of the broad band and the YKA short period systems.
 - Figure 5 An example of the short period and broad band seismograms and observations for the NZ explosion on 20 Oct 1976 recorded at GBA. On the lower left the figure shows where the SP peak-to-peak amplitude is measured and its half-period. Underneath is the BB P-wave showing the rise-time, fall-time, duration and pP-P interval. The measured area pulse H_o , is shown by the filled area on the t* corrected BB seismogram. The box to the lower right gives details of the measurements made on the different seismograms.
 - Figure 6 Location of explosions at the Novaya Zemlya (Northern) test-site:
 - (a) ISC epicentres; (b) the JED locations.
 - Figure 7 Location of explosions at the Novaya Zemlya (Southern) test-site:

(a) ISC epicentres; (b) the JED locations.

- Figure 8 Areas of NNZ based on the appearance of the seismograms.
- Figure 9 P seismograms and their sum for explosions in the North-east area of the NNZ test site recorded at EKA.
- Figure 10 P seismograms and their sum for explosions in the South area of the NNZ test site recorded at EKA.
- Figure 11 P seismograms and their sum for explosions in the West area of the NNZ test site recorded at EKA.
- Figure 12 P seismograms and their sum for explosions in the North-east area of the NNZ test site recorded at YKA.
- Figure 13 P seismograms and their sum for explosions in the South area of the NNZ test site recorded at YKA.
- Figure 14 P seismograms and their sum for explosions in the West area of the NNZ test site recorded at YKA.
- Figure 15 P seismograms and their sum for explosions in the North-east area of the NNZ test site recorded at GBA.
- Figure 16 P seismograms and their sum for explosions in the South area of the NNZ test site recorded at GBA.
- Figure 17 P seismograms and their sum for explosions in the West area of the NNZ test site recorded at GBA.

Figure 18	P seismograms and their sum for explosions in the North-east area of the NNZ test site recorded at WRA.
Figure 19	P seismograms and their sum for explosions in the South area of the NNZ test site recorded at WRA.
Figure 20	P seismograms and their sum for explosions in the West area of the NNZ test site recorded at WRA.
Figure 21	PcP seismograms and their sum for explosions in the North-east area of the NNZ test site recorded at EKA.
Figure 22	PcP seismograms and their sum for explosions in the South area of the NNZ test site recorded at EKA.
Figure 23	PcP seismograms and their sum for explosions in the West area of the NNZ test site recorded at EKA.
Figure 24	PcP seismograms and their sum for explosions in the North-east area of the NNZ test site recorded at YKA.
Figure 25	PcP seismograms and their sum for explosions in the West area of the NNZ test site recorded at YKA.
Figure 26	PcP seismograms and their sum for explosions in the South area of the NNZ test site recorded at YKA.
Figure 27	PcP seismograms and their sum for explosions in the North-east area of the NNZ test site recorded at GBA.
Figure 28	PcP seismograms and their sum for explosions in the South area of the NNZ test site recorded at GBA.
Figure 29	PcP seismograms and their sum for explosions in the West area of the NNZ test site recorded at GBA.
Figure 30	The SP P-waves from the three regions of the NNZ test-site.
Figure 31	P waves from nuclear explosions recorded at distances of around 3250 kms:
	 (a) explosion at the NNZ site recorded at EKA; (b) explosion at the Chinese test site recorded at GBA.
	The complexity at GBA is presumably caused by variations in the upper mantle structure on the path between the Chinese test-site and GBA.
Figure 32	Double explosion (lower trace at each array) compared with the average P signal from the south area of the NNZ test-site.
Figure 33	Double explosion (lower trace at each array) compared with the average PcP signal from the south area of the NNZ test-site.
Figure 34	Simulation of the YKA P seismograms using a scaled and delayed EKA P signal.
Figure 35	$Log \psi_{\infty}$ against maximum-likelihood magnitude for explosions at NZ.

ć

2

Figure 1 Location of the two test-sites at Novaya Zemlya.

The geology of Novaya Zemlya.

Figure 3 Location of the four medium-aperture arrays relative to Novaya Zemlya.

ι.

Relative amplitude response of the broad band and the YKA short period systems.

761020_G8A

Figure 5

An example of the short period and broad band seismograms and observations for the NZ explosion on 20 Oct 1976 recorded at GBA. On the lower left the figure shows where the SP peak-to-peak amplitude is measured and its half-period. Underneath is the BB P-wave showing the rise-time, fall-time, duration and pP-P interval. The measured area pulse H_o , is shown by the filled area on the t^{*} corrected BB seismogram. The box to the lower right gives details of the measurements made on the different seismograms.

e

•

Location of explosions at the Novaya Zemlya (Northern) test-site:

(a) ISC epicentres; (b) the JED locations.

c

ł

(a) ISC epicentres; (b) the JED locations.

Areas of NNZ based on the appearance of the seismograms.

- 2 4 6 8 10 Seconds
- P seismograms and their sum for explosions in the North-east area of the NNZ test site recorded at EKA. Figure 9

 $\boldsymbol{\zeta}$

P seismograms and their sum for explosions in the West area of the NNZ test site recorded at EKA.

Figure 11

M M ANN 1968 2 4 6 8 10 Seconds www.www.mm Broadband t' corrected MWW/MWWW or some 1908 Broadband WWWWWWWWWWWWWWWWWWW - ANN WAY WAY MANWAWAWAWA www.WWWWWWWWWWWW mannonmonth MMM MMMMMMMMM Short period

P seismograms and their sum for explosions in the North-east area of the NNZ est site recorded at YKA. Figure 12

P seismograms and their sum for explosions in the South area of the NNZ test site recorded at YKA. Figure 13

2 4 6 8 10 Seconds 25 September 1983 2 Mr. 1968 W W W W W A ANGUNE 1067 WWWWWWWWWWWWWWW WWWWWWWWWWWWW WWW ZPOPIENDES 1878 manna A M W W W The state is a Month restructed to My My 11 October 1002 25 September 1963 M Nor Alent 1997 07 Ney 1988 vinnan WWWWWWWWWWWWWW MWWWWWWWWWWWW 121 September 1979 MWWWWWWWWWWWWWWW WWWWWWWWWWWWWWWWW 1 martin Marina Marina Marina Monority Monor Manual Mark MWWWW wwwwww 25 Splember 1983 Sum

P seismograms and their sum for explosions in the West area of the NNZ test site

ecorded at YKA.

Figure 14

Broadband t° corrected

Broadband

Short period

Э

c

ó

P seismograms and their sum for explosions in the South area of the NNZ test site recorded at GBA. Figure 16

n

4

t

ç

4

P seismograms and their sum for explosions in the West area of the NNZ test site recorded at GBA.

Figure 17

P seismograms and their sum for explosions in the North-east area of the NNZ test site recorded at WRA.

١S

Short period

Broadband

Broadband t' corrected

Mymmumum white a white white white white when we wanted

wywywy the account 1001 www. MWN

2 4 6 8 10 Seconds P seismograms and their sum for explosions in the South area of the NNZ test site recorded at WRA. Figure 19

Broadband t[°] corrected

Short period

Broadband

WWWWWWWWWWWWWWWWWWW Manuman Mary Man 2 4 6 9 10 Seconds W M W W W W M M M M W W W monor MWWWWWWWWWWWWWWWW

P seismograms and their sum for explosions in the West area of the NNZ test site recorded at WRA. Figure 20

PcP seismograms and their sum for explosions in the North-east area of the NNZ test site recorded at EKA. Figure 21

PcP seismograms and their sum for explosions in the South area of the NNZ test site recorded at EKA.

Figure 22

PcP seismograms and their sum for explosions in the West area of the NNZ test site recorded at EKA. Figure 23

2 4 6 B 10 Seconds PcP seismograms and their sum for explosions in the South area of the NNZ test site recorded at GBA. Figure 28

Novaya Zemlya recorded at EKA

Figure 31

¢

P waves from nuclear explosions recorded at distances of around 3250 kms:

(a) explosion at the NNZ site recorded at EKA;

.

(b) explosion at the Chinese test site recorded at GBA.

The complexity at GBA is presumably caused by variations in the upper mantle structure on the path between the Chinese test-site and GBA.

signal from the south area of the NNZ test-site.

T

APPENDIX A

GRAPHS AND TABLES OF INDIVIDUAL MEASUREMENTS MADE ON P AND PCP FROM EXPLOSIONS AT NOVAYA ZEMLYA

			r.m.s. Noise	0.00 1.92 1.68 1.84 2.16		2.192 5.192 5.192 5.192	r.m.s. noise	0.04 0.04 0.03 0.04 0.04 0.04 0.04 0.04	000000	0.49 0.73 0.56 1.55 0.57 1.55 0.56 1.55 0.55 1.55 0.55 0.55 1.55 1.55 0.55 1.55 1
			5-185. 9-185	2.95 2.95	39-54 19-54 8-69 8-69 15-14 15-14	286.12 289.44 20.91 35.32	1.85. 9-185	23312 2312 2312 2312 2312 2312 2312 231	32.61 17.60 32.61 10.87 24.80	20-76 22-82 17-56 30-48
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						<b>.</b>			
Gain	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				685.55 55 55 55 55 55 55 55 55 55 55 55 55	22.24 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 2.25 2.25 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55	3-155		82.44 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65 82.65	24.68 37.00 28.16 381.82 381.82 381.82 381.82 381.82 381.82 381.82 381.82 381.82 381.82 381.82 381.82 381.82 381.82 381.82 381.82 381.82 381.82 381.82 381.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.82 391.8
frequency (H2)	2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.		56-6	35.02 35.020 31.91 3.75	74.64 30.58 17.05 58.91 21.90 44.69	29.72 54.13 30.43 53.00	-Ω -Σ -Σ -Σ	236.23 236.23 236.23 236.23 236.23 236.23 236.23 236.23 236.23 236.23 236.23 236.23 236.23 236.23 236.23 236.23 236.23 236.23 236.23 236.23 236.23 236.23 236.23 236.23 236.23 236.23 236.23 236.23 236.23 236.23 236.23 236.23 236.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 237.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25	25.59 25.60 25.84 17.89 17.89	25.14 47.10 35.66 24.81 45.60
Period (s)	00000000000000000000000000000000000000		7.8. 0-155	11.28 11.28 78.40 64.93 4.67	0.00 55-96 0.00 40.70 75.71	63-53 91-25 52-65 92-07	7.#.5. 0-155	10.33 10.33 59.64 59.64	32.16 39.82 39.82 39.92 39.92 39.92	65.58 65.58 47.21 85.19
ns 1/2 Pl:-Fl- (nm)	65-94 61-110 61-110 61-110 234-30 235-100 2355-90 2355-90 2355-90 2355-90 2355-90 2355-90 2355-90 2355-90 2355-90 2355-90 2355-90 2355-90 2355-90 2355-90 2355-90 2355-90 2355-90 2355-90 2355-90 2355-90 2355-90 2355-90 2355-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 2555-90 25555-90 2555-90 2555-90 2555-90 2555-90 2555-90 255		r.m.s. 0-95	62 13-90 13-99 81-72 5-62	0008038 22.38 20.008 25.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20.008 20	78.10 91.12 65.09 65.09	г.т.s. 0-95	2000 2000 2000 2000 2000 2000 2000 200	64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-002 64-000 64-000 64-000 64-000 64-000 64-000 64-000 64-000 64-000 64-000 64-000 64-000 64-000 64-000 64-000 64-000 64-000 64-000 64-000 64-000 64-000 64-000 64-000 64-000 64-000 64-000 64-000 64-000 64-000 64-000 64-000000 64-0000 64-0000000000	71.53 105.50 83.42 53.08 107.70
oservatio pP~F time	22200000000000000000000000000000000000	Ť u	band r.m.s. 0-6s	16.22 16.22 16.36 38.79 6.63	0.00 84.39 64.13 0.00 61.01 61.01	92.62 136.90 103.50 133.40	band r.m.s. 0-63	15.24 15.24 15.02 15.02 15.02	51-52 52-08 52-08 52-08 52-08 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 102-00 100 102-00 100 102-00 100 102-00 100 102-00 100 102-00 100 100 100 100 100 100 100 100 100	85.64 125.80 101.30 70.36 129.70
period of Fall Lime	s 2000000000000000000000000000000000000	=6140.01:m	0.5-4.042 r.m.s. 0-35	21.68 0.00 162.60 21.55 134.20 8.16	0.00 114.20 88.53 0.00 82.47 154.00	128-60 184-80 145-70 104-20 186-10	1.0-4.0HZ F.m.s. 0-35	20-20 20-20 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-000 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 2000 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 20-00 2000 20-00 2000 2000 2000 200000000	85.25 85.25 0.00 0.00	118-90 172-20 135-40 96-13
and short h Rise time	00000000000000000000000000000000000000	°°∩	: in the Gain	5222 5522 5522 5552 5552 555 555 555 55	0.2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	555.08 559.08 559.08	in the Gain	00428220 00420 0042000	, 2028888 2028888	0.000 50 50 50 50 50 50 50 50 50 50 50 50
Broad band Duration (s)	00000000000000000000000000000000000000	a ⁻² ø₀=2800.0 k=0.76	Observation: Frequency (Hz)	0.002 0.002 0.14 1.14 2.22	9		Abservations Frequency (Hz)	3335-55 55-55 55-55 55-55 55 55 55 55 55 55	66666	2.112
Array - Moment (N m)	0.476441 0.476441 0.4292041 0.4292041 0.4292041 0.4292041 0.2392441 0.2392441 0.2592441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441 0.2555441000000000000000000000000000000000	435E-10s ( 000.0km s	Period (s)	0000000 \$333000	00000000000000000000000000000000000000	0.52	· array - ¹ Period (s)	000000 5557007 5557007	2220222	0.52 0.52 0.53 0.53 0.52 0.52
Eskdalemuir ^Y 1 (m ¹ )	947.78 947.78 981.9.00 833.53 8637.38 8637.38 507.92 577.80 7358.05 7358.05 7358.05 7580.47 11109.47 9348.23 11109.47 9348.23 9348.23 11208.23 11208.23 11208.23 11208.23 11208.23 11208.23 11208.23 11208.23 11208.23 11208.23 11208.23 11208.23 11208.23 11208.23 11208.23 11208.23 11208.23 11208.23 11208.23 11208.23 11208.23 11208.23 11208.23 11208.23 11208.23 11208.23 11208.23 11208.23 11208.23 11208.23 11208.23 11208.23 11208.23 11208.23 11208.23 11208.23 11208.23 11208.23 11208.23 11208.23 11208.23 11208.23 11208.23 11208.23 11208.23 11208.23 11208.23 11208.23 11208.23 11208.23 11208.23 11208.23 11208.23 11208.23 11208.23 11208.23 11208.23 11208.23 11208.23 11208.23 11208.23 11208.23 11208.23 11208.23 11208.23 11208.23 11208.23 11208.23 11208.23 11208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 12208.23 1220	71 6(∆)≣ 0-1 ).0Hg m ³ v ₁ ≡4	Eskdalemuir 1/2 Pk-Pk (nm)	58.73 20.00 25.62 26.90 24.79	0.00 306.00 217.60 22.10 202.00	307.50 460.40 368.50 455.80 455.80	Eskdalemuir 1/2 Pk-Pk (nm)	56.21 387.20 387.20 387.36 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 387.20 397.20 397.20 397.20 397.20 397.20 397.20 397.20 397.20 397.20 397.20 397.20 397.20 397.20 397.20 397.20 397.20 397.20 397.20 397.20 397.20 397.20 397.20 397.20 397.20 397.20 397.20 397.20 397.20 397.20 397.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 307.20 300 307.20 300 300 300 300 300 300 300 300 300 3	276-10 206-90 0-00 195-00	302-40 415-20 334-80 235-60 438-40
Iahle IA Date	641025 751025 751022 751022 761020 7710901 7710901 7810922 8310927 8310925 8310925 8310925 8310925 8310925 8310925 8310925 8310925 8310925 8310925 8310925 8310925 8310925 8310925 8310925 8310925 8310925 8310925 8310925 8310925 8310925 8310925 8310925 8310925 8310925 8310925 8310925 8310925 8310925 8310925 8310925 8310925 8310925 8310925 8310925 8310925 8310925 8310925 8310925 8310925 8310925 8310925 8310925 8310925 8310925 8310925 8310925 8310925 8310925 8310925 8310925 8310925 8310925 8310925 8310925 8310925 8310025 8310025 8310025 8310025 8310025 8310025 8310025 8310025 8310025 8310025 8310025 8310025 8310025 8310025 8310025 8310025 8310025 8310025 8310025 8310025 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831005 831000	B(A)=3.	Table 2A Date	641025 751021 760929 761020 770901 771009	780810 780927 791019 811001 821011 830818	830925 841025 810802 880507 881204 881204	lable 30 Date	641025 751021 760929 761020 771003	780927 780927 780927 8110018 8210118 830818	830325 841025 870802 880507 881204

.

٠.>

ŧ,

Table 4R	Eskdalemui	r annau - Bro	oad band ar	d short	period ob	servatio	ns PcP				
Date	<b>V</b> .	Moment	Duration	Rise	Fall	pP-P	1/2 Pk-Pk	Period	Frequency	Gain	
0010	(m ³ )	(N m)	(5)	time	time	time	( חת )	(s)	(Hz)		
				(s)	(5)	(5)					
641025	0.00	0.0000E+00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	27
661027	135974-61	0-6835E+17	0.90	0.33	0.28	0.00	151-80	0.75	1.33	1.29	21
671021	11435.74	0-5748E+16	0.54	0.21	0.14	0.38	45.10	0.65	1.54	1.89	21
681107	44555-01	0-2240E+17	0.63	0.28	0.15	0+43	122-20	0.75	1.33	1.23	- 21
691014	60824.04	0-3057E+17	0-69	0.25	0.24	0.40	125.80	0.73	1.38	1-66	21
701014	119659.70	0-6015E+17	0.71	0.25	0.27	0.00	200.20	0.80	1.25	1.46	21
710927	132609+66	0.6666E+17	0.74	0.26	0.25	0.00	252.00	0.75	1.33	1.23	21
720828	164525.72	0-8270E+17	1.01	0.35	0.25	0.00	210.00	0.70	1.43	1. (4	21
730912	252371-33	0.1269E+18	0-91	0.28	0.26	0.00	358.00	0.85	1.18	1.33	24
740829	162639+30	0-8175E+17	0.76	0.29	0.21	0.33	333.40	0.13	1.38	1.00	21
750823	125114.99	0.6289E+17	0.90	0.28	0.28	0.00	188.10	0.88	1.14	1.21	</td
751021	81931-45	0-4118E+17	0.84	0.28	0.27	0.00	154.30	0.80	1.23	1.40	24
760929	26358.78	0-1325E+17	0.79	0.27	0.23	0.00	54.69	0.62	1.54	1.83	51
770901	9156.75	0.4603E+16	0.64	0.23	0.13	0.00	23.01	0.63	1.60	1.31	54
780810	32262.74	0.1622E+17	0.81	0.35	0.25	0.00	24.29	0.58	1.48	1.01	57
780927	17283-61	0-8688E+16	0.83	0.32	0.53	0.00	22.38	0.13	1.30	1.00	57
801011	24467-27	0-1230E+17	0.19	0.30	0.19	0.00	51.53	0.63	1.60	1.31	27
811001	24186-86	0-1516E+11	0.69	0.23	0.24	0.00	36+12	0.00	1.40	2.00	57
830818	28892.69	0-1452E+17	0.80	0.31	0.20	0.00	63.96	0.60	1.61	2.00	57
830925	26165-04	0.1315E+17	0.76	0.27	0.31	0.00	40.04	0.88	1.14	1.21	51
841025	15193.26	0+7637E+16	0.75	0-17	0.21	0.00	43.20	0.60	1.01	2.00	21
870802	24961.82	0-1255E+17	0-90	0.30	0.27	0.00	34.12	0.13	1.38	1.00	30
881204	21637-65	0.1088E+17	0.70	0.26	0.20	0.00	22.28	0.63	1.60	1.30	33

· •

e 1

đ

.

.

đ

•

•

 $\begin{array}{l} & \text{B(a) = 0.00 \ G(a) = 0.1286\text{E}-11\text{s}} \text{ m}^2 \ \rho_0 = 2800.0\text{kg} \text{ m}^{-3} \ v_0 = 6140.0\text{km} \text{ s}^{-1} \\ & -2500 \ 0\text{kg} \text{ m}^{-3} \ v_0 = 4000.0\text{km} \text{ s}^{-1} \text{ K} = 0.76 \end{array}$ 

•

Table 5A	Eskdalemuir	array -	Observations	s in the	0.5-4.0Hz	band PcP						
Date	1/2 Pk-Pk	Period	Frequency	Gain	r.m.s.	r.m.s.	r.m.s.	r.m.s.	r.m.s.	F.A.5.	r•m•s•	r.m.s.
	(mm)	(5)	(Hz)		0-3s	0-6s	0-9s	0-15s	3-95	3-15s	9-18s	noise
					(നന്ന)	(nm)	(nm)	(กล)	(nm)	(mm)	(nm)	(nm)
641025	2.49	0.85	1 - 18	1.33	1.33	1.38	1.62	1.85	1.75	1.96	1.95	2.55
661027	131+70 ( )	0.82	1.21	1.40	58-88	43.30	37-43	30,38	19.19	16-93	13.59	9.44
671021	47.68	0.65	1.54	1.89	17-59	13-38	13-16	10.80	10.25	8.28	5.42-	4+08
681107	121-20	0.70	1.43	1.74	49-93	36.66	31.37	25.25	15.15	13-18	12.26	11.60
691014	128.40	0.70	1-43	1.74	49.64	37.17	31-92	27.51	17.22	18.17	17-67	11.48
701014	181-40	0.77	1.29	1.53	79+36	58.69	49.03	38,90	21.37	17-81	13.11	16.09
710927	240.10	0.77	1.29	1.53	101.70	73.42	62.07	49.97	24.59	23-11	23.22	19.26
720828	194-60	0.73	1.38	1.66	80-81	59-83	50.80	40.70	24-61	20.94	15.61	15.16
730912	334-60	0.95	1.05	1.10	164-50	124-80	103-20	82.84	49-28	42.57	32.25	32.36
740829	334-60	0.70	1 - 43	1.74	130-40	97.44	82.33	66.71	40.75	36-17	30.77	19-87
750823	183-10	0,93	1.08	1 • 16	85.98	63.03	52.12	41.59	17.09	16-47	16.23	13-82
751021	142.40	0.82	1.21	1 - 40	61-23	48.02	40-07	32-68	23.09	19.95	15-25	16.40
760929	56-71	0.60	1.67	5.06	20.56	15-40	12.74	10.44	5.65	5.52	4 . 85	3.59
770901	20-24	0.70	1.43	1.74	9.35	8.00	6.91	5.85	5.28	4.57	3.42	3.56
780810	49-95	0.70	1.43	1.74	20.00	14.66	12.14	9.78	4.59	4.43	4.03	4.00
780927	24.95	0.85	1.18	1.33	10.69	8-29	6.99	5.79	4.03	3.65	2.99	3.22
801011	52.53	0.63	1.60	1.97	19.06	14-05	11.65	9+37	4.66	4.35	3.93	4.11
811001	58.44	0.65	1.54	1.89	24.16	18-11	14.98	11.98	6.69	5.77	4.54	4-01
830818	66.39	0.57	1.74	2.15	23.62	17.33	14-34	11.57	5.43	5.54	5-43	4,58
830925	31-41	0.70	1.43	1.14	12.88	10-38	8.93	1.52	5.05	5.40	4.60	3.89
841025	48-79	0.60	1.67	2.06	19.36	14-31	11-93	a. (e	2.10	2.04	5.07	2.04
870802	31.89	0.68	1.48	1.81	15.90	3.18	8.26	1.01	4.37	4.51	4.60	3.25
681204	55+98	U-60	1+67	2.05	51.87	15.50	14+30	11.97	8.08	(+64	1+09	4.80

	7.B.S.	noise	(mc)	0.86	7.18	2.42	8.23	8.58	9.34	11-97	11.62	20.83	13.84	8.79	9-75	2.61	2-46	2-85	1.62	2-33	2.22	2-52	2.02	2.47	2.18	2.40
	-0-6-6	9-18s	(anc)	0.93	8.09	3.33	5.17	10.59	9.50	17.10	11.56	18.88	24.33	11.28	11.41	Э <b>-</b> 00	2.01	3.26	2.02	2.42	3.28	3.59	2-69	2.78	2.78	3.85
	7. B. S.	3-155	(#C)	0.96	11.22	6.27	96.6	11.96	12.38	17.44	16.64	26.28	29.28	12.38	12.00	3.91	3.29	3.63	2.70	3.37	4.76	4.21	3.97	э. 30	3.54	4.38
		3-9s	(m/)	8.1	13.13	8.27	11.53	12.10	14.54	17.77	20-31	30.43	33.59	13.60	12.19	4.58	4.11	3-80	3.17	3.92	5.77	4.52	4.87	3.71	3.88	4.82
		0-15s	(m2)	0.95	19-91	8.68	19.74	20.67	27.78	35.25	29.67	51.36	53-62	27.86	22.36	8.99	4.25	7.61	4.05	7.92	10-15	10.25	5.57	8.17	5.39	9-83
	7.B.S.	0-9s	(mc)	0.97	24.65	10.89	24-61	24.88	34.97	43.31	37.05	63.97	66.34	34.83	27.21	11.33	5.19	9.42	4.92	9.98	12.80	12.85	6.83	10.29	6.45	12.29
	-10-10-	0-65	( <b>E</b> C)	0.88	28.88	11.24	29.10	29.04	41.91	51.00	43.22	77.10	78.70	41.92	32.44	13.80	6-04	11.38	5.75	12.10	15.56	15.58	1.96	12.48	7.66	14.75
	7.B.S.	0-3\$	(#2)	0.89	38.44	14.81	39.39	39.54	56-97	70.68	57.39	102.10	104.60	57.18	43.86	18.52	6.85	15.40	7.26	16.38	20.61	21.32	9.61	17.03	9.74	20.17
	Gain			4.23	1.89	1.97	1.89	1.89	1.74	1.59	1.74	1.46	1.66	1.22	1.59	2.15	1.89	1.97	1,40	2.15	2.06	2.36	<b>68.1</b>	2.15	1.96	2.13
CIDE COL POLIDSON	Frequency	(H2)		3.64	1.54	1.60	1.54	1.54	1.43	1.33	1.43	1.25	1.38	1.11	1.33	1.74	1.54	1.60	1.21	1.74	1.67	1.90	1.54	1.74	1.60	1.74
- Delle	Period	(s)		0.28	0.65	0.63	0.65	0.65	0. 10	0.75	0. 70	0.80	0.73	0.00	0.75	0.57	0.65	0.63	0.82	0.57	0.60	0.52	0.65	0.57	0.63	0.57
ESKOalemuir	1/2 Pk-Pk	(wu)		1.95	86.92	39.09	93.39	00.90	125-90	160.60	134.90	204.10	257.60	121.80	95.66	49.56	17.04	36.57	16.10	42.75	50.18	56.66	23.06	43.06	24.46	51.93
a016 bn	Date			641025	661027	671021	681107	691014	701014	710927	720828	730912	740829	150823	751021	760929	106077	780810	780927	801011	811001	830818	830925	841025	870802	881204

ĉ
Table 7A	Yellowkni	ife array - Bro	oad band ar	nd short	period ob	servatio	ns				
Date	¥	Moment	Duration	Rise	Fall	pP-P	1/2 Pk-Pk	Period	Frequency	Gain	
	(m ³ )	(N m)	(5)	time	time	time	(nm)	(5)	(Hz)		
				(s)	(5)	(s)					
641025	645-81	0.3246E+15	0.71	0.24	0.16	0.00	12.56	0.57	1.74	2-19	- 23
671021	6301-56	0.3168E+16	1.04	0.23	0.20	1.00	59.25	0.60	1.67	2+09	23
681107	15091.59	0.7586E+16	1.04	0.23	0.31	1.02	94.44	1.00	1.00	1.00	23
760929	4787.38	0.2406E+16	0.98	0.25	0.19	0.66	36.76	0.63	1.60	2.00	23
761020	434-01	0.2182E+15	0.63	0.24	0.18	0.63	6.62	0.73	1.38	1.68	- 23
770901	4579-17	0.2302E+16	1.01	0.27	0.22	0.99	33.80	0+68	1-48	1.83	23
771009	102-60	0.5157E+14	0-49	0.14	0.19	0.00	2.35	0.55	1.82	2.29	23
780810	7797.08	0.3919E+16	0.95	0.28	0.29	1.02	71.65	0.88	1.14	1.28	- 23
780927	3848-28	0-1934E+16	0.93	0.24	0.18	1.00	27.50	0.63	1.60	2.00	23
790924	5102-57	0.2565E+16	1.01	0.29	0.31	1.05	35.29	0.68	1.48	1-83	- 23
791018	4916-61	0.2471E+16	0+90	0.26	0.23	1-01	32-19	0.68	1.48	1.83	23
801011	7624.77	0-3833E+16	1.23	0.34	0.41	1-01	38.49	0.80	1.25	1 • 47	23
811001	5663-29	0.2847E+16	0.89	0.28	0.20	0.91	43.04	0.70	1.43	1.75	23
821011	3070.73	0.1544E+16	0.95	0.26	0-23	1.01	21.56	0.68	1.48	1.83	23
830818	12822+83	0.6445E+16	1-24	0.30	0.38	1.09	48.61	0.73	1 - 38	1.68	- 23
830925	6036-64	0-3034E+16	1.06	0.30	0.19	0.88	28-11	0.68	1 • 48	1.83	23
841025	8543.76	0-42956+16	1.05	0.24	0.34	0.98	48.90	0.63	1.60	2,00	- 23
870802	15436-21	0.7759E+16	1.33	0.30	0.25	1.00	39.97	0.70	1.43	1.75	- 23
880507	10884-33	0-5471E+16	1.33	0.36	0.26	0.76	23.31	0.68	1.48	1.83	23
881204	14991-08	0.7535E+16	1.26	0.29	0.44	1.04	65.84	0.73	1.38	1.68	23
*				•							

5

ą

ø

a

· .

 $B(\Delta)=3.71 G(\Delta)=0.8546E-11s m^{-2} \rho_0=2670.0kg m^{-3} v_0=5640.0km s^{-1} r_0=2500.0kg m^{-3} v_0=5640.0km s^{-1} K=0.81$ 

Table 8A	Yellowknife	e annay -	Observations	in the	0.5-4.0Hz	band						
Date	1/2 Pk-Pk	Period	Frequency	Gain	r.m.s.	r.m.s.	r•m•s•	r.m.s.	r.m.s.	r•#•5•	r.m.s.	r.m.s
	(nm)	(5)	(Hz)		0-3s	0-6s	0-95	0-15s	3-9s	3-15s	9-18s	noise
					(nm)	(ຄາຫ)	(nm)	(nm)	(mm)	(nm)	(mm)	(กล)
641025	14-89	0.43	2.35	2.95	7.21	7.56	6+96	6.00	6.83	5.66	4.12	2.25
671021	66.76	0.52	1.90	2.40	32.03	29.79	26.52	21.38	23.29	17.74	9-97	1 • 41
681107	110-20	0+90	1-11	1.22	51-24	46.54	41-04	34.05	34.84	28+16	18.79	0.70
760929	52.65	0.47	2.11	2.65	21.10	16.95	14-90	12.60	10-50	9-34	7.46	0.99
761020	7.48	1.15	0-87	0.74	3+63	3.26	2+95	2.53	2.54	2.17	1.62	1.00
770901	46.07	0.52	1.90	2.40	23.08	20.49	17.02	13.71	12.96	10.09	5.86	0.99
771009	2.78	0.45	2.22	2.80	1.24	1 - 36	1.36	1.22	1.41	1-22	1.02	0.53
780810	72,28	0.82	1.21	1.40	38.15	30-38	26.20	21.40	17.37	14.44	10-14	0.59
780927	43.78	1.08	0.93	0.86	20.55	15.33	13.18	10.76	7+03	6+25	5.77	0.79
790924	46-96	0-70	1.43	1.75	24.59	21.69	18-48	14-64	14-49	10-81	5.32	0.53
791018	45-69	0.57	1-74	2.19	24.00	20+54	17-92	15.09	13-92	11-87	8.30	0.83
801011	34.47	0.55	1-82	2.29	17-36	16-44	14.11	12.20	12.16	10.52	7.76	0-91
811001	51-24	0.57	1.74	2.19	28.07	24.02	22-24	18.37	18+65	14.99	10-28	2-81
821011	28,62	0.98	1.03	1.05	14-66	13.30	11.27	9+25	9.11	7.30	4.85	0.42
830818	55-04	0+50	2.00	2.52	26.08	21.42	18-28	14.97	12.70	10.49	7.50	0.50
830925	42-87	0.93	1.08	1.16	20.29	15.25	14.04	11.77	9-49	8.38	7.19	1.33
841025	69.94	0.50	2.00	2.52	28.47	22-85	19.38	15-86	12-58	10.57	8.62	2.20
870802	53.77	0.85	1.18	1.34	26,00	23+41	20.07	16.44	16+32	13.00	8.45	1.33
880507	34.11	0.93	1.08	1-16	15.73	11-80	11.00	9.75	7-61	7-54	7.55	0.20
881204	76.79	0.57	1.74	2.19	40+10	31+74	27+30	22+32	17.72	14.86	10.21	0.32

74

ŕ

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	T.bla 00	Valladaifa		Observation	in the	1 0-4 04-	hand						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1/2 Pk-Pk	Period	Frequencu	Gain	r.m.s.	r.a.s.	r.m.s.	r.m.s.	C.m.s.	C.M.S.	r.m.s.	r.m.s.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0000	(nm)	(<)	(Hz)	0	0-35	0-65	0-95	0-155	3-95	3-15s	9-18s	noise
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						(00)	(ດຫຼີ	(ກຸ່ສຸ)	(ກສ)	(0m)	(กต)	(nm)	(nm)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	641025	14.65	0.45	2.22	2.80	6.57	6.83	6.26	5.20	6.09	4-80	2.93	1.52
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	671021	60.78	0.47	2.11	2.65	28.04	26.75	23.44	18.88	20.76	15.78	8.50	0.92
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	681107	96-91	0.52	1.90	2.40	43.72	38.84	34.22	28.22	28.29	22.74	15-04	0.47
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	760929	48.15	0.43	2.35	2.95	18.84	15.34	13.59	11.42	9.99	8.61	6.44	Ö•76
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	761020	6.00	0.50	2.00	2.52	2.90	2.54	2+38	2-05	2.07	1.78	1.30	0.64
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	770901	43-34	0.52	1.90	2.40	20-26	18.67	15.56	12.44	12.57	9.53	4-89	0.71
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	771009	2.99	0.45	2.22	2.80	1.10	1.24	1 - 10	1.00	1.10	0.97	0.82	0-31
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	780810	64.73	0.65	1.54	1.91	31+42	24.76	21.60	17.83	14.37	12-28	8.89	0.48
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	780927	41.30	0.55	1-82	2.29	18.38	13.79	11.60	9.48	5.73	5.28	5.14	0.57
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	790924	42.30	0.55	1.82	2.29	21.69	19.86	16.79	13.24	13.70	10.08	4.49	0.35
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	791018	48+97	0.65	1.54	1.91	21-14	18-02	15.64	13.16	11.98	10.23	7.29	0.52
811001 46.76 0.57 1.74 2.19 23.01 20.47 18.48 15.24 15.73 12.57 8.73 2.03   821011 27.54 0.47 2.11 2.65 12.83 12.08 10.28 8.27 8.73 6.67 3.89 0.29   830818 51.92 0.45 2.22 2.80 22.67 18.65 16.01 12.99 11.30 9.07 6.20 0.31   830925 33.10 0.50 2.00 2.52 16.56 12.70 11.88 9.91 8.64 7.35 6.35 0.78   841025 63.37 0.47 2.11 2.65 25.54 20.30 17.10 13.96 10.60 8.98 7.10 1.66   870802 43.71 0.55 1.82 2.29 22.21 20.82 17.87 14.37 15.24 11.61 6.29 1.00   880507 26.20 0.47 2.11 2.65 12.59 9.60 9.29 8.18 7.09 6.64 6.63 0.10 0.10	801011	33.08	0.55	1-82	2.29	13.57	13.75	11-85	10-22	10-89	9.19	6.50	0.55
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	811001	46.76	0.57	1.74	2.19	23.01	20.47	18.48	15.24	15.73	12.57	8.73	2.03
830818 51.92 0.45 2.22 2.80 22.67 18.65 16.01 12.99 11.30 9.07 6.20 0.31   830925 33.10 0.50 2.00 2.52 16.56 12.70 11.88 9.91 8.64 7.35 6.35 0.78   841025 63.37 0.47 2.11 2.65 25.54 20.30 17.10 13.96 10.60 8.98 7.10 1.66   870802 43.71 0.55 1.82 2.29 22.21 20.82 17.87 14.37 15.24 11.61 6.29 1.00   880507 26.20 0.47 2.11 2.65 12.59 9.60 9.29 8.18 7.09 6.64 6.63 0.10	821011	27.54	0.47	2.11	2.65	12.83	12.08	10.28	8.27	8.73	6.67	3.89	0.29
830925 33.10 0.50 2.00 2.52 16.56 12.70 11.88 9.91 8.64 7.35 6.35 0.78 841025 63.37 0.47 2.11 2.65 25.54 20.30 17.10 13.96 10.60 8.98 7.10 1.66 870802 43.71 0.55 1.82 2.29 22.21 20.82 17.87 14.37 15.24 11.61 6.29 1.00 880507 26.20 0.47 2.11 2.65 12.59 9.60 9.29 8.18 7.09 6.64 6.63 0.10	830818	51+92	0.45	2.22	2.80	22.67	18.65	16-01	12.99	11.30	9.07	6.20	0.31
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	830925	33-10	0.50	2.00	2.52	16.56	12.70	11.88	3-31	8.64	(+ 35	5.35	0-18
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	841025	63.31	U. 4 (	2.11	2.65	23.34	20.30	11.10	13.96	10.00	8.38	1.10	1.00
880201 50-50 0-41 5-11 5-62 15-23 3-60 3-53 8-18 1-03 0-64 0-63 0-10	810802	43.11	0.33	1.82	2.23	22.21	20.82	11.81	14+31	13+24	11-01	0.23	1.00
	880507	20.20	U-4(	2.11	2.62	12.39	3.60	3,29	10 62	1.09	12 20	0.03	0.10

,

72

ۍ

Table 10A	Yellowkni	fe array - Bro	ad band an	d short	period ob	servatio	ns PcP		_		
Date	¥	Moment	Duration	Rise	Fali	ρΡ-Ρ	1/2 Pk-Pk	Period	Frequency	Gain	
	(m ³ )	(N m)	(s)	time	time	time	(nm)	(s)	(Hz)		
				(5)	(5)	(5)					
671021	8127.60	0.4085E+16	0.59	0.18	0.17	0.00	39.40	0.55	1.82	2.29	23
681107	13221-20	0.6646E+16	0.59	0.17	0.23	0.00	55.13	0.50	2.00	2.52	23
691014	15959.52	0.8022E+16	0.52	0.18	0.20	0.00	77.39	0.65	1.54	1.91	23
760929	9448-04	0.4749E+16	0.65	0.21	0.12	0.79	44.35	0+45	2.22	2.80	23
761020	447.54	0-2250E+15	0.38	0.13	0.10	0.56	2.71	0,38	2.67	3.33	23
770901	3417.02	0-1718E+16	0-41	0.13	0.14	0.00	28.67	0.52	1.90	2,40	23
771009	0.00	0.0000E+00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	23
780810	11974-68	0.6019E+16	0-41	0-12	0.17	0.66	76.29	0.35	2.86	3.55	23
780927	2220.56	0-1116E+16	0.43	0.13	0.15	0.00	0.00	0.00	0.00	0.00	23
790924	6360.29	0.3197E+16	0.51	0.18	0.17	0.00	35.67	0.60	1.67	2.09	23
791018	10143-54	0.5099E+16	0.41	0.14	0.12	0.76	64.38	0.43	2.35	5.92	23
801011	12848.25	0.6458E+16	0-45	0.15	0.13	0.61	76.46	0.40	2.50	3.13	23
811001	9562.27	0.4807E+16	0.40	0.13	0.12	0.71	66.04	0.38	2.67	3.33	23
821011	1921.86	0.9660E+15	0.43	0.15	0.15	0.00	12.73	0.75	1.33	1.61	23
830818	15996+48	0.8041E+16	0.47	0.15	0.16	0.66	79.30	0-43	2.35	5.32	23
830925	3679.09	0.1849E+16	0-45	0.13	0.17	0.00	25.38	0.47	2.11	2.65	23
841025	13728-55	0.6901E+16	0+52	0.15	0.15	0.59	69.38	0.45	2.22	2.80	23
870802	4700-50	0.2363E+16	0-47	0.15	0.19	1.00	20.95	0.45	2.22	2.80	23
880507	2535+04	0.1274E+16	0-47	0.15	0.16	0.00	14.64	0.52	1+30	2.40	23
881204	20623.06	0-1037E+17	0.57	0.17	0.21	0.68	80+51	0+45	2.22	2.80	23

7

2

5

5

-

.

.

6

 $B(\Delta) = 0.00 G(\Delta) = 0.1826E-11s m^{-2} ρ_0 = 2670.0kg m^{-3} ν_0 = 5640.0km s^{-1} ρ_1 = 2500.0kg m^{-3} ν_1 = 4000.0km s^{-1} K = 0.81$ 

Table 11A Date	Yellowknife 1/2 Pk-Pk (nm)	array - Period (s)	Observations Frequency (Hz)	in the Gain	0.5-4.0Hz r.m.s. 0-3s (nm)	band PcP r.m.s. 0-6s (nm)	ド・m・5・ 0-9s (nm)	r.m.s. 0-15s (nm)	r·m·s· 3-9s (nm)	r•m•s• 3-15s (กm)	r.m.s. 9-18s (nm)	r.m.s. noise (nm)
671021 681107 691014 760929 761020 770901 770901 780810 780810 780927 790924 791018 801011 811001 821011 830818 830925 841025 870802 880507	40.70 61.22 76.72 4.05 30.53 2.55 82.07 14.45 84.49 74.55 84.49 74.55 87.83 25.24 75.44 31.98	0.50 0.667 1.502 0.427 0.557 0.543 0.5543 0.550 1.0550 0.550 0.552	2.00 1.67 2.11 0.78 2.00 98 2.22 2.00 1.74 2.35 2.22 2.35 0.98 2.00 2.00 2.00 2.20 2.00 2.00 2.00 2.0	222220222222222222222222222222222222222	15.76 29.73 31.90 18.14 1.80 12.22 6.32 25.16 32.22 32.19 7.41 34.49 9.48 30.44 13.44 13.44 13.44	111.94 21.81 25.69 14.78 1.73 9.61 1.25 24.22 5.21 10.66 18.61 23.93 18.93 18.93 18.93 18.93 18.93 24.22 10.66 18.93 18.93 18.93 24.22 10.66 18.93 18.93 24.22 10.66 18.93 18.93 24.22 10.66 18.61 23.51 24.22 10.66 18.61 23.51 24.22 10.66 18.61 23.51 24.22 5.21 10.66 18.61 23.51 24.22 5.21 10.66 18.61 25.25 24.22 5.21 10.66 18.61 25.21 10.66 18.61 25.21 10.66 18.61 25.21 10.66 18.61 25.21 10.66 18.61 25.21 10.66 18.61 25.21 10.66 18.61 25.21 10.66 10.75 24.22 5.21 10.66 10.75 24.22 5.21 10.66 10.93 18.93 14.78 14.78 1.75 24.22 5.21 10.66 10.55 24.22 5.21 10.66 10.55 24.22 10.66 10.55 24.22 10.66 10.55 24.22 10.66 10.55 24.22 10.66 10.55 24.22 10.66 10.55 24.22 10.66 10.55 24.22 10.66 18.61 24.25 24.22 10.66 18.61 24.25 24.22 10.56 24.22 10.56 24.22 10.56 24.22 10.56 24.22 10.56 24.22 10.56 24.22 10.56 24.22 10.56 24.22 10.56 24.22 10.56 24.22 10.56 24.22 10.58 24.22 10.58 24.22 10.58 24.22 10.58 24.22 10.58 24.22 10.58 24.22 10.58 24.22 10.58 24.22 10.58 24.22 10.58 24.22 10.58 24.22 24.22 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25	10.85 18.78 23.15 12.52 1.78 8.25 20.15 20.15 20.15 15.42 19.45 15.90 4.50 20.92 6.11 18.75 9.38 4.41 9.38	8.90 15.26 19.867 1.678 1.678 1.679 1.678 1.679 1.6591 1.2.889 1.6591 1.2.889 1.6.91 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.897 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.889 1.2.899 1.2.899 1.2.899 1.2.899 1.2.899 1.2.899 1.2.899 1.2.899 1.2.899 1.2.899 1.2.899 1.2.899 1.2.899 1.2.899 1.2.899 1.2.899 1.2.899 1.2.899 1.2.899 1.2.899 1.2.899 1.2.899 1.2.899 1.2.899 1.2.899 1.2.899 1.2.899 1.2.899 1.2.899 1.2.899 1.2.899 1.2.899 1.2.899 1.2.899 1.2.899 1.2.899 1.2.899 1.2.899 1.2.899 1.2.899 1.2.899 1.2.899 1.2.899 1.2.899 1.2.899 1.2.899 1.2.899 1.2.899 1.2.899 1.2.899 1.2.899 1.2.899 1.2.899 1.2.899 1.2.899 1.2.899 1.2.899 1.2.899 1.2.899 1.2.899 1.2.899 1.2.899 1.2.899 1.2.899 1.2.899 1.2.899 1.2.899 1.2.899 1.2.899 1.2.899 1.2.899 1.2.899 1.2.899 1.2.899 1.2.899 1.2.899 1.2.899 1.2.899 1.2.899 1.2.899 1.2.899 1.2.899 1.2.899 1.2.899 1.2.899 1.2.999 1.2.999 1.2.999 1.2.999 1.2.999 1.2.999 1.2.999 1.2.999 1.2.999 1.2.999 1.2.999 1.2.999 1.2.999 1.2.999 1.2.999 1.2.999 1.2.999 1.2.999 1.2.999 1.2.999 1.2.999 1.2.999 1.2.999 1.2.999 1.2.999 1.2.999 1.2.999 1.2.999 1.2.999 1.2.999 1.2.999 1.2.999 1.2.999 1.2.999 1.2.999 1.2.999 1.2.999 1.2.999 1.2.999 1.2.999 1.2.999 1.2.999 1.2.999 1.2.999 1.2.999 1.2.999 1.2.999 1.2.999 1.2.999 1.2.999 1.2.999 1.2.999 1.2.999 1.2.9999 1.2.9999 1.2.9999 1.2.9999 1.2.9999 1.2.9999 1.2.9999 1.2.9999 1	7.23 9.33 17.41 1.764 1.764 9.50 9.50 1.532 9.50 1.532 9.50 1.532 9.50 1.532 9.50 1.532 9.50 1.532 9.50 1.532 9.50 1.532 9.50 1.532 9.50 1.532 9.50 1.532 9.531 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.532 9.	6.07 8.37 15.13 6.26 1.64 4.46 1.09 7.50 3.27 4.71 5.63 1.25 4.73 6.98 1.25 4.65 5.08 3.58 3.58	4.51 7.34 11.79 2.81 1.27 2.76 0.75 4.89 2.31 3.33 4.74 0.30 4.92 0.67 5.00 4.92 5.00 4.92 5.00 4.57 8 5.00 5.04	11.602 24.34 1.783 6.074 2.172 7.053 13.855 43.553 6.3853 4.930 6.3853 4.930 6.3853 4.930 6.3853 6.935 7.053 1.3853 6.3853 6.3853 6.3853 6.3853 6.3853 6.3853 6.3853 6.3853 6.3853 6.3853 6.3853 6.3853 6.3853 6.3853 6.3853 6.3853 6.3853 7.3853 7.3853 7.3853 7.3853 7.3853 7.3853 7.3853 7.3853 7.3853 7.3855 7.3855 7.3855 7.3855 7.3855 7.3855 7.3855 7.3855 7.3855 7.3855 7.3855 7.3855 7.3855 7.3855 7.3855 7.3855 7.3855 7.3855 7.3855 7.3855 7.3855 7.3855 7.3857 7.3857 7.3857 7.3857 7.3857 7.3857 7.3857 7.3857 7.3857 7.3857 7.3857 7.3857 7.3857 7.3857 7.3857 7.3857 7.3857 7.3857 7.3857 7.3857 7.3857 7.3857 7.3857 7.3857 7.3857 7.3857 7.3857 7.3857 7.3857 7.3857 7.3857 7.3857 7.3857 7.3857 7.3857 7.3857 7.3857 7.3857 7.3857 7.3857 7.3857 7.3857 7.3857 7.3857 7.3857 7.3857 7.3857 7.3857 7.3857 7.3857 7.3857 7.3857 7.3857 7.3857 7.3857 7.3857 7.3857 7.3857 7.3857 7.3857 7.3857 7.3857 7.3857 7.3857 7.3857 7.3857 7.3857 7.3857 7.3857 7.3857 7.3857 7.3857 7.3857 7.3857 7.3857 7.3857 7.3857 7.3857 7.3857 7.3857 7.3857 7.38577 7.38577 7.385777 7.38577777777777777777777777777777777777
880507 881204	86.75	0.52	1.90	2.40	34.09	25.11	20, 90	16.70	8.59	7.61	5.78	3.

76

¢

,

Table 12A Date	Yellowknife 1/2 Pk-Pk (nm)	e array - Period (s)	Observations Frequency (Hz)	in the Gain	1.0-4.0Hz r.m.s. 0-3s	band PcP romoso O-6s	r.m.s. 0-9s	r.m.s. 0-15s	r.m.s. 3-95	r.m.s. 3-15s	r.m.s. 9-18s	r.m.s. noise
671021 681107 691014 760929 761020 770901 771009	(1m) 35.39 47.30 63.27 42.30 3.20 28.22 28.22	0.50 0.68 0.60 0.45 0.55 0.52 0.88	2.00 1.48 1.67 2.22 1.82 1.90 1.14	2.52 1.83 2.09 2.80 2.29 2.40 1.28	(nm) 14.12 25.54 27.38 14.50 1.50 1.50 10.94 0.87	(cm) 10.51 18.67 21.41 1.485 1.48 8.57 0.84 22.27	(nm) 9.09 15.74 18.42 10.02 1.38 7.45 0.88 18.52	(nm) 7.31 12.64 15.35 7.88 1.20 5.96 0.79 14.56	(nm) 4.91 6.75 11.58 6.74 1.31 4.83 0.89 8.93	(nm) 4.11 6.05 10.35 5.01 1.11 3.82 0.77 6.91	(nm) 3.19 5.14 8.03 2.17 0.76 2.27 0.56 4.12	(nm) 10.16 16.64 19.93 1.49 0.57 4.16 0.51 2.34
780810 780927 790924 791018 801011 821011 830818 830925 841025 870802 880507	79.36 13.12 34.90 55.81 75.81 59.94 14.71 75.31 25.81 67.09 30.11 16.96	0.43 0.55 0.40 0.45 0.45 0.45 0.47 0.47 0.47 0.50 0.50 0.47	2.35 1.82 2.52 2.11 1.90 2.11 2.11 2.11 2.11 2.11 2.00 2.11	2223 29993 2013 2013 2015 2015 2015 2015 2015 2015 2015 2015	23.48 5.89 12.98 23.08 28.51 22.45 5.86 29.12 9.18 25.61 12.09 6.02 21.66	22.21 4.49 9.68 17.24 20.68 17.04 4.53 20.99 6.72 18.53 9.81 4.47 20.27	3.99 8.35 14.22 17.07 14.17 3.69 17.63 15.48 8.42 3.85 16.84	1.29 6.68 11.24 13.22 11.23 2.86 13.95 5.06 12.23 6.79 3.56 13.47	2.57 4.51 6.09 5.4 7.02 1.81 5.49 2.51 5.63 5.78 2.53 5.73 6.53	2.20 3.69 4.97 5.62 1.28 5.60 3.30 4.81 4.59 2.60 5.95	1.63 2.54 3.49 0.11 3.07 4.14 3.93 2.889 2.89 4.72	3.72 4.665 1.559 22.825 42.227 42.227 2.07 2.853 4.76 4.89

.

0

.

-* A

Ľ

.

Table 13A Gauribidanum array - Broad band and short period observations

Date	₩ <b>y</b> (m ³ )	Moment (N m)	Duration (s)	Rise time	Fall tim≘	pP-P time	1/2 Pk-Pk (nm)	Period (s)	Frequency (Hz)	Gain	
751021 760929 761020 771009 780810 780927 801011 811001 821011 830818	(m ³ ) 5064.08 2778.35 1389.53 1984.87 18792.82 9443.08 14240.03 9586.71 9522.08	(N m) 0.0000E+00 0.2545E+16 0.6398E+15 0.1005E+16 0.471E+16 0.47158E+16 0.47158E+16 0.4819E+16 0.4819E+16	(5) 0.00 0.40 0.41 0.40 0.73 0.60 0.82 0.76 0.64 0.66	time (s) 0.00 0.13 0.14 0.14 0.26 0.16 0.23 0.21 0.19 0.21	time (s) 0.13 0.13 0.13 0.15 0.22 0.11 0.18 0.15 0.13	time (s) 0.29 0.36 0.39 0.69 0.55 0.34 0.71 0.50 0.35	(nm) 0.00 186.50 66.43 29.04 170.60 156.90 225.50 234.40 173.20 261.00	(s) 0.00 0.52 0.70 0.77 0.63 0.88 0.60 0.60 0.60 0.63	(Hz) 0.00 1.90 1.43 1.29 1.60 1.14 1.67 1.67 2.11 1.60	0.00 2.43 1.76 1.54 2.02 1.28 2.05 2.05 2.54 1.96	2666668 222228 2283333333333333333333333
830925 841025 870802 880507 881204 *	19180-59 8150-50 18634-83 12243-70 11022-92	0.9641E+16 0.4097E+16 0.9367E+16 0.6154E+16 0.5541E+16	0.71 0.63 0.66 0.79 0.68	0.21 0.20 0.20 0.24 0.22	0.22 0.15 0.17 0.22 0.15	0.45 0.81 0.51 0.45 0.34	310.90 216.10 317.70 131.10 264.40	0.75 0.70 0.65 0.57 0.65	1.33 1.43 1.54 1.74 1.54	1.59 1.73 1.88 2.13 1.88	34 34 34 34 34

5

÷

 $\sim$ 

**.***

.

,

 $B(\Delta) = 3.81 \ G(\Delta) = 0.1332E - 10s \ m^{-2} \ \rho_0 = 2700.0kg \ m^{-3} \ v_0 = 5670.0km \ s^{-1} \ \rho_1 = 2500.0kg \ m^{-3} \ v_1 = 4000.0km \ s^{-1} \ K = 0.81$ 

2

Table 14A	Gauribidanur	array -	Observations	in the	0.5-4.0Hz	band						
Date	1/2 Pk-Pk	Period	Frequency	Gain	r.m.s.	C.m.s.	r.m.s.	r.m.s.	r.m.s.	r.m.s.	r.m.s.	r.m.s.
	(nm)	(5)	(Hz)		0-3s	0-6s	0-9s	0-15s	3-95	3-15s	9-185	noise
					(നത)	(nm)	(nm)	(mm)	(nm)	(nm)	(nm)	(nm)
751021	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
760929	210.10	0.52	1.90	2.43	76.35	61-46	51-62	42.26	32.90	27.85	21.17	0.34
761020	60.69	0.68	1 - 48	1-85	26.79	19-94	16-61	13.11	7.40	5,95	3.70	0.80
771009	· 23.34	0.63	1.60	2.02	10-27	7.72	6.60	5.44	3.54	3.26	2.58	0.55
780810	173-60	1 - 33	0.75	0.52	86+28	69.10	56.89	45-67	33.67	27.31	17.12	1.17
780927	156.30	0.55	1.82	2-32	70.27	55,63	45.99	36-08	26-54	19-82	8.50	1.08
801011	217.50	0+68	1.48	1.81	92.03	66-98	55.72	43-83	20.57	16.87	11-55	0.34
811001	209.50	0.50	2.00	2.43	95.08	72.71	61.08	47-97	32.81	24.82	12.34	1-01
821011	181-60	0-47	2-11	2.54	91.07	61.69	50-86	39.83	24.37	18+45	9+60	0.20
830818	245.30	0.63	1.60	1-96	103-30	76.26	63.76	49.64	27.68	20.36	8-01	0.61
830925	263.80	0.88	1 - 14	1.27	125-50	90+97	75.02	58,53	23.71	18.49	10.16	0.49
841025	202-40	0.60	1.67	2.05	88.16	66-64	55.23	43-05	26.26	19.33	8.28	0.30
870802	304 - 10	0.98	1.03	1.05	158-10	117.70	96.84	75.65	39.58	30.07	16.02	0.40
880507	159-00	0.85	1 • 18	1.33	71-82	53.53	44-65	34.98	20.27	15.49	7.57	0.52
881204	257.00	0.63	1.60	1 • 96	115.10	86.08	71-31	55.67	31-69	23.70	11-23	0.48

Table 15A Date	Gauribidanur 1/2 Pk-Pk	array - Period	Observations Frequency	in the Gain	1.0-4.0Hz r.m.s.	band r.m.s. N-Se	r.m.s. N-9=	ሮ•ጠ•ኇ• በ-15¢	r•m•5• 3-9e	1-15e	r•m•s• 9-18c	r.m.s.
	(1947	197	\$1127		(nm)	(0.0.)	(ກສ)	(na)	(	(00)	(กก)	(0.0.)
751021	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
760929	199.20	ő, šö	2.00	2.56	70.74	54.72	45-40	36.99	24.27	21.42	17.08	0.22
761020	49.35	0.65	1.54	1.93	22.33	16-60	13-83	10.88	6.15	4.84	2.83	0.36
771009	20.56	0.57	1.74	2.21	8.89	6.65	5.65	4.57	2.91	2.54	1.86	0+43
780810	137.80	0.55	1-82	2.32	62-61	52.52	43-20	34-95	28.97	23.39	14.30	0.55
780927	120.50	0.55	1.82	2.32	52.80	43.88	36-39	28.64	24.35	18.12	7.37	. 0.69
801011	179.90	0.60	1.67	2.05	81.73	59.39	49.44	38.76	18-08	14.41	9.08	0.17
RIIOOI	197.40	0.55	1.82	2.23	80.83	61.92	51.31	40.31	26.14	19.95	10-12	0.93
821011	148.60	õ. 50	2.00	2.43	64.22	50.80	41-90	32.77	23.90	17.65	7.31	0-14
830818	208.30	ň. 63	03.1	1.96	92.61	68.20	57.01	44.33	24-23	17.68	6.24	0-31
830925	228.60	ñ. 63	i. <u>6</u> ŏ	1.96	100.50	75.29	62.00	48.32	26-78	19+85	7.98	0.24
841025	177.90	0.57	i.74	2.13	79.08	59.97	49.74	38.71	24.17	17.59	6.08	0.22
870802	238.50	0.60	1.67	2.05	123-80	95-47	78.50	61-31	39.75	29.46	12.59	0.22
880507	127.50	0. 65	1.54	1.88	55.90	42.84	35-61	27.92	18.45	13.91	6.19	0.33
881204	226-60	0.60	1.67	2.05	105-50	78.73	65+32	50.85	28.88	21.21	8.55	0.25

Ċ

6

.

			r.a.s. oise	80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80		r.m.s. oise	9.51 9.52 9.52 9.52 9.51 9.52 9.52 9.52 9.52 9.52 9.52 9.52 9.52
	00000444 00000444		, Č	-		- C -	÷
Gain	2.12 1.41 1.85 1.58 1.58 1.58 1.58 1.58 1.58 1.5		-2-185 -185	(7m) 11-68 2-44 2-44 2-93 3-03 3-93 3-83 3-83 3-83 3-83 3-83 3-83 3-8		7.m.s. 9-185	2.2.2.3 2.2.2.3 2.967 2.923 2.967 2.967 2.967
Frequency (Hz)			3+15 3+15			7.8.5. 3-155	2.91 2.90 2.90 2.90 2.91 2.91 2.91
Period (s)	2220 2220 2220 2220 2220 2220 2220 222		7.#.5. 0-95			7-8-5 3-95	9.92 9.92 9.93 9.93 9.93 9.93 9.93 9.93
ns PcP 1/2 Pk-Pk (nm)	70-87 152-90 570-17 570-17 57-87 44-72 33-70 32-03		7.m.s. 0-15s	75. 33.33 75.33 76.98 7.09 7.09 7.09 7.09 7.09 7.09 7.09 7.09		7-m.s. 0-15s	21.202 21.202 4.118 5.683 5.833 5.334 5.334 5.33
bservatic pP-P time	(s) 0.52 0.44 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89	Ţ.,	г.в.s. 0-95	21.34 41.84 15.98 15.98 15.98 8.31 8.31 8.31 8.31		r.m.s. 0-95	15.68 30.15 5.98 10.98 10.98 7.27 6.77
t period of Fall time	(s) 0.23 0.15 0.15 0.15 0.15 0.15 0.15 0.15	= 5670.0km	and PcP r.m.s. 0-6s	50.55 50.55 50.55 15.66 15.22 15.22 15.22 15.22		and PcP r.m.s. 0-6s	86.00 86.17 13.05 13.05 8.69 8.69 8.69
and short on Rise time	50000000 50000000000000000000000000000	0×0 "	5-4.0Hz b r.m.s. 0-3s	33. (19) 533. 27 55. 50 25. 50 13. 94 13. 94		0-4.0Hz b r.m.s. 0-3s	23.76 50.12 50.12 17.14 13.55 11.98 10.90
road band Durati( (s)	00000000000000000000000000000000000000	κ=0.81 K=0.81	in the O. Gain	1. 76 1. 61 1. 61 1. 73 1. 73		in the l Gain	1.61 1.65 1.65 1.65 1.65 1.88 1.88 1.88 1.88 1.88 1.88 1.88 1.8
nur array - B Moment (N m)	0.1332E+17 0.1960E+17 0.3511E+16 0.1431E+17 0.2353E+17 0.2353E+17 0.5170E+16 0.3685E+16	0.1523E-11s_m i=4000.0km s ⁻¹	Observations Frequency (Hz)	400046 0.00046 0.00040		Observations Frequency (Hz)	
Gauribida ∜r) (m)	26500-26 38991-04 6984-44 28461-59 46820-11 10285-80 7333-66	0 6 (A) = 0	· array - Period (s)	0.70 0.82 0.82 0.75 0.77 0.65	• •	- array - Period (s)	0.75 0.77 0.73 0.73 0.68 0.73 0.68
Table 16A   Date	671021 681107 768107 768107 780829 791018 830925 881204	B (∆) =0.01 p₁=2500.	Gauribidanur 1/2 Pk-Pk (nm)	68.38 153.10 21.72 23.23 23.43 23.43 23.43 23.43 23.43 23.43 23.43 23.43		Gauribidanur 1/2 Pk-Pk (nm)	51.41 112.30 18.88 38.83 38.83 29.19 23.19 23.19 24.26
		۰,	Table 17A Date	671021 681107 760929 780810 791018 830925 881204		Table 18A Date	671021 681107 760929 780810 791018 830925 881204

¢.

7

c

**4** 3

<u>.</u>

:

79

•

Warramung	a array - Bri	oad band an	nd ort	period ob	servatio	nş				
<i>t</i> .	Moment	Duration	Rise	Fall	r ^r -P	1/5 UF-UF	Period	Frequency	Jain	
(m²)	(N m)	(5)	time	time	time	(ran I	(5)	(112)		
			(5)	(5)	(=)					
24890-00	0-1251E+17	0.82	0.33	0.15	0.51	137-10	0.95	1.19	1.34	26
2613-00	0-1313E*16	0.75	0-34	0.15	0.50	21.59	0 · 98	1.03	1.05	· 26
4795-00	0-2410E+16	0.74	0.33	0.20	0.54	32,30	0.98	1.03	1.05	56
S252-00	0-3148E+16	0.65	0.18	0.22	0-47	24.55	0.90	1+11	1.22	26
44070-00	0-22156-17	1.02	0+32	0-26	0.00	19-33	0.88	1-14	1.28	26
10040-00	0.5047E+16	0.60	0.30	0-19	0.51	54.36	0.98	1.03	1.05	26
5291-00	0-26602+16	1.09	0.58	0.22	0.54	9.56	0.85	1.18	1.34	26
1434-00	0-7208E+15	0.76	0 - 26	0.20	0.52	1.05	0.95	1.05	1.10	26
1548-00	0-7781E+15	D-76	0-29	0.19	0.51	9.22	0.89	1+14	1.27	36
828.00	0-41625115	0.91	0.31	0.13	0.00	3.71	0.85	1 - 18	1.34	36
895-90	0-4503E+15	0.69	0.51	0.27	0.47	5.30	0.88	1 • 14	1.27	36
804-50	0-4044E+15	0.79	0.33	0.19	0.00	4.05	0.77	1.29	1.53	36
804-50	0.4044E115	0.80	0.53	0.21	0.56	4.22	0.98	1.03	1.05	36
537-00	0.3202E+15	0.69	0.25	0.16	0.50	4 - 30	0.92	1.21	1 • 40	36
2191-00	0-1101E+16	0.95	0.30	0.23	0.57	9.95	0+98	1.03	1.05	36
1059-00	0.5278E+15	0-74	0.20	0-17	0.60	5.30	0.89	1 • 1 4	1.27	36
	Warramung //	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

ć.

ð

21

1

1

 $B(\Delta) = 5.01 G(\Delta) = 0.0000E^{+}00 \text{ sm}^{-2} \rho_0 = 2600 \cdot 0! \text{ gm}^{-3} v_0 = 5600 \cdot 0! \text{ m} \text{ s}^{-1} \rho_1 = 2500 \cdot 0! \text{ gm}^{-3} v_1 = 4000 \cdot 0! \text{ m} \text{ s}^{-1} \text{ K} = 0.00$ 

:

t.

Table 200	Warramunda	array -	Observations	; in the	0-5-4-0Hz	band				•		
Date	1/2 Pk-Fk	Periód	Frequency	Gain	r.m.s.	r.m.s.	F•A•5•	1	r-m-s-	r.m.s.	F.B.S.	r.m.s.
	(nm)	(5)	(Hz)		0-3s	0-6s	0-95	0-15s	3-95	3-15s	9-18s	no150
				-	(mm)	(nm)	(rom)	(nn)	(())))	(UW)	(1)(1)	(00)
661027	149-00	0.82	1 • 21	1-40	69.51	22.10	43.98	34.92	22.03	17-53	11.25	0.58
671021	24.40	0.88	1 - 14	1-28	11-64	9.10	1-81	6.38	2.05	4.14	2.13	0.52
681107	40-90	0.95	1.05	1.10	20-43	15.52	15-36	10.34	6.28	2.42	3. 41	0.43
691014	30-11	0-93	1.08	1-16	14-97	11 - 34	9.55	1.89	4-98	4.68	3.94	0.91
701014	72-21	0-88	1 - 14	1.58	33.29	27-34	24.05	19.40	12.66	12.55	8.49	0.99
710927	59-37	0-95	1.05	1.10	53.05	21.30	11.13	14.13	(+ 13	6.53	4.00	0.30
751021	8 · 90	0+90	1.11	1.55	4-51	3.40	5.30	2.40	1.13	1.35	1.12	0.25
770901	6-45	1.05	0.95	0.90	3.55	5.83	2.18	5.51	1.12	1.13	2 10	0.22
790924	9.16	0.93	1.08	1.10	5.05	3.33	3.45	3.07	<u>.</u>	2.33	0.92	0.30
791019	3.30	0.85	1.18	1.34	1.48	1.22	1.24	1.12	2 10	1.76	1.23	0.53
801011	5.26	0.30	1. H	1.55	2.15	2.35	2.32	1 20	1.34	1.14	1.06	0.35
811091	4-15	0.82	1.21	1.40	1.12	1.61	1.45	1.43	1 07	1.15	1.27	0.45
821011	3-74	1.08	0.33	0.86	2.18	1.07	1.33	1 50	1.95	1.52	1.00	0.26
841025	4.17	0.82	1.21	1.40	1.19	1.01	2 84	2.59	2.17	2.16	2.25	0.51
870802	1.22	1.05	A- 32	0.30	3.63	2.33	2.04	1.52	1.37	1.33	1. 11	0. 17
880507	4 - 35	0.89	1 • [ 4	1.51	2.10	1.01	1.03	1.75	1-31		•••••	5.5.

Warramunga array - Observations in the 1-0-4-OHz band 1able 218 1/2 Fk-Fk Period Frequency Gain r.m.s. Date C . m. S. r.m.s. r.m.s. r.m.s. r . m. s. r.m.s. r.m.s. (nm) 15) (Hz) 0-35 0-6s 0-9s 0-15s 3-95 3~155 9-18s noise (nm) (നന്ന) (nm) (nm) (nm) (nm) (nn) (กก) 661051 106-30 39.34 6.11 26-74 4-95 7-29 20.62 4.82 6.10 0.53 0.77 1.29 ,1-54 50.43 33-63 16.01 9.80 1 - 40 1 - 34 1 - 28 16.14 26.04 1.21 7.92 13.10 3.86 2.31 0-25 D-24 0-82 0-85 6.04 10.71 8.15 9.05 681107 19-57 44-28 691014 0.99 1.14 9.86 1.01 5.94 5-13 4.44 3.32 0.61 22.85 17.72 13.76 13.24 6.28 1.41 1.37 701014 0.82 1.21 1.40 18.70 17.05 10-30 6-51 0.26 13.54 710927 751021 35.68 5.49 0.93 1.09 1.16 11.44 9.15 5.11 3.42 0.31 0.82 1.21 2.93 2.05 2.31 2.05 1.15 1.40 1.66 3.35 0.90 1.59 770901 0-12 0.93 0.65 0.82 2.02 790924 791018 1.99 1.98 0.15 1.08 3.12 2-61 2-43 2.28 1.54 1.21 1.54 0.93 1.30 0.76 1.91 0.89 0.82 Õ-86 0.80 Ö+ 84 0.13 2.06 1.97 2.00 1.83 1.84 1.49 0.21 801011 1.60 1 · 15 1 · 25 1 · 34 2 · 09 1 · 28 1.91 0.86 1.68 2.68 2.16 0.65 1.08 0-91 1-01 811001 1.07 0.97 1.02 0.94 0.13 1.08 1.50 1.75 1.25 0.94 1.05 1.13 1.07 0.16 821011 0.94 0 · 10 0 · 29 0 · 21 3.09 3.63 0.73 1.37 1.38 841025 870802 1.83 1.84 1-13 Ô-89 0.78 1.89 1.78 i - 18 1.17 1.20 2.5B 0.63 1.60 2.00 860507



Figure 1 Novaya Zemlya at EKA

C







Č



Ţ



t

C

e



Figure 7 Novaya Zemlya at EKA PcP

j,

t!



c







c





ĸ.



÷

¢

Figure 13 Novaya Zemlya at YKA











L

in

 $\overline{c}$ 

r.





Ę.

Þ

Ľ

£

¢

## Figure 19 Novaya Zemlya at YKA PcP



£.



Ł









t

C



## Figure 25 Novaya Zemlya at GBA

ψ

c












ĩ

c



Figure 31 Novaya Zemlya at GBA PcP

C

R.



**#**::



£

e.





\$



Figure 36 Novaya Zemlya at GBA PcP

e



Figure 37 Novaya Zemlya at WRA

......





C



r

£°



Ÿ

c



€.

## APPENDIX B

Ţ

## STATION TIME AND MAGNITUDE EFFECTS WITH 95% CONFIDENCE LIMITS

<u>ي</u> ر	lme and Ne term(s)	C 0 1 2 2 2 2	itude ettec N Nov Zemlya amp. term	່າ ເ	with 95% cc S Nov Zemlya amp. term	onfide N²	o ⊳°a	limits °°
1.03±9.99		2	0.00+0.00	c	0.00+0.0	c	6	149
1.03±0.18		'='	00.0400.0	0	0.0040.00	00	65	197
-1.36±0.49 -0.79±0.24		~ 0	0.00±0.00 0.00±0.00	00	0.00±0.00	0 0	8 G	107 326
0.41±0.48		N	0.00±00.0	0	0.040.0	0	<b>46</b>	252
8.19±1.11 -0.29±0.35		01.10	0.00±0.00	0 0	0.040.00	0 0	154	260 244
0.37±0.48			0.00±0.00	0	0.00±0.00	0	12	355
-0.64±0.30 7	~		-0.08±0.21	v v	-0.28±0.31	2 10	⊂ ₽	344 88
1.00±0.39 3	ოი		0.00±0.00	00	0.00±0.00	00	<b>4</b> 9	252 201
-0.38±0.47 3	n m		0.00+00.00	0	00.00±00.00	00	8 <del>4</del>	233 233
-0.72±0.48 2 -0.80+0.34 4	(14		0.00±0.00 -0.49±0.33	• -	0.00±0.00	00	61	328 228
1.38±0.39 3	n n		0.00±0.00	• 0 •	0.00±0.00	) O	) <del>4</del> ) 4	249 249
-u.U6±0.11 19 -0.82±0.16 24	19 24		0.86±0.18 0.31±0.12	<b>⊳</b> σ	0.00±0.00 0.18±0.22	0 ~	121	107 39
1.02±0.34 4	4		0.00±0.00	0	0.00±00.0	0	46	251
1.38±0.70 6 1.46±0.69 6	იი		0.05±0.32 -0.11±0.32		0.00±0.00 -0.03±0.31	o –	115	51 28
0.00±0.00	00		-0.04±0.31	c	0.0040.00	00	5	315
-3.50±0.63 8	° 00		0.00±0.00	0	0.00±0.00	0	158	260 260
-0.96±0.42 4	4(		0.00±0.00	00	0.00±0.00	00	<b>4</b> 8	156 200
1.88±0.14 25	2 v		0.79±0.13	<u>ه</u>	0.00±0.00	00	52	290 290
0.83±9.99 2	~ ~		0.00±0000	0 0	0.00±0.00	00	21	352 200
-0.62±0.11 27	57 4		-0.25±0.07	2 2	0.00+00.00	00	កីតី	341 341
-0.73±0.39 3	- m		0.00+0+00	00	0•00∓0;00 0•00∓0;00	00	44	244
0.02±0.36 4	- 4		0.00±0000	0	00-0700-0	00	4 4 0	250
0.73±0.39 3	ന്		0.00*0.00	00	0.040.00	00	<b>4</b> 6	252 226
0.05±0.09 27	27		-0.63±0.07	20	-0.41±0.22	2 01	n 7	344
0.22±0.25 9 -0.53±0.48 2	ወሳ		0.00±0.00	00	0-00+0-00 0-00+0-00	00	99 <del>-</del>	214
0.98±0.34 5	าเก		0.22±0.15	ເຄ	0.36±0.31	<b>-</b>	8	300
1.11±0.28 6 -0.07±0.39 3	ი თ		0.00±0.00 0.00±0.00	00	0.00±0.00 0.00±0.00	00	4 5	26 344
-0.38±0.47 3			00.0400.0	0	0.00±0	0	8	206
U•34±U•43 2 1.02±0.90 4	14		00.00±00.00	0 0	0.00±0.00	- 0	34 122	156 298
-0.70±0.28 6	601		0.00±0.0	00	0.00400	00	66	326
-0.89±0.24 8	- 00		0.00±0.00	0 0	0.00+00.00		2 G	326 326
-0.70±0.26 7	~ u		0.00±0.00	00	0.00*0000	00	ខ្លួន	326 326
-0.84±0.28 6	οw		0.00±00.0	0 0	0.00±0±00	00	5 G 9	326 326
-0.78±0.34 4	4 •		0.00±0.00	00	0.00±0.00	00	ŝ	326
-0.74±0.31 5	r in		0.00±0.00	0 0	0.00±0.00		2 G	326 326
0.06±0.48 2 -5.28±0.41 3	N C		0.00±0.00	0 0	0.00±0.00 0.00+0.00	00	ις Γ	236 242
-0.39±0.48 2	~~~		00.01+00.0	0	00-07-00-0	0	, <del>წ</del>	218
0.60±0.39 3	m ₹		0.00±0.00	0 0	00.0±00.0	00	4 9 9	252 216
0.61±0.13 16	1 9		00.00±00.0	0	00.0100.0	00	9.6	235 235
0.68±0.48 2	∾ 9		0.0040.00	01	0.00#0.00	0	99	359 201
1.33±0.33 10 0.33±0.24 9	ງຫ		-0.00±0.00	0 0	00.0400.0	<i>~</i> 0	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	3U1 215
-0.08±0.39 3	m		0.00±00.00	0	0.00+00-00	0	37	251
0.60±0.14 13 0.10+0.34 4	<u>6</u> 4		0.00±0.00 0.00+0.00	0 0	0.00±0.00 0.00+0.00	0 0	2 %	357 193
0.61±0.48 2	1 (1)		0.00±00.0	00	00.0400.0	00	3 8	223
0.47±0.48 3	m		0.00±0.00	0	0.00+0.00	0	62	194
-6.9[±0.4] 3 -0.10+0.34 4	(n) 4		0.00±0.00	0 0	0-0700-00 0-00+00-00	00	- ¥	173 227
1.73±0.49 2	r (N		0.00±0000	0	0.00±00.00	00	86	175
-0.15±0.34 4	4 (		0.00±0.00	00	0.00±0.00 0.00±0.00	00	23	261 253
0.09±0.31 5	ոտ		0.00+0.00	00	0.00±0.00	- 0	e e	237
-0.54±9.99 3	) M		0.00#00.0	0	0.00±0.00	00	29.62	349
0.19±0.40 3	<b>ო</b> (		0.00±0.00	0 0	0.00±0.00	0 0	62	193
-v.rutu.48 3	n m		0.00±0.00	> 0	0.00±0.00	- o	ç 4	252 252
-0.01±0.11 22	22		0.00+0.00	00	0.00±0.00	0(	е С	221
-e.uizu.sa 4 -0.26±0.48 2	4 (1		00.0400.0	20	00.0400.0	<b>,</b> o	13	236 336

v

Station	n time and	magn	itude effe	sts	with 95% co	nfide	ence limits
Station	Time term(s)	NT	N Nov Zemlya	N,	S Nov Zemlya	N ₂	Δ° φ°
			amp.term	•	amp. term	-	•
AURF	-0.67+0.39	3	0.00+0.00	n	0.00+0.00	n	37 243
AUTN	-0.22±0.41	3	0.00±0.00	ō	0.00±0.00	õ	36 243
AVE	0.41±0.11	22	0.00±0.00	Ō	0.00±0.00	ō	51 254
AVF	-1.11±0.08	14	-0.10±0.09	12	0.00±0.00	0	35 250
AVY	-0.52±0.39	5	0.00±0.00	0	0.00±0.00	0	92 187
AYN	0.90±0.39	3	0.00±0.00	0	0.00±0.00	0	46 204
AZI	0.90±0.48	2	0.00±0.00	0	0.00±0.00	0	37 235
BAB	-0.32±0.39	4	0.00±0.00	0	0.00±0.00	0	52 247
BAC	-0.18±0.27	16	0.00±0.00	0	0.00±0.00	0	30 221
BAF	-0.52±0.24	8	0.00±0.00	0	$0.00 \pm 0.00$	0	33 246
BAG	-0.94±0.17	14	0.11±0.18	Э	0.24±0.32	1	67 109
BAI	0.22±0.50	2	0.00±0.00	0	0.00±0.00	0	37 231
BAR	0.87±0.35	4	0.00±0.00	0	$0.00 \pm 0.00$	0	74 353
BAS	-0.61±0.34	7	0.00±0.00	0	0.00±0.00	0	33 246
BBS	-0.75±0.34	4	$0.00 \pm 0.00$	0	0.00±0.00	0	33 245
BBTK	0.87±0.39	3	0.00±0.00	0	$0.00 \pm 0.00$	0	35 210
BCAO	-0.71±0.48	2	0.00±0.00	0	0.00±0.00	0	72 218
BCI	0.30±0.48	2	$0.00 \pm 0.00$	0	$0.00\pm0.00$	0	35 227
BCK	0.56±0.16	16	$0.00\pm0.00$	0	0.00±0.00	0	38 212
BUN	1.10±0.24	8	0.00±0.00	0	0.00±0.00	0	71 351
BUR	-0.01±0.35	5	0.00±0.00	U	0.00±0.00	0	94 309
BUI	-0.3870.38	4	0.00±0.00	0	0.00±0.00	0	60 317
BDB	-5.2278.33	3	0.00±0.00	U .	0.00±0.00	U	39 251
BDC	0.23±0.34	4	0.00±0.00	U N	0.00±0.00	U	36 240
BUS BDT	3+03±0+31		0.00±0.00	Ŭ	0.00±0.00	Ű	84 297
	-0.81±0.23	10	-0.29±0.12	8	0.00±0.00	0	61 131
8DM	-0.02±0.35	11	-0.64+0.12	7	0.00±0.00	0	3J 223 C4 247
BEE	-0.12±0.13			, ,	0.00±0.00	ŏ	47 105
BEI	0.18+0.34	4	0.00+0.00	<u> </u>	0.00±0.00	Ň	41 10J 65 249
BED	0.43+0.20	17	0.00±0.00	ň	0.00±0.00	ň	33 339
BER	-0.38+0.12	27	-0.04+0.31	ŭ	0.00+0.00	ň	23 262
BES	-0.91+0.33	5	0.00+0.00	ń	0.00+0.00	ň	24 247
BED	-0.68+0.13	18	0.85+0.19	ă	0.00+0.00	ň	125 104
BEW	0.08+0.39		0.00+0.00	ň	0.00+0.00	ň	60 358
BGF	-0.57+0.30	5	0.53+0.18	š	0.00+0.00	ň	35 250
BGG	-0.19+0.39	š	0.00+0.00	ŏ	0.00+0.00	õ	31 248
BGO	-0.78±0.39	4	$0.00\pm0.00$	ŏ	0.00±0.00	ō	62 326
BHA	0.27±0.32	7	-0.18±0.13	6	-0.51±0.31	ī	89 206
BHG	0.45±0.12	14	0.09±0.17	4	0.00±0.00	ō	32 239
BHJ	0.30±0.32	6	0.00±0.00	0	0.00±0.00	Ō	51 162
BHL	0.81±0.75	2	0.00±0.00	0	0.00±0.00	0	41 205
BHO	-0.36±0.31	5	-0.05±0.18	з	0.00±0.00	0	71 334
BHP	0.00±0.00	0	0.00±0.00	0	-0.27±0.33	1	93 315
BIR	0.60±0.28	8	0.00±0.00	0	0.00±0.00	0	30 220
BIZ	-0.76±0.48	2	0.00±0.00	0	$0.00 \pm 0.00$	0	29 222
BJI	0.67±0.17	10	-0.46±0.19	4	$0.00 \pm 0.00$	0	44 104
BKR	1.02±0.40	3	$0.00 \pm 0.00$	0	0.00±0.00	0	32 196
BKS	0.49±0.10	26	-0.26±0.08	19	-0.14±0.17	4	69 357
BLA	-0.44±0.13	18	$0.22 \pm 0.11$	10	0.00±0.00	0	66 322
BLC	-0.53±0.12	12	$0.17 \pm 0.17$	5	0.18±0.31	1	41 341
BLF	-0.14±0.39	3	$0.00 \pm 0.00$	0	0.00±0.00	0	104 206
BLR	0.63±0.41	3	$0.00 \pm 0.00$	0	0.00±0.00	0	43 14
BLSI	0.72±0.39	3	$0.00 \pm 0.00$	0	0.00±0.00	0	23 258
BLS2	U+37±0+48	2	0.00±0.00	0	0.00±0.00	U	23 258
	U.28#U.34	4	0.00+00	0	0.00±0.00	0	33 232 53 252
	-U.0313.33 0.7110 10	5	-0.61±0.10	4	0.0020.00	ň	55 252 66 954
DIVIN	-0 50+0 09	14	-0.81±0.18		0.1140.22	2	60 334
BMD	0,18+0.34	7	0.00+0.00	ň	0.00+0.00	ň	29 226
BNG	-0.75+0.13	19	0.65+0.22	2	0.00+0.00	ñ	72 219
BNH	-0.55+0.13	14	0.02+0.22	2	0.00+0.00	õ	57 316
BNI	0.28+0.31	5	0.00+0.00	ō	$0.00 \pm 0.00$	ŏ	36 245
BNS	-0.36+0.09	20	0.30+0.10	14	0.32+0.19	4	30 248
BNT	0.07+0.35	4	0.00+0.00	0	0.00±0.00	Ó	35 216
808	0.09±0.39	3	0.00±0.00	Ō	0.00±0.00	Ō	35 241
BOC	-0.41±0.48	3	0.00±0.00	Ō	0.00±0.00	0	30 249
BOCO	1.54±0.28	6	0.00±0.00	Ō	0.00±0.00	0	96 309
BOD	-1.84±0.41	3	0.00±0.00	Ō	0.00±0.00	0	27 92
BOG	1.47±0.13	14	0.00±0.00	Ō	0.00±0.00	0	96 309
BOK	0.20±0.41	з	0.00±0.00	0	$0.00 \pm 0.00$	0	52 144
BOL	2.14±0.52	2	0.00±0.00	0	$0.00 \pm 0.00$	0	35 239
BOM	-1.61±9.99	з	0.00±0.00	0	0.00±0.00	0	55 159
BOZ	-0.39±0.34	4	0.02±0.20	з	0.00±0.00	0	61 349
BPT	-0.67±0.39	з	0.37±0.32	1	0.00±0.00	0	60 317
BRA	0.43±0.32	12	-0.22±0.19	З	-0.36±0.22	2	30 235
BRD	0.15±0.40	Э	$0.00 \pm 0.00$	0	0.00±0.00	0	31 220
BRG	-0.38±0.10	23	0.23±0.07	20	0.38±0.22	2	28 240
BRK	0.32±0.31	5	$0.00 \pm 0.00$	0	0.00±0.00	0	69 357
BRL	0.58±0.34	5	0.00±0.00	0	0.00±0.00	0	27 243

Ċ

Station	time and	magn	itude effec	sts	with 95% co	nfide	ence limits
Station	Time term(s)	Nţ	N Nov Zemlya amp. term	N	S Nov Zemlya amp. term	N ₂ *	Δ° φ°
BRN	0.22±0.16	14	0.00±0.00	0	0.00±0.00	0	27 243
BRS	0.18±0.12	23	0.51±0.32	1	0.00±0.00	0	118 91
BRT	-0.42±0.30	7	0.00±0.00	0	0.00±0.00	0	37 230
BRW	0.05+0.29	10	0.00+0.00	0	$0.00\pm0.00$	0	34 17
BRZ	0.87+1.10	2	0.00±0.00	n	0.00±0.00	ů n	37 230
BSF	-0.40±0.08	24	0.01±0.09	13	0.00±0.00	ŏ	33 246
BSI	-3.62±0.40	4	0.00±0.00	0	0.00±0.00	ō	72 137
BSL	1.08±0.48	2	0.00±0.00	0	0.00±0.00	0	36 239
BSS	0.04±0.34	4	0.00±0.00	0	$0.00 \pm 0.00$	0	38 233
BIU	0.10.0 20	4	0.00±0.00	0	0.00±0.00	0	42 110
BUR	-0.73+0.31	5	-0.26±0.17	U ∡	0.22+0.21	0	(U 333 22 245
BUC	-1.20±0.21	15	0.00±0.00	ō	$0.23 \pm 0.31$ $0.00 \pm 0.00$	ó	32 221
BUC 1	0.60±0.64	4	0.00±0.00	ō	0.00±0.00	ō	32 221
BUD	0.63±0.15	15	-0.09±0.18	5	-1.12±0.23	2	30 232
BUH	-0.19±0.10	18	0.08±0.21	3	$0.00 \pm 0.00$	0	32 246
BUL	-0.53±0.11	28	$0.19\pm0.07$	26	0.06±0.18	4	95 205
BURJ	-0.40+0.15	12	0.00±0.00	0	0.00±0.00	0	42 204
BWA	$0.06 \pm 1.10$	2	0.00±0.00	กั	0.00±0.00	ñ	124 98
BW06	-0.46±0.40	3	0.00±0.00	ŏ	0.00±0.00	ŏ	64 347
BYA	0.00±0.00	0	-1.10±0.32	1	0.00±0.00	0	173 188
BY1	-4.39±1.10	2	0.00±0.00	0	0.00±0.00	0	173 189
BZS	-0.16±0.35	5	0.00±0.00	0	0.00±0.00	0	32 227
	0.05±0.10	14	-0.36±0.11	8	$0.00\pm0.00$	0	37 250
CALN	-0.51+0.39	2	0.00±0.00	n n	0.00±0.00	0	34 141
CAN	0.00±0.10	29	0.54±0.14	ő	0.00±0.00	ŏ	125 98
CAR	0.64±0.13	19	-0.02±0.08	16	-0.16±0.18	3	89 303
CBM	-1.00±0.14	11	-0.28±0.16	4	$0.00 \pm 0.00$	0	54 315
CBN	-0.58±0.48	2	0.00±0.00	0	0.00±0.00	0	64 320
CBZ	1.74±0.53	15	0.00±0.00	0	0.00±0.00	0	146 89
COF	-0.21+0.09	21	-0.21+0.09	12	0.00±0.00	ň	22 246
CDR	-0.17±0.09	12	0.00±0.00	0	0.00±0.00	ŏ	37 245
CD2	0.57±0.35	4	0.00±0.00	ō	0.00±0.00	Ō	49 121
CEI	2.57±0.48	5	0.00±0.00	0	0.00±0.00	0	29 227
CEN	0.51±0.55	11	$0.00 \pm 0.00$	0	$0.00 \pm 0.00$	0	129 293
CEY	-0.17±0.23	9	0.00±0.00	0	0.00±0.00	0	33 236
	-0.55±0.48	12	0.00±0.00	0	0.00±0.00	0	36 249
CETV	0.03±0.39	3	0.00±0.00	ŏ	0.00±0.00	ŏ	57 258
CGN	0.69±9.99	3	0.00±0.00	ŏ	0.00±0.00	ō	32 221
CGP	-0.36±0.40	4	0.42±0.31	1	$0.00 \pm 0.00$	0	76 107
CHA	0.95±9.99	2	0.00±0.00	0	0.00±0.00	0	50 141
CHC	-0.26±0.43	3	0.00±0.00	0	0.00±0.00	0	67 321
CHG	$-1.11\pm0.15$	18	-0.34±0.12	9	0.00±0.00	0	60 130 co pop
	-2+43±0+48	2	0.00±0.00	0 0	0.00±0.00	- 0	96 311
CHT	0.90±0.49	2	0.00±0.00	õ	0.00±0.00	õ	55 137
CHTO	-1.04±0.27	7	-0.27±0.14	5	0.00±0.00	0	60 130
CHZ	0.87±0.48	2	0.00±0.00	0	0.00±0.00	0	28 234
CIN	0.27±0.28	8	$0.00\pm0.00$	0	$0.00\pm0.00$	0	38 215
	-0.41±0.48	12	0.00±0.00	12	0.00±0.00	2	36 236 95 202
	-0.35±0.11	13	0.00±0.00	13	0.00+0.00	ŏ	32 99
CIZ	-3.17±1.10	4	0.00±0.00	ō	0.00±0.00	Ō	142 68
CJR	0.22±0.28	8	0.00±0.00	0	0.00±0.00	0	30 225
CJR1	0.55±0.39	з	0.00±0.00	0	$0.00 \pm 0.00$	0	30 226
CKI	-0.59±0.39	3	0.00±0.00	0	$0.00 \pm 0.00$	0	36 242
CLC	0.47±0.30	7	0.00±0.00	0	0.00±0.00	Ŭ	(1 353
	0+03±0+23	01 a	-0.95±0.50	3 0	0.00±0.00	ñ	30 220
CLK	0.37+0.16	14	-0.04±0.09	14	0.02±0.18	š	90 199
CLL	-0.78±0.09	29	-0.06±0.07	24	0.28±0.18	3	28 242
CLO	0.11±0.34	4	0.00±0.00	0	0.00±0.00	0	32 226
CMB	-0.26±0.34	4	0.00±0.00	0	0.00±0.00	0	69 356
CMC	0.48±0.35	.5	0.38±0.22	2	0.00±0.00	0	39 354
CMP	1.94±0.17	19	0.00+0.00	0	0+00±0+00	0 n	31 626 120 99
	~0+10±0+18 2.31+0.79	4	0,00±0.00	n n	0.00±0.00	ŏ	115 297
CNG	-0.78±0.39	4	0.00±0.00	ŏ	0.00±0.00	ō	101 201
CNIL	1.57±0.40	з	0.00±0.00	0	0.00±0.00	0	47 254
CNN	0.00±0.00	0	-1.07±0.35	1	0.00±0.00	0	64 326
CNS	1.27±0.49	2	0.00±0.00	0	0.00±0.00	0	44 240
COD	-U.15±U.32	5	0.00±0.00	0	0.00±0.00	0	40 35 137 78
100	-2.13±U.38	7	0.00±0.00	n N	0.00±0.00	õ	44 258
COL	1.55±0.10	, 25	-0.08±0.08	14	0.00±0.00	Ō	41 15

Statio	n time and	magn	itude effec	rt ⊂	with 95% cor	hfid	ence limite
Station	Time term(s)	NT	N Nov Zemlya	N1	S Nov Zemlya	N ₂	Δ° φ°
		_	amp. Cerm		amp. term		
CON	0.96+1.55	2	0.00±0.00	0	0.00±0.00	0	88 329
C00	0.50±0.15	11	0.00±0.00	ŏ	0.00±0.00	ŏ	121 93
COOL	-0.99±1.10	2	0.00±0.00	0	0.00±0.00	0	113 121
COP	0.33±0.09	29	0.69±0.09	21	0.48±0.30	1	25 247
COR	0.43±0.25	8 5	0.00±0.00	· 0	0.00±0.00	0	62 359 31 223
CPO	-1.72±0.12	15	0.04±0.10	10	0.10±0.18	3	68 326
CPP	0.48±0.96	З	0.00±0.00	0	0.00±0.00	Ō	126 296
CPX	-0.18±0.39	3	0.00±0.00	0	0.00±0.00	0	70 352
	0.18±0.48	2	0.00±0.00	0	0.00±0.00	0	70 357
CRO	0.00±0.00	ŏ	0.21±0.31	i	0.00±0.00	õ	71 334
CRT	1.67±0.17	14	0.00±0.00	0	0.00±0.00	Ō	46 252
CRZ	1.50±0.79	5	0.00±0.00	0	0.00±0.00	0	131 74
CSS	1.62±0.48	2	0.00±0.00	0	0+00±0+00 0+00±0+00	U n	38 231
CTFE	0.28±0.39	3	0.00±0.00	õ	0.00±0.00	ŏ	58 261
CTI	-0.18±0.24	8	0.00±0.00	0	0.00±0.00	Ó	34 240
CTT	-0.36±0.31	5	0.00±0.00	0	0.00±0.00	0	35 216
CUM	0.27+0.10	15	-U+42±U+23	11	-U+52±U+2U	3	88 301
CVL	-0.10±0.48	2	0.00±0.00	ö	0.00±0.00	ŏ	64 320
CVO	-0.37±0.48	2	0.00±0.00	D	0.00±0.00	Ō	31 222
CVP	-0.37±0.52	2	0.00±0.00	0	0.00±0.00	0	67 107
CWC	U+66±U+48	2	0.00±0.00	0	$0.00\pm0.00$	0	70 354
CYA	$0.46 \pm 1.10$	2	0.00±0.00	0	0.00±0.00	Ő	126 291
CYP	-0.82±0.31	6	1.31±0.19	5	0.00±0.00	ō	26 229
CZI	-0.42±0.39	3	0.00±0.00	0	0.00±0.00	0	39 231
DHC	0+99±0+48	3	0.00±0.00	0	0.00±0.00	0	71 354
DAG	-2.71±0.15	20	0.00±0.00	ŏ	0.00±0.00	ŏ	18 315
DAL	-0.28±0.48	4	-0.51±0.31	1	0.00±0.00	ō	72 335
DAR	-1.81±0.35	4	0.11±0.31	1	0.00±0.00	0	98 107
DAU	0.47±0.48	2	0.00±0.00	0	0.00±0.00	0	66 348 78 107
DBN	0.43±0.23	10	$0.52\pm0.31$	1	0.00±0.00	ñ	30 252
DBQ	-1.09±0.48	2	0.00±0.00	Ō	0.00±0.00	ō	62 332
DCN	-0.23±0.07	13	0.52±0.15	7	0.00±0.00	0	32 266
DCU	0.52±0.39	3	$0.00\pm0.00$	0	$0.00\pm0.00$	0	66 349
DDK	$-0.14\pm0.24$	8	0.40±0.20	3	0.00±0.00	0	45 151
DDR	-1.01±0.12	20	0.00±0.00	Ō	0.00±0.00	ō	54 84
DEV	-0.09±0.15	20	0.00±0.00	0	0.00±0.00	0	31 226
DHR	~0.01±0.48	2	$0.00\pm0.00$	0	$0.00\pm0.00$	0	47 186
DIX	0.37±0.14	14	0.07±0.13	11	0.00±0.00	õ	35 245
OKM	-0.37±0.30	5	0.36±0.15	4	0.00±0.00	0	32 265
OLE	-0.35±0.24	8	0.26±0.12	8	0.00±0:00	0	32 265
DL2 DMK	U• 48±U• 35	4	0.00±0.00	U n	0.00±0.00	U D	47 99
DMN	1.17±0.32	5	0.51±0.37	1	0,00±0,00	ŏ	49 143
DMU	-0.53±0.10	11	0.25±0.14	7	0.00±0.00	0	31 266
DOC	0.73±9.99	2	0.00±0.00	0	$0.00\pm0.00$	0	29 221
	-1.89±0.39	3	0.27+0.22	2	0.00±0.00	0 n	35 244
DOU	-0.93±0.09	29	0.10±0.18	3	0.00±0.00	ŏ	32 251
DPS	-0.06±0.48	2	0.00±0.00	0	$0.00 \pm 0.00$	0	38 233
DRA	0.95±0.34	7	0.00±0.00	0	0.00±0.00	0	32 223
DRB	0.35±0.39	3	0.00±0.00	0	0.00±0.00	0	36 216
DSH	0.45±0.40	3	0.00±0.00	ŏ	0.00±0.00	ŏ	36 161
DSI	0.60±0.48	З	0.00±0.00	0	0.00±0.00	Ó	43 205
DST	0.00±0.24	8	0.00±0.00	0	0.00±0.00	0	36 215
DUG	$0.22\pm0.10$	20	-0.43±0.13	8	-0.16±0.31	1	66 350 97 294
DUR	-1.33±0.27	11	0.00±0.00	ŏ	0.00±0.00	õ	29 262
DZM	0.66±0.90	3	0.00±0.00	ō	0.00±0.00	Ō	117 76
EAB	-0.66±0.08	14	-0.12±0.12	7	0.01±0.22	2	29 266
EALH	0.73±0.39	.3	0.00±0.00	0	$0.00\pm0.00$	0	45 250
ERAN	1.00+0.34	13	0+40±0+12 0+00+0-00	в Л	0.00±0.00	0	45 252
EBH	-0.52±0.10	17	0.04±0.11	8	0.03±0.22	2	28 265
EBL	-0.40±0.10	15	0.23±0.10	10	0.10±0.22	2	29 264
EBR	0.17±0.12	20	0.00±0.00	0	0.00±0.00	0	41 249
EBS FCB	-0.69±0.48	2	0.00±0.00	2	0.00±0.00	0	33 265
ECH	-0.47±0.12	13	0.00±0.00	ō	0.00±0.00	ŏ	33 247
ECHE	0.73±0.39	3	0.00±0.00	0	0.00±0.00	0	43 250

Station	n time and	magn	itude effec	ts i	with 95% com	nfide	nce limits
Station	Time term(s)	N _T	N Nov Zemlya amp. term	N1	S Nov Zemlya amp, term	N ₂	Δ° φ°
ECP	-0.36±0.23	9	0.46±0.12	7	0.00±0.00	0	33 264
ECRI	0.86±0.34	4	0.00±0.00	0	0.00±0.00	Ō	40 253
ECT	-0.02±0.28	7	-0.28±0.33	1	0.00±0.00	0	60 317
EDI	-0.58±0.08	18	0.10±0.10	8	0.03+0.22	2	35 217
EDM	-0.43±0.09	25	0.32±0.08	18	0.16±0.18	3	54 351
EDU	-0.47±0.09	14	0.15±0.12	7	0.18±0.31	l	28 265
EUL	-0.49±0.13	14	$0.54\pm0.11$	8	0.00±0.22	2	29 264
EIL	-0.79±0.18	13	0.00±0.00	ŏ	$0.00\pm0.00$	0	45 205
EKA	-0.29±0.09	29	0.40±0.07	23	0.14±0.18	3	29 264
ELC	-1.25±0.28	6	$0.00\pm0.00$	0	0.00±0.00	0	67 329
ELO	-0.59±0.11	15	-0.14+0.12	7	0.11+0.31	1	39 213
ELY	0.81±0.48	2	0.00±0.00	Ó	0.00±0.00	ō	68 351
EMM	-0.94±0.30	5	-0.11±0.32	1	$0.00 \pm 0.00$	0	56 313
EMS	$0.26\pm0.34$ 0.14±0.34	4	$0.07 \pm 0.31$	1	$0.00\pm0.00$	0	35 245
ENN	-0.79±0.23	9	0.57±0.14	7	0.00±0.00	Ö	46 250 31 250
EPF	-0.33±0.09	16	0.19±0.09	12	0.00±0.00	Ō	39 250
EPLA	0.78±0.34	4	0.00±0.00	0	0.00±0.00	0	44 256
ERC	0.06+0.23	3	0.00±0.00	0	0.00±0.00	0	46 253
ERE	0.63±0.48	š	0.00±0.00	ŏ	0.00±0.00	ŏ	34 194
EROQ	0.04±0.34	4	0.00±0.00	0	$0.00 \pm 0.00$	0	41 249
ERUA	0.99±0.39	3	0.00±0.00	0	0.00±0.00	0	42 258
ESA	-0.78±0.31	3 6	0.00±0.00	0	0.00±0.00	ů n	34 199
ESEL	0.04±0.48	2	0.00±0.00	ō	0.00±0.00	ŏ	42 246
ESK	-0.24±0.10	26	0.47±0.08	18	1.24±0.31	2	29 264
ESY	-0.51±0.39	3	$0.00\pm0.00$	0	0.00±0.00	0	28 264
ETER	-0.83±0.28	2	0.00±0.00	ő	0.00±0.00	0	32 264
ETOR	0.57±0.39	3	0.00±0.00	ō	0.00±0.00	ō	42 252
EUR	0.53±0.11	27	0.28±0.16	14	0.00±0.00	0	67 352
EVAL	0.53±0.34	4	0.00±0.00	0	0.00±0.00	0	46 255
EZN	-0.31±0.13	17	0.00±0.00	ŏ	0.00±0.00	ŏ	36 218
FAI	0.17±0.48	2	0.00±0.00	0	0.00±0.00	Ō	41 233
FAM	0.26±0.48	2	0.00±0.00	0	0.00±0.00	0	40 207
FAV	-1.05+0.23	12	0.00±0.00	1	0.00±0.00	0	41 206
FBA	1.49±0.14	12	-0.18±0.15	5	0.00±0.00	ŏ	41 14
FBC	-1.33±0.28	8	-0.06±0.22	2	0.00±0.00	0	38 323
FCC	-1.10±0.17	16	-0.37±0.16	4	0.00±0.00	0	47 338
FFC	-0.98±0.10	22	0.20±0.09	11	0.22±0.30	1	51 343
FGG	0.31±9.99	2	0.00±0.00	Ō	0.00±0.00	Ō	37 232
FGU	-0.40±0.34	4	0.00±0.00	0	0.00±0.00	0	66 347
FG2 FG4	-U.14±U.48	2	0.00±0.00	0	0.00±0.00	0	37 233
FHC	0.64±0.13	19	0.00±0.00	ŏ	0.00±0.00	ŏ	66 359
FIN	-1.41±0.48	2	0.00±0.00	0	$0.00 \pm 0.00$	0	36 242
FIR	0.61±0.17	17	$0.00\pm0.00$	0	$0.00\pm0.00$	0	36 239
FLN	-0.85±0.09	27	0.28±0.08	16	0.00±0.00	õ	34 255
FL0	-1.52±0.48	2	0.34±0.30	1	0.00±0.00	0	66 331
FLR	-0.17±0.28	6	0.00±0.00	0	0.00±0.00	0	60 315
FOUE	0.62+0.40	8	0.00+0.00	0	0.00±0.00	0 n	30 220
FRB	-0.89±0.13	16	-0.06±0.10	10	0.00±0.00	ŏ	38 323
FRF	-0.49±0.23	9	0.21±0.12	7	0.00±0.00	0	37 244
FRI	0.13±0.10	20	$0.00\pm0.00$	0	0.00±0.00	0	70 355
FRU	-0.30±0.48	2	0.00±0.00	Ő	0.00±0.00	ŏ	32 152
FSJ	0.19±0.12	14	-0.05±0.12	7	-0.16±0.32	1	53 360
FUQ	0.58±0.48	2	0.00±0.00	0	0.00±0.00	0	95 309
FUR ⊊ut	$0.08\pm0.10$	26	-0+05±0+08	20 0	-U+26±U+22	2	32 241 33 239
FVM	-1.56±0.13	17	-0.42±0.17	5	0.00±0.00	ŏ	66 331
FYU	1.78±0.39	5	0.00±0.00	0	0.00±0.00	0	40 13
GAP	0.32±0.12	10	0.00±0.00	0	0.00±0.00	0	32 241
GRA	U+44±U+5U -0.88±0-12	26	0.00±0.00 0.23±0.10	17	0.00±0.00	0	61 155
GBO	-1.10±0.34	4	0.00±0.00	ò	0.00±0.00	ō	69 334
GBR	0.69±0.48	2	0.00±0.00	0	0.00±0.00	0	63 194
GBTN	-1.15±0.48	2	$0.00\pm0.00$	0	0.00±0.00	0	68 325 70 949
GCC	$0.03\pm0.14$ 0.10±0.48	2	0.00±0.00	0	0.00±0.00	ŏ	70 357
GDH	-1.26±0.12	17	-0.49±0.09	14	-0.13±0.18	4	30 318

Station	time and	magn	itude	effe	cts	with	95% cc	onfide	nce	limits
Station	Time term(s)	Nt	N Nov	Zemlya	N	S Nov	Zemlya	N ₂	Δ°	φ°
GEN	-0.71+0.24	7	0.00	LO. 00	0	0.00		0	20	240
GEO	-0.63±0.39	3	-0.02	£0.00	2	0.0	D±0.00	Ö	63	320
GET	0.10±0.48	2	0.001	£0.00	0	0.0	0±0.00	0	36	217
GIB	-0.78±0.17	14	0.001	£0.00	0	0.00	0±0•00	0	41	232
GKN	1+64±0+12 0.60±0.49	2	0.211	EO+12	ń	0.00	0±0+00	U D	41 49	14
GLA	1.16±0.16	14	0.001	±0.00	ŏ	0.00	0±0+00	ŏ	74	351
GLD	0.05±0.25	9	-0+36±	<b>⊧0.17</b>	4	0+0	00.0±0	Ō	66	343
GLP	-0.32±0.39	5	0.001	£0.00	0	0.00	0±0•00	0	35	214
GMB	U+ (U±U+23	9	0.001	LO. 00	U 0	0.00	0±0+00	0	39	23
GMW	-0.07±0.28	6	0.001	£0.00	ŏ	0.0	0±0+00	ŏ	59	358
GNZ	-1.03±0.78	10	0.001	EO.00	Ō	0.0	0±0+00	Ō	136	71
GOA	-1.08±0.40	3	0.001	E0.00	0	0.00	0±0.00	0	59	159
GOL	-0,26±0,10	22	-0.541	10.09	16	-0.5	7±0+18	3	66 25	343
GRC	-1.11±0.28	7	0.001	£0.00	ŏ	0.00	0±0+00	Ő	35	215
GRE	0.02±0.25	9	-0.361	EO. 14	9	-0.2	3±0•18	3	86	299
GRF	0.36±0.07	26	0.321	£0.08	18	0.53	3±0•30	1	30	243
GRFO	-0.03±0.48	2	0.001	£0.00	0	0.00	0±0+00	0	30	243
GRR	-1.15+0.08	27	-0,10	E0.08	16	-0.19	0±0+00 9+0.31	1	30	255
GRS	0.16±0.48	2	0.001	£0.00	Ō	0.0	D±0.00	ō	34	192
GSC	0.95±0.29	6	0.001	⊧0•00	0	0.00	00•0±0	0	72	353
GSP	2.16±1.61	2	0.001	£0.00	0	0.00	D±0.00	0	139	82
GTR	0.77±0.32	5	0.001	EO 00	0	0.00	0±0.00	0	40	122
610 610	-2·12±0·21	5	0.401	LO. 11	- <b>1</b>	0.0	5±0+20	° 0	43	254
GUMO	-2.22±0.48	3	0.001	£0.00	ŏ	0.00	0±0.00	ŏ	77	86
GWC	-1.08±0.26	7	0.31	ŧ0.23	3	0.00	D±0.00	Ō	48	325
GWF	-0.33±0.23	9	0.001	£0.00	0	0.00	0±0.00	0	32	246
GYA	-0.34±0.36	4	0.001	10.00	0	0.00	0±0+00	0	54	120
HAD	0.13±0.34	4	0,001	E0.00	ŏ	0.00	0±0+00	ŏ	51	250
HAL	-1.24±0.34	4	0.001	±0.00	Ō	0.00	0±0.00	Ō	55	310
HAM	0.09±0.27	11	0.001	£0•00	0	0.00	D±0.00	0	27	248
HAU	-0.34±0.09	24	-0.14	£0.08	15	0.00	0±0.00	0	33	247
HCY	0.62±0.48	2	0.004	EU • UU	0	0.00	0±0+00	0	10	301 230
HOM	-0.13±0.28	ĕ	-0.04	£0.23	2	0.00	D±0.00	ŏ	60	316
HEE	-0.47±0.15	12	0.00	£0.00	ō	0.0	D±0.00	ō	31	250
HEI	-0.28±0.39	3	0.00	£0.00	0	0.00	0±0+00	0	31	245
HEN	4.61±0.49	3	0.001	£0.00	0	0.0	0±0.00	0	62	107
HPS HHC	-3.02±0.12	25	0.994	LO.08	11	0.00	0±0+00	0	20 42	251
ннм	-0.86±0.28	š	0.001	E0.00	ŏ	0.00	0±0.00	õ	58	351
HKC	-0.14±0.25	11	0.001	£0.00	0	0.00	0±0•00	0	60	114
HKL	1.37±0.48	2	0.00:	£0.00	0	0.00	D±0.00	0	84	29
	0.13±0.28	5	0.004	LO.00	บ ก	0.00	0±0+00	0	27	334
HLW	0.62±0.23	10	0.001	£0.00	ŏ	0.0	0±0+00	ŏ	45	209
HNH	0.04±0.39	з	0.00	±0.00	Ō	0.0	0±0.00	0	58	317
HNME	-0.68±0.48	2	0.00:	±0.00	0	0.0	0±0•00	0	55	314
HOF	$-0.17\pm0.11$	17	0.11	±0•12	11	0.6	7±0•18	3	30	242
HON	1.11+0.25	8	0.00	+0.00	ä	0.0	0±0+00	ŏ	83	31
HPK	-0.36±0.34	5	0.00	±0.00	ō	0.0	0±0.00	ō	30	261
HQL	0.41±0.39	3	0.00:	±0•00	0	0.0	0±0.00	0	45	204
HRI	0.91±0.34	4	0.00	±0.00	0	0.0	0±0•00	0	41	205
	0.00±0.25	8	0.00	±0.00	0	ບ•ບ ກ.ດ	0±0+00	0	30 48	78
HUA	1.99±0.79	8	0,00	±0.00	ŏ	0.0	0±0.00	ŏ	112	306
HVAR	-1.08±0.39	3	0.00	±0.00	Ő	0.0	0±0.00	0	35	232
HVO	0.75±0.34	4	0.00	±0.00	0	0.0	0±0.00	0	85	29
HYA	-0.81±0.34	4	0.00:	±0.00	0	0.0	$0 \pm 0 \cdot 00$	0	22	261
IAS	-1.49+0.12	19	0.36	±0.07 ±0.8∩	24 N	0.0	0±0.23	Ō	29	220
IFR	-1.59±0.12	19	0.00	±0.00	ŏ	0.0	0±0.00	ō	50	252
ILG	0.00±0.00	0	0.23	±0•30	1	0.0	0±0.00	0	21	325
ILT	-0.08±0.40	3	0.00	±0.00	0	0.0	0±0.00	0	35	32
1 MA 1 MA	$0.48\pm0.11$	17	0.06	±0.31	1	0.0	0±0+00	U	40 62	18
INK	-0.43+0.13	19	-0.10	±0.10	9	-0.2	4±0+00	1	38	5
INR	1.49±0.49	3	0.00	±0.00	ŏ	0.0	0±0.00	Ō	51	134
INI	-1.52±0.40	з	0.00	±0•00	Ó	0.0	0±0.00	0	63	327
IN2	-1.43±0.48	2	0.00	±0.00	0	0.0	0±0.00	0	64	328
IN3	-1.55±0.48	2	0.00	±0.00	0	0.0	0±0+00	U D	65	321 326
IPM	-1.57±0.39	3 12	0.18	±0.13	11	0.0	0±0.00	õ	74	131
IRK	-1.15±0.51	2	0.00	±0.00	0	0.0	0±0.00	D	29	108

Station	n time and	magn	itude effec	ts	with 95% cor	nfide	nce limits
Station	Time term(s)	Nţ	N Nov Zemlya amp. term	Ni	S Nov Zemlya amp. term	N ₂	Δ° φ°
IRI	1.7i±0.48	2	0.00±0.00	0	0.00±0.00	0	38 186
IR2	1.95±0.40	3	0.00±0.00	0	0.00±0.00	0	38 185
ISA	1.58±0.48	∠ 8	0.00±0.00	0	0+00±0+00 0+00±0+00	0	38 186 71 354
ISK	-0.16±0.12	26	0.00±0.00	ŏ	0.00±0.00	ŏ	35 215
150	-1.05±0.25	8	0.00±0.00	0	0.00±0.00	0	36 244
ISR	0,59±0,26	9	0.00±0.00	0	0.00±0.00	0	31 220
IST	-0.12±0.14	17	0.00±0.00	ŏ	0.00±0.00	ŏ	35 216
I TM	-0.81±0.47	2	$0.00 \pm 0.00$	0	0.00±0.00	0 -	40 223
10H 17M	0.33±0.39	3	0.00±0.00	0	0.00±0.00	0	35 228
JAN	0.16±0.25	9	0.00±0.00	ŏ	0.00±0.00	ŏ	38 225
JARJ	0.80±0.44	3	0.00±0.00	0	0.00±0.00	0	42 204
JAY	-1.18±0.27	21 9	-0.70±0.23	2	0.00±0.00	0	69 356 91 95
JCT	-0.18±0.19	10	-0.28±0.12	7	0.00±0.00	ŏ	75 338
JER	0.68±0.15	17	0.00±0.00	0	0.00±0.00	0	43 205
JMB JMI	0.06±0.39	ь З	0.00±0.00	0	0.00±0.00	U N	34 219
JNE	2.33±9.99	2	0.00±0.00	õ	0.00±0.00	õ	19 294
JNW	0.91±0.44	3	0.00±0.00	0	0.00±0.00	0	19 294
JUS	-0.36±0.18	14	-0.06±0.14	5	-1.34±0.35	1	29 231
KAD	-0.86±0.32	ĕ	0.00±0.00	ŏ	0.00±0.00	õ	57 158
KAR	2.54±0.48	7	0.00±0.00	0	$0.00 \pm 0.00$	0	49 165
KAS KAT	$0.57 \pm 0.13$ 2.61 ± 0.43	20 3	$0.00\pm0.00$	0	0.00±0.00	0	34 209
KAV	-0.64±0.48	2	0.00±0.00	ŏ	0.00±0.00	ŏ	94 85
KBA	1.05±0.28	7	0.40±0.14	5	$0.00 \pm 0.00$	0	32 238
KBC	0.60±0.48	12	0.00±0.00	0	$0.00\pm0.00$	0	74 228
KBN	-0.75±0.48	2	0.00±0.00	ŏ	0.00±0.00	ŏ	37 226
KBS	-5.52±0.15	25	$0.00 \pm 0.00$	0	0.00±0.00	0	11 318
KCT	-0,26±0,40	3	$0.00\pm0.00$	0	0.00±0.00	0	36 216
KDS	-0.40±0.39	<u>د</u> ع 4	0.00±0.00	ŏ	0.00±0.00	ŏ	71 251
KDZ	0.48±0.15	18	0.00±0.00	0	0.00±0.00	0	35 220
KEB	1.01±0.40	3	$0.00\pm0.00$	0	$0.00\pm0.00$	0	35 202
KER	1.23±0.19	16	0.00±0.00	0	0.00±0.00	0 0	39 190
KES	0.01±0.39	3	0.00±0.00	Û	0.00±0.00	Ō	51 250
KEV	-3.97±0.10	30	0.00±0.00	0	0.00±0.00	0	9 261
KENJ	-0.30±0.48	23	0.00±0.00	ŏ	0.00±0.00	0	43 205
KGM	0.00±0.17	11	0.02±0.19	4	0.00±0.00	0	77 130
KHC	0.26±0.08	29	-0.05±0.07	22	-0.16±0.15	4	30 239
KHT	-0.40±0.40	3	0.00±0.00	Ő	0.00±0.00	ŏ	64 131
KIC	-0.72±0.09	22	0.00±0.00	0	0.00±0.00	0	75 242
KIM KIP	-0.44±0.34	4	$0.00\pm0.00$	0	0.00±0.00	0	104 207
KIR	-5.41±0.10	29	0.00±0.00	õ	0.00±0.00	õ	13 262
KIS	-1.53±9.99	2	0.00±0.00	0	0.00±0.00	0	29 218
K JF	-6.12±0.13	20	$0.00\pm0.00$	0	0.00±0.00	0	13 241
KKB	-0.43±0.48	2	0.00±0.00	ő	0.00±0.00	Ö	35 223
ккм	0.11±0.43	5	-0.27±0.40	1	0.00±0.00	0	76 116
KKN	0.99±0.32	5	$0.00\pm0.00$	0	0.00±0.00	0	48 143
KLG	-0.79±0.59	8	0.50±0.18	4	0.00±0.00	õ	113 121
KLL	-0.63±0.34	4	0.00±0.00	0	0.00±0.00	0	31 249
KMP	-0.86±0.26	8	0.00±0.00	0	0.00±0.00 0.00±0.00	0	55 124 31 238
KMSA	-0.24±0.48	2	0.00±0.00	ŏ	0.00±0.00	ŏ	53 192
KMU	-0.89±0.19	13	-0.28±0.15	4	-0.11±0.22	2	50 77
KMY KN <del>O</del>	0.26±0.50	3	$0.00\pm0.00$	0	0.00±0.00 0.42±0.32	0	24 260
KNT	-0.34±0.30	5	0.00±0.00	Č	0.00±0.00	ò	36 223
KOA	-1.72±0.49	2	0.00±0.00	Ō	0.00±0.00	0	99 82
KO0	-0.30±0.13	25	-0.05±0.10	17	0.03±0.31	1	64 155 75 229
KOI	-0.36±0.48 0.69±0.34	27	0.00±0.00	0	0.00±0.00	ŏ	51 132
KON	~1.10±0.10	23	-0.39±0.31	1	-0.07±0.30	1	22 256
KONO	-0.87±0.34	4	0.00±0.00	0	0.00±0.00	0	22 255
KOU	-0.09±0.48 0.53±0.19	13	0.00±0.00	0	0.00±0.00	ŏ	115 78
КРН	0.41±0.34	4	0.00±0.00	Ō	0.00±0.00	0	83 31
KPK	-0.54±0.39	3	$0.00\pm0.00$	0 22	0.00±0.00	0	67 357 28 232
INNO	0.01E0.11	c 0	0.0120.10			~	

Station	n time and	magn	itude effe	cts :	with 95% co	nfide	ence	limits
Station	Time term(s)	NT	N Nov Zemlya amp. term	Ni	5 Nov Zemlya amp. term	N2	Δ°	<b>\$</b> °
KRI	-0.83±0.27	8	-0.38±0.13	6	0.00±0.00	0	91	204
	-3.62±0.35	5	0.00±0.00	0	0.00±0.00	0	.9	257
KRP	0.76+0.52	21	0.25±0.21	5	0.00±0.00	0	125	72
KRR	0.22±0.16	12	-0.28±0.09	12	-0.41±0.15	4	91	204
KRV	-0.17±0.49	2	0.00±0.00	0	0.00±0.00	0	33	192
KSA	0.62±0.26	10	0.00±0.00	0	0.00±0.00	0	41	205
KSH	1.22±0.35	4	0.00±0.00	0	0.00±0.00	0	35	151
KSP	-0.23±0.23	9	$0.39\pm0.11$	8	0.00±0.00	0	28	237
KTG	1.08+0.17	18	-0.26+0.10	15	-0.48+0.18	4	22	201
KUG	-1.19±0.49	3	$0.00 \pm 0.00$	ŏ	0.00±0.00	ō	94	113
KUK	-0.53±0.31	6	0.00±0.00	Ō	0.00±0.00	ō	75	238
KUL	-0.03±0.42	з	0.00±0.00	0	0.00±0.00	0	36	160
KVG	-0.47±0.48	2	0.00±0.00	0	0.00±0.00	0	94	85
KUN	0.16±0.34	4	$0.00\pm0.00$	0	0.00±0.00	0	68	354
KYS	-0.08+0.15	15	0.00±0.00	0	0.00±0.00	U A	34	206
KZN	-0.31±0.15	10	$0.00\pm0.00$	ŏ	0.00±0.00	ŏ	37	224
LAH	-0.35±0.39	4	0.00±0.00	Ō	0.00±0.00	ō	43	156
LAO	-0.15±0.23	9	-0.04±0.14	7	-0.03±0.31	з	60	345
LAR	-0.38±0.34	5	$0.00 \pm 0.00$	0	0.00±0.00	0	65	344
LAI	-1.64±0.28	9	0.00±0.00	0	0.00±0.00	0	97	90
LHW	~1+1(±0+40 =1,12±0,09	22	0.00±0.00	15	0.00+0.00	0	66 25	335
LBFM	0.12+0.39	23	0.00±0.00	13	0.00±0.00	0 n		243
LCG	3.33±0.48	ž	0.00±0.00	ŏ	0.00±0.00	ŏ	84	338
LCI	-0.24±0.28	6	0.00±0.00	0	0.00±0.00	0	37	229
LDF	-1.10±0.26	7	0.00±0.13	6	0.00±0.00	0	34	255
LDM	-0.71±0.23	10	$0.00 \pm 0.00$	0	0.00±0.00	0	58	352
	-0.08±0.39	3	0.00±0.00	0,	0.00±0.00	0	59	345
LES	1.13+0.39	3	0.00+0.00	, 0	0.00±0.00	0	00 83	343
LEGH	-0.80±0.39	3	$0.00\pm0.00$	ŏ	0.00±0.00	ŏ	75	238
LEM	-2.52±0.31	9	-0.53±0.38	1	0.00±0.00	Ō	86	128
LEN	1.24±0.48	2	0.00±0.00	0	0.00±0.00	0	33	196
LFF	0.03±0.08	22	0.21±0.09	13	0.00±0.00	0	37	251
	-0.39±0.48	2	0.00±0.00	0	0.00±0.00	0	40	208
	-0.42±0.48	2 3	-U+U5±U+22	2	0.00±0.00	0	29	344
LGP	0.04±0.49	2	$0.00 \pm 0.00$	ŏ	0.00±0.00	0	71	107
LGR	1.53±0.29	6	0.00±0.00	ō	0.00±0.00	õ	41	253
LHC	-0.40±0.12	19	0.56±0.13	12	0.14±0.31	1	56	332
LHE	0.39±0.39	3	0.00±0.00	0	0.00±0.00	0	40	251
LHN	-2.77±0.48	2	0.00±0.00	0	0.00±0.00	0	20	256
	-0.72.0.22	2	0.00±0.00	U	0.00±0.00	0	58	321
LIS	0.22+0.13	19	0.00±0.00	ő	0.00±0.00	0	46	242 258
LIT	0.09±0.31	5	0.00±0.00	ŏ	0.00±0.00	ŏ	37	223
LJU	0.60±0.10	23	0.29±0.12	7	0.29±0.22	2	33	236
LLA	0.71±0.31	5	0.00±0.00	0	0.00±0.00	0	70	356
LLI	-0.21±0.39	3	0.00±0.00	ō	0.00±0.00	0	40	232
LLS	-0.16±0.23	9	-0.14±0.13	7	0.00±0.00	0	33	243
IMR	-2.04±0.40	20	-0.17+0.09	12	0.00±0.00	0	33	90 244
LNS	0.09±0.35	5	0.00±0.00	ō	0.00±0.00	ŏ	35	245
LNV	0.45±1.11	6	0.00±0.00	0	0.00±0.00	Ō	132	295
LOE	-2.43±0.49	2	0.00±0.00	0	0.00±0.00	0	62	128
LOF	-6.06±0.41	3	0.00±0.00	0	0.00±0.00	0	14	269
LOME	0.29±9.99	2	0.00±0.00	0	$0.00\pm0.00$	0	74	236
	-0.41±0.39	3 19	-0.16±0.09	13	0.00±0.00	2	60	240
LOR	-1.09±0.07	29	0.44±0.07	19	0.57±0.31	1	34	249
LPB	1.12±0.15	22	-0.05±0.24	2	0.07±0.31	1	115	297
LPF	-1.08±0.09	21	-0.10±0.08	16	0.00±0.00	0	35	255
LPG	0.56±0.34	4	-0.14±0.19	з	$0.00 \pm 0.00$	0	35	245
LPO	0.08±0.08	22	-0.21±0.08	15	0.00±0.00	0	38	201
LPS	0.93±0.23	10	U+U3±U+15	5	-U+21±U+22	2	9U 97	323 244
LRM	-0.51±0.09	23 6	0.00+0.00	0	0.4020.31	ò	61	350
LSA	2.76±0.49	š	0.00±0.00	õ	0.00±0.00	ŏ	48	136
LSD	0.52±0.48	2	0.00±0.00	Ō	0.00±0.00	Ó	35	244
LSF	-0.77±0.07	23	0.45±0.09	13	0.00±0.00	0	36	251
LSM	-0.11±0.48	2	0.00±0.00	0	0.00±0.00	0	70	353
LUB	-0.27±0.23	9	$0.00\pm0.00$	0	0.00±0.00	0	72	34U 72
	-0.15±0.83	4	0.00±0.00	U N	0.00±0.00	0	32	249
LUN	2.62±9.99	2	0.00±0.00	ŏ	0.00±0.00	ŏ	71	351
LWI	0.83±0.12	13	0.00±0.00	Ō	0.00±0.00	Ó	77	207
LZH	0.99±0.29	7	-0.44±0.17	4	0.00±0.00	0	44	119

				:		<b>.</b>	• • • • •
Station	n time and	magn	itude effec	τs _.	with 95% co	nfide	ence limits
Station	Time term(s)	N,	N Nov Zemiya amo, Lerm	N	S Nov Zemlya	N ₂	۵° ¢°
		-					
MADE	-0.88±0.39	3	0.00±0.00	0	0.00±0.00	0	39 252
MAIN	1.33+0.26	7	-0.05±0.22	4	0.00±0.00	n n	36 230
MAL	0.57±0.16	11	0.00±0.00	Ō	0.00±0.00	ŏ	46 252
MAN	-0.23±0.36	6	0.00±0.00	Õ	0.00±0.00	Ō	69 109
Mao	-0.16±0.30	5	0.00±0.00	0	0.00±0.00	0	37 238
MASJ	0.94±0.48	2	$0.00 \pm 0.00$	0	0.00±0.00	0	43 204
MAT	-1.03±0.12	29	-0.42±0.12	7	0.00±0.00	0	54 84
MRC	-1.93±0.13	20	0.59+0.10	15	-0.23+0.31	1	141 110
MBH	-0.04±0.41	3	0.00±0.00		0.00+0.00	ò	45 205
MBO	0.54±0.28	9	0.00±0.00	ŏ	0.00±0.00	õ	71 257
MBT	-1.56±0.40	3	0.00±0.00	0	0.00±0.00	0	103 120
MCC	-0.17±0.34	4	0.00±0.00	0	$0.00 \pm 0.00$	0	55 355
MCU	-0.67±0.14	16	0.00±0.00	0	0.00±0.00	0	145 100
MCU	0+24±0+39	3	0.00±0.00	0	0.00±0.00	0	41 233 70 252
MCW	-1.06±0.31	5	0.00±0.00	ŏ	0.00±0.00	õ	58 358
MDB	1.02±0.48	3	0.00±0.00	Ō	0.00±0.00	Ô	31 224
MDC	0.02±0.39	3	0.00±0.00	0	0.00±0.00	0	69 357
MDI	-0.69±0.34	4	0.00±0.00	0	0.00±0.00	0	34 242
MOD	0.17±0.36	4	0.00±0.00	0	$0.00\pm0.00$	0	44 88
110R MD7	-U+20±U+40	4	0.00±0.00	0	0.00±0.00	0	62 132 131 293
MED	-1.71+0.40	3	0.00±0.00	ň	0.00+0.00	õ	74 134
MEI	-1.46±0.48	ž	0.00±0.00	ŏ	0.00±0.00	ŏ	41 231
MEM	-0.84±0.23	14	0.00±0.00	Ō	0.00±0.00	Ō	31 249
MEO	-0.16±0.39	з	0.00±0.00	0	$0.00 \pm 0.00$	0	71 337
MES	-2.16±0.23	10	$0.00 \pm 0.00$	0	0.00±0.00	0	40 231
MEE	-1.30±0.34	20	0.07±0.09	0	0.00±0.00	U O	41 231
MES	1.21+0.48	20	0.00+0.00	14	0.00±0.00	0	71 354
MET	-0.38±0.39	3	0.00±0.00	ŏ	0.00±0.00	ō	35 217
MGD	0.47±0.49	2	0.00±0.00	0	0.00±0.00	0	35 59
MGN	0.96±0.26	11	0.00±0.00	0	0.00±0.00	0	34 212
MGR	0.34±0.34	4	$0.00 \pm 0.00$	0	0.00±0.00	0	38 232
MHC	0.55±0.08	27	0.31±0.31	2	0.00±0.00	0	10 357
MHK	-0.76+0.39	3	0.23±0.10	- <b>1</b>	0.00±0.00	ñ	51 114 66 336
MID	1.22±0.26	7	0.00±0.00	ŏ	0.00±0.00	ō	47 15
MII	-0.65±0.48	2	0.00±0.00	0	D.00±0.00	0	29 223
mim	-0.81±0.10	15	-0.11±0.16	4	0.00±0.00	0	56 315
MIN	-0.27±0.09	28	0.00±0.00	0	$0.00\pm0.00$	0	67 357
M17	-6.23±1.10	37	0.00±0.00	0	0,00±0,00	U n	142 136 52 90
MJZ	-9,90±0,69	10	0.00±0.00	ŏ	0.00±0.00	ŏ	139 82
MKL	0.51±0.48	2	0.00±0.00	Ō	0.00±0.00	ō	62 193
MKRJ	0.51±0.40	з	0.00±0.00	0	0.00±0.00	0	43 205
MKS	-1.36±0.33	6	0.00±0.00	0	0.00±0.00	0	88 116
MLR	$0.68\pm0.14$	20	0.00±0.00	0	0.00±0.00	0	31 221
mts mmo	0.31±0.23	10	0.00±0.00	ů n	0.00±0.00	ñ	39 200 79 349
MMR	0.23+0.40	3	0.00±0.00	Ő	$0.00\pm0.00$	ŏ	35 222
MME	1.03±0.34	4	0.00±0.00	ŏ	0.00±0.00	ō	35 240
MMK	0.60±0.24	8	0.33±0.13	6	0.00±0.00	0	34 244
mmn	1.57±0.51	2	0.00±0.00	0	$0.00 \pm 0.00$	0	38 231
MNA	0.09±0.31	5	$0.00\pm0.00$	0	0.00±0.00	0	68 354
PINE	-5.27±9.99	2	0.00±0.00	0	0+00±0+00	0	41 231
MNT	-0.77+0.31	61	0.00+0.00	'n	0.00±0.00	õ	83 109
MNK	-6.97±0.44	3	0.00±0.00	ŏ	0.00±0.00	õ	23 225
MNL	0.84±0.40	4	0.00±0.00	0	0.00±0.00	0	41 156
MNQ	0.14±0.34	4	$0.00 \pm 0.00$	0	0.00±0.00	0	40 232
MNS	-0.43±0.14	10	0.00±0.00	0	0.00±0.00	0	37 236
PINT	-1.16±0.11	20	0.00±0.09	12	0.00±0.16	1 0	56 319 68 354
MNIA	1.26+1.10	5	0.00±0.00	ñ	0.00±0.00	ñ	140 86
MNY	-0.31±0.24	9	0.00±0.00	ŏ	0.00±0.00	ō	36 246
MOA	-0.14±0.10	18	0.00±0.00	0	0.00±0.00	0	31 238
MOF	-0.46±0.34	4	0.00±0.00	0	0.00±0.00	0	33 246
MOK	0.30±0.39	З	0.00±0.00	0	0.00±0.00	0	83 31
MOL	-2.47±0.48	3	$0.00\pm0.00$	õ	0.00±0.00	0	20 262
PIOPI MOM T	-U+43±U+38	5	0.00±0.00	0	0+00±0+00	U n	33 00 47 254
MUU	0,29+0.70	2 5	0.00±0.00	ŏ	D.00±0.00	õ	131 103
MOS	-5.59±0.43	š	0.00±0.00	ō	0.00±0.00	Ō	19 211
MOT	0.11±0.26	7	0.00±0.00	0	0.00±0.00	0	75 341
NOX	-0.61±0.10	29	-0.19±0.07	23	-0.07±0.15	4	29 243
MOY	1.58±0.41	3	$0.00 \pm 0.00$	0	U+00±0+00	0	29 113
MKG	U.10±U.20	3	0,00=0,00	U	0-0020-00	0	00 066

τ

ce limits	۵° ۴°	110 125	37 174 40 231	38 196	60 351 66 251	66 343 139 85	32 194	91 202 44 257	98 107	25 252	37 243	73 354	82 301 -	30 230 69 334	75 199	21 256	66 322 20 256	20 256	20 256	46 152	34 246	71 351 59 354	63 320	24 77	28 231 50 33	41 157	52 105 48 252	35 229	58 152 66 131	44 205	16 330	40 232	89 195	38 234	20 255	11 94	67 356 17 262	63 130	58 354 20 51	17 237	14 125	70 352 69 352	70 352	20 212 52 193	70 336	30 220	23 259 45 246	33 241	39 251 36 356	35 88 55 88	40 231	55 88 47 253	69 358	69 331 83 31	38 231	35 244	67 357	35 244 33 243	313 00
nfiden	*"	- 0	00	0	~ ~		0	4 0	0	-	• •	0	- 0	• c	00	0 0	- c	• •		- - ~	0	0 0	0	- 0 ·	- 0	0	0 0	00	00	00	0	- 	• •	00	00	0	0 0	» o	- 0 0	-	0	0 0	0	0 0	00	0 0		0	0 0	<b>5</b> m	0	0 0	0	- c	00	0 (		00	2
ith 95% co	5 Nov Zemlya amp. term	0.00±0.00	0.00±00.00	0.0400.0	0.09±0.31	0.00+0000	0.00±0.00	-0.38±0.16 0.00±0.00	0.00+0-00	0.00±0.00 0.47±0.22	0.00*00.00	0.00±00.00	0.18±0.31	0.00+0.00	0.00±0.00	0.00±0.00	0.00+0.00	0.00±00.0	0.0040.00	-0.63±0.25	0.00±00.00	0.00±0.00 0.44±0.30	0.00+0.00	0.00±0.00	-U.48±U.31 D.00+0.00	0.00±0.00	0•00∓0•00	0.00+00.00	0.00±0.00	0.00+00-00	0.00±0.00	0.00+0.00	0.00±00.00	0.00±0.00	0.00±0.00	0.00±0.00	0.0040.00	0.00+0000	0.00*0.00	0.00+00.00	0.00±0.00	0.00±0.00	0.040.0	0.00±0.00	0.00+0.00	0.00±00.0	0.00±0.00 0.00±0.00	0.00±0.00	0.00±0.00	-0.17±0.22	0.00±00.0	0.00*00.00	0.00±0.00	0•00∓0•00	0.00+0000	0.0040.00	0.00*00.00	0.00+0.00	····
r S	ž	0	00	0	<b>თ</b> ი	00	0 ;	<u>_</u> 0	0	N 10	00	0	ωç	20	. <del>1</del>	4 (	<b>-</b> -	• თ	00	ہ 19	0	o y	20	0 9	2 0	0	0 0	00	00	0	0	0 C	0	00	00	0	0 0	• •	0 0	0	o	0 0	0	0 0	00	0 0	0 0		0 0	⊃ ~	0	~ ⊂	0	00	00	0(		00	2
itude effeci	N Nov Zemlya amp. term	0.00±00.0	0.00±0.00 0.00±0.00	0.00±00.0	-0.17±0.10	0.00±0.00	0.00±0.00	-0.03±0.10	0.00+00.0	0.38±0.22 0.82±0.14	0.00±0.00	0.00±00.00	0.29±0.13 -0.00±0.10	0,040,00	-0.08±0.14	0.45±0.22	-0.14+0.31	0.53±0.11	0.00±0.00	0.18±0.10	0.040.0	0.00±0.00 =0.11±0.00	0.00±0.00	0.00±0000	0.00+0.00 0.00+0.00	0.00±0.00	0.010100	0.00±0.00	0.00±0.00	0.00±0.00	0.00+00.0	0.00±0.00	0.00±00.0	0.00±0.00	0.00±0.00	0.00±00.0	0.00±0.00 0.00±0.00	0.00±0.00	0.00±0.00	0.00+0+00	0.00±0.00	0.00±0.00 0.00±0.00	0.00±00.00	0.00±0.00	0.00±0.00	0.00+00.0	0.00±0.00 0.00+0.00	0.05±0.12	0.00±00.00	0.46±0.12	0.00±0.00	-0.20±0.22 0.00±0.00	0.00±0.00	0.01010	0.00±00.0	0.00±0.00	0.00±0.00	0.00±0.00	
ingen	ż	m	ຫມ	~	2 0	4 4	m	- 4 0	~ 1	ດຫຼ	<u>,</u> "	ø	ი ე	<u>1</u> ~	16 0	თ	<b>n</b> C	1	~ ~	s S	~	2 40	5 01	2 N	ς c	4	<b>∩</b> 4	r N	mι	0 ~	~ ;	4 4	4	ოი	o n	m	~ ~	ហេ	<b>~</b> (	31	~	~ ~	101	m v	n in	4	2 10	, <del>4</del>	∾ :	14	m	n u	2	m <del>•</del>	r 00	ທຸ	<u> </u>	<ul><li>N ₩</li></ul>	7
n time and	Time tern(s)	0•33±0•90	I•53±0•25 -1•71±0•34	1.30±0.27	-0.69±0.13	-10.45±0.57	-0.20±0.40	-1.11±0.30	-1-99#0-29	-0.11#0.31 -0.82#0.12	-0.24±0.39	0.57±0.28	0.73±0.35	-1.46±0.48	2.04±0.18	-3.47±0.26	-1.21#U.48	-3.45±0.23	-1.01±9.99	0.54±0.13	-0.54±0.48	0.82±0.48 -0.14±0.12	-0.52±0.48	$0.94\pm1.10$	-1.40±0.29	0.39±0.40	-0.22±0.32	-0.04±0.48	-1.75±0.40	0.82±0.48	-1.77±0.28	1.04±0.15 -0.99±0.39	0.91±0.35	0.63±0.39 -2 26±0.39	-2.71±0.40	-3.63±0.50	0.58±0.48 -5.42±0.48	-0.63±0.32	-0.01±0.26	-6.53±0.11	-0.87±0.59	-0.23±0.48 -0.15±0.48	-0.07±0.48	-4.18±0.48	-0.64±0.31	0.23±9.99	0.33±0.49 -0.77+0.48	0.83±0.10	-0.46±0.48 0.00 0.10	-0.25±0.27	-1.44±0.40	-0.69±0.32 1.86±0.39	0.31±0.48	-1.04±0.39 0 76±0 24	0.95±0.25	-0.58±0.30	-1.0140.11	-0.91±0.48	00.00000
Statior	Station	mRuit	ISM	MSL	MSU Metu	MSZ MSZ	MTA	MTE	MTN	UU1 NIN	MUIF	MWC	MWT 75	MZO	INN	NAO		NB2	NC3	ION	NEC	NEL NEIL	AHN AHN	A I N	NIK	NIL	NJ2 NKM	NKY	NLG	HON	NOR	NON N	NPA	NPL	NRAD	NRI	NRR NSS	NST	NT I	NUR	NWAO	NYC	NYR	NBO	200	008	0001	069	066		110	01S	orc	OLY OPA	OR I	ORO	orv Orv	ORX CCC	6 C D

i,

Ð

Station	n time and	magn	itude effec	ts	with 95% co	nfide	ence	limits
Station	Time term(s)	N	N Nov Zemlya amp. term	N	S Nov Zemlya amp. term	N ₂	۵°	۴°
OTT	-1.12±0.10	24	0.14±0.07	22	-0.08±0.17	4	57	320
OUA	$0.05 \pm 1.10$	3	0.00±0.00	0	0.00±0.00	0	116	75
	-(+12±0+34	4	0.00±0.00	0	0+00±0+00 0-00±0-00	0	13	246
OXM	-0.96±9.99	2	$0.00\pm0.00$	ŏ	0.00±0.00	ő	86	234
OYM	-1.07±0.13	12	0.00±0.00	ō	0.00±0.00	õ	55	84
PAD	-0.58±0.39	3	0.00±0.00	0	0.00±0.00	0	34	239
PAE	1.43±0.60	7	-0.10±0.23	2	0.16±0.31	1	123	28
PAIG	-0.06±0.48	2	0.00±0.00	0	0.00±0.00	0	37	221
PAS	-1.38±3.39	2	0.00±0.00	0	0.00±0.00	0	51	317
PBA	1.03±9.99	2	0.00±0.00	ŏ	0.00±0.00	ŏ	65	139
PBJ	-1.66±9.99	3	0.00±0.00	Ō	0.00±0.00	ō	88	332
PCA	1.23±0.39	з	0.00±0.00	0	0.00±0.00	0	46	10
PCC	0.00±0.35	4	0.00±0.00	0	0.00±0.00	0	69	358
PCI	2.29±9.99	2	-1.72±0.41	1	$0.00\pm0.00$	0	84	114
PCN	-0.68+0.39	3	0.00±0.00	0	0.00±0.00	0	50	241
PCT	-0.82±0.35	ě	-0.70±0.16	5	0.00±0.00	ŏ	64	129
PDA	0.88±0.39	4	0.00±0.00	Ō	0.00±0.00	0	52	274
PEC	0.26±0.34	4	0.00±0.00	0	0.00±0.00	0	73	353
PEL	0.12±0.65	7	$0.00\pm0.00$	0	0.00±0.00	0	131	295
PEI	-0.26±0.40	3	0.00±0.00	0	0.00±0.00	0	44	58
PGC	-0.60+0.23	10	0.03+0.27	2	0.00±0.00	0	54	222
PGD	0.90±0.34	4	0.00±0.00	ō	0.00±0.00	ŏ	36	238
PGP	-1.42±0.49	З	0.00±0.00	Ō	0.00±0.00	Ō	70	109
PHC	-0.53±0.13	14	-0.35±0.17	5	0.06±0.18	3	56	2
PII	-0.20±0.48	2	0.00±0.00	0	$0.00 \pm 0.00$	0	36	239
PIM	-1.14±0.48	2	$0.00\pm0.00$	0	$0.00\pm0.00$	0	87	338
PJ0 PJ6	-2.03±0.49	2	0.00±0.00	ň	0.00±0.00	0	41	14
PKI	0.92±0.32	5	$0.61\pm0.19$	4	$0.00\pm0.00$	ß	49	143
PLAT	L-63±0-48	2	0.00±0.00	0	0.00±0.00	Õ	47	253
PLD	-0.77±0.34	4	0.00±0.00	0	0.00±0.00	0	34	222
PLDF	-0.66±0.34	4	0.00±0.00	0	$0.00 \pm 0.00$	0	36	249
PLE	0.64±0.48	2	$0.00\pm0.00$	0	0.00±0.00	0	34	228
PLG	-0.54+0.48	2	0.00±0.00	0	0.00±0.00	0	- 36 40	232
PLM	0.97±0.28	6	0.00±0.00	ŏ	0.00±0.00	ŏ	73	353
PLP	-1.62±0.35	5	-0.06±0.23	2	0.00±0.00	0	74	106
PLV	-0.17±0.49	2	0.00±0.00	0	0.00±0.00	0	60	122
PMA	0.51±0.34	4	$0.00 \pm 0.00$	0	0.00±0.00	0	49	26
PME	-0.20±0.48	2	$0.00\pm0.00$	0	0.00±0.00	0	44	16
PMO	-1.JI±0.14	14	0.02+0.23	2	-0.03+0.31	1	120	26
PMR	-0.25±0.11	23	-0.17±0.08	19	-0.05±0.18	3	44	16
PNI	-1.33±0.39	з	0.00±0.00	0	0.00±0.00	0	36	244
PNJ	-0.52±0.40	з	0.00±0.00	0	0.00±0.00	0	61	318
PNL	0.79±0.32	5	0.00±0.00	0	0.00±0.00	0	47	10
PNS	0.90±0.90	25	-0.08±0.22	14	-0.06+0.22	2	113	298
POO	-0.69+0.14	22	-0.38±0.03	6	-0.20+0.30	1	56	158
POW	-0.87±0.34	4	0.00±0.00	õ	0.00±0.00	Ō	68	331
PPCY	-0 <b>.92±0.</b> 39	з	0.00±0.00	0	0.00±0.00	0	40	209
PPE	-0.66±0.34	4	0.00±0.00	0	0.00±0.00	0	30	220
PPI	-2.02±0.24	11	-0.29±0.25	2	0.00±0.00	0	122	133
PPR	1+21±0+63	3	-0.32±0.20	5	0.00+0.00	1 N	123	112
PPT	1.63±0.17	11	-0.16±0.19	3	0.15±0.31	1	123	28
PRA	0.34±0.15	19	0.34±0.09	14	0.40±0.23	2	29	239
PRE	-0.41±0.26	8	-0.14±0.14	7	0.04±0.22	з	100	204
PRG	-2.61±9.99	4	$0.00 \pm 0.00$	0	0.00±0.00	0	36	237
PRI	1.14±0.08	27	0.00±0.00	0	0.00±0.00	0	27	336
PRM	-0.80+0.13	13	0.00±0.00	ň	0.00+0.00	0	69	323
PRN	0.93±0.48	2	0.00±0.00	ō	0.00±0.00	õ	69	352
PRO	0.79±0.50	2	$0.00 \pm 0.00$	Û	0.00±0.00	0	35	237
PRS	0.31±0.31	6	$0.00 \pm 0.00$	0	0.00±0.00	0	71	357
PRT	1.20±0.30	11	0.00±0.00	0	0.00±0.00	0	36	239
PRU	U+27±0+09	30	0.26±0.07	24	~U+U6±U+30	1	29	∠33 205
PR7	-U+43±U+48 1,29±0.45	3	0+00±0+00 0+00±0+00	0	0.00±0.00 0.00+0.00	0	33	147
PSH	0.00±0.31	6	0.00±0.00	Ő	0.00±0.00	õ	40	159
PSI	-1.88±0.16	12	-0.28±0.23	2	0.00±0.00	Ō	75	134
PSN	1.18±0.31	6	0.00±0.00	0	0.00±0.00	0	32	218
PSO	1.09±0.39	4	0.00±0.00	0	0.00±0.00	0	100	311
PSZ	0.30±0.25	10	0.00±0.00	0	0.00±0.00	0	30	231
PTJ	0.02±0.39	3	0.00±0.00	0	0.00±0.00	õ	33	235
· · •		*		-		-		

C

ç,

Station	n time and	magn	itude effec	ts	with 95% cor	ofide	ence limits
Station	Time term(s)	NŢ	N Nov Zemlya amp. term	N	S Nov Zemlya amp. term	N²	Δ° φ°
PTL	0.23±0.34	5	0,00±0,00	0	0.00+0.00	0	38 221
PTN	-0.60±0.31	5	0.00±0.00	Ō	0.00±0.00	Ō	58 320
PTO	0.72±0.10	19	-0.23±0.33	1	0.00±0.00	0	44 259
PIS	U+ 34±0+48	2	0.00±0.00	0	0.00±0.00	0	42 234
PUK	-1.55±0.50	2	$0.00\pm0.00$	ŏ	0.00±0.00	õ	35 227
PUL	-6.81±0.40	з	0.00±0.00	0	0.00±0.00	0	17 227
	0.84±0.28	19	$0.00\pm0.00$	0	0.00±0.00	0	33 221
PULA	-1.03±0.48	3	0.00±0.00	0	0.00±0.00	ñ	30 228 69 328
PYA	-1.04±0.49	2	0.00±0.00	Ō	0.00±0.00	ō	30 197
PYM	-0.04±0.23	9	$0.00 \pm 0.00$	0	0.00±0.00	0	36 249
PZ1 P77	-1.85±U.48	2	U+UU±U+UU 0+00±0+00	0	0.00±0.00	0	41 231
QASM	0.63±0.40	3	0.00±0.00	ŏ	0.00±0.00	ŏ	48 194
QCP	-0.29±0.35	6	0.00±0.00	0	0.00±0.00	0	69 109
QIZ	-0.20±0.40	3	0.00±0.00	0	0.00±0.00	0	62 119
QUE	1.03±0.17	14	-0.49±0.31	1	0.00±0.00	ů	30 261
QUI	-3.06±9.99	5	0.00±0.00	ō	0.00±0.00	Ō	102 312
QZH	-1.58±0.40	3	0.00±0.00	0	0.00±0.00	0	59 108
QZO	-0.91±0.48	2	$0.00\pm0.00$	0	0.00±0.08	0	71 337
RAC	-0.04±0.31	7	0.00±0.00	ŏ	0.00±0.00	ŏ	28 234
RAM	2.09±0.68	2	0.00±0.00	Ō	0.00±0.00	ō	36 198
RAO	0.18±1.10	2	0.00±0.00	0	0.00±0.00	0	128 62
RBA	-0.74+0.31	8 5	0.00±0.00	U N	0.00±0.00	0	124 40
RBL	0.32±0.39	3 3	0.00±0.00	õ	0.00±0.00	ŏ	33 238
RBZ	-0.60±0.34	5	0.00±0.00	0	0.00±0.00	0	50 254
RCI	-1.37±0.40	5	$0.00\pm0.00$	0	0.00±0.00	0	40 231
RES	$-1.12\pm0.15$	19	-0.54±0.08	14	-0.31+0.22	2	31 345
REY	1.29±0.24	12	0.00±0.00	Ō	0.00±0.00	ō	27 291
RGS	-5.36±0.48	2	0.00±0.00	0	0.00±0.00	0	19 260
RHO	2.29±0.48	3	$0.00\pm0.00$	0	$0.00\pm0.00$	0	39 215
RIV	0,30±0,56	8	0.51±0.12	7	$0.24\pm0.31$	1	124 95
RJF	-0.66±0.09	18	0.03±0.08	15	0.00±0.00	Ō	37 251
RKG	-0+90±0+90	3	0.00±0.00	0	0.00±0.00	0	115 126
RLO	-1.46±0.24	5 8	0.00±0.00	0	0.00±0.00	0	69 334
RMP	0.08±0.12	22	0.00±0.00	ō	0.00±0.00	õ	37 236
RMQ	0.23±1.09	3	0.00±0.00	0	0.00±0.00	0	116 94
RMU RMM	0.07±0.40	3	0.00±0.00	0	0.00±0.00	0	69 348 59 357
ROB	-1.11±0.13	10	0.00±0.00	ŏ	0.00±0.00	ŏ	36 243
ROC	0.24±0.51	2	0.00±0.00	0	$0.00 \pm 0.00$	0	59 321
ROF	-0.36±0.39	3	0.00±0.00	0	0.00±0.00	0	33 246
ROL	-0.26±0.48	3	-0.30±0.30	1	0.00±0.00	0	58 230 67 332
ROM	1.47±9.99	2	0.00±0.00	ō	0.00±0.00	õ	37 236
RRL	0.45±0.48	2	0.00±0.00	0	0.00±0.00	0	36 244
RRU RSCP	-1.85±0.61	2	0.00±0.00	0	0.00±0.00	0	70 337
RSL	-0.25±0.26	9	0.00±0.00	ŏ	0.00±0.00	ŏ	35 245
RSM	0.39±0.48	з	0.00±0.00	0	$0.00 \pm 0.00$	0	35 237
RSNT	$-0.59\pm0.39$	3	$0.00\pm0.00$	0	$0.00\pm0.00$	0	44 353
RSON	-0.69±0.34	5	0.21±0.22	2	0.00±0.00	0	54 336
RSP	-0.77±0.48	2	0.00±0.00	0	0.00±0.00	Ó	35 244
RSSD	-0.49±0.35	4	0.22±0.31	1	0.00±0.00	0	62 343
RUR	-0.02+0.32	5 5	-0.04±0.24	0	0.00±0.00	0	120 25
RXF	-0.44±0.26	7	0.00±0.00	ō	0.00±0.00	ŏ	58 352
RYD	0.31±0.34	4	0.00±0.00	0	0.00±0.00	0	49 190
RZN	0.31±0.48	2	0.00±0.00	0	0.00±0.00	0	35 221
SAL	-0.46±0.12	13	0.00±0.00	0	0.00±0.00	õ	34 241
SALJ	0.48±0.48	2	0.00±0.00	ō	0.00±0.00	Ó	43 205
SAM	0.43±0.49	3	0.00±0.00	0	0.00±0.00	0	34 163
SAN	U+36±0+71 0.17+0-09	8 20	0.00±0.00	0	0.00±0.00 0.00+0.00	U N	132 294 70 357
SAOF	-1.04±0.39	3	0.00±0.00	ŏ	0.00±0.00	ŏ	36 243
SAP	-1.27±0.35	4	0.00±0.00	0	0.00±0.00	0	48 78
SAR	1.39±0.67	2	$0.00\pm0.00$	0	0.00±0.00	0	34 230
SAX	0.23±0.26	15	-0.17±0.16	4	0.00±0.00	õ	33 243
SBA	-2.07±0.13	22	0.00±0.00	Ó	0.00±0.00	Ó	163 137
SBB	0.38±0.26	7	0.00±0.00	0	0.00±0.00	0	72 354

Û

Station	time and	m 200	itudo offo	ote i	with 95% on	ofide	anoo limita
Station		Mayin N*	N New Zen hus	UUS 1 N*		114 I UE • • • • • • • • • •	
Station	lime term(s)	Ny	amp. term	Nj	amp. term	N ₂	$\Delta^* \varphi^*$
CDE	-0.57+0.24	٨	0.00+0.00	0	0.00.0	0	27 242
SCB	-0.56±9.99	2	0.00±0.00	õ	0.00±0.00	ŏ	59 323
SCG	1.19±0.39	3	0.00±0.00	ō	0.00±0.00	õ	82 300
SCH	-1.05±0.12	22	-0.16±0.09	16	0.08±0.22	2	46 317
SCM	0.48±0.49	2	$0.00 \pm 0.00$	0	0.00±0.00	D	44 15
SCU	1+51±0+32	2	-0+23±0+14	5	0.00+0.00	0	22 301
SDB	$-0.01\pm0.48$	8	0.00±0.00	0	0.00±0.00	ů n	92 220
SDI	-0.24±0.30	5	0.00±0.00	ō	0.00±0.00	ŏ	37 234
SDN	-0•88±0•35	4	0.00±0.00	0	0.00±0.00	0	49 26
SDV	1.08±0.16	10	$0.12 \pm 0.22$	3	$0.00 \pm 0.00$	0	91 307
SEA	0.65±0.56	2	$0.00\pm0.00$	0	0.00±0.00	0	59 358
SEU	-1.25+0.12	20	-0.45+0.18	U ⊿	0.00±0.00	0	43 34 56 249
SET	0.05±0.39	3	$0.00\pm0.00$	0	0.00+0.00	ŏ	44 242
SFA	-1.03±0.24	8	-0.12±0.18	3	-0.26±0.26	2	54 317
SFF	0.69±1.55	2	0.00±0.00	0	0.00±0.00	0	129 103
SFI	0.69±0.39	3	$0.00 \pm 0.00$	0	0.00±0.00	0	35 238
SFS	1.15±0.48	2	$0.00\pm0.00$	0	$0.00\pm0.00$	0	47 254
560 56H	0.41+0.35	2	0.00±0.00	ň	0.00±0.00	ň	51 234
SGO	0.31±0.24	8	0.00±0.00	ŏ	0.00±0.00	ŏ	38 232
SGR	-1.04±0.28	6	0.00±0.00	Ō	0.00±0.00	Ō	35 255
SGS	-0.24±0.48	2	0.00±0.00	0	0.00±0.00	0	70 321
SHBJ	0.76±0.48	2	$0.00 \pm 0.00$	0	0.00±0.00	0	42 202
SHD	1.38±0.27	7	$0.00\pm0.00$	0	0.00±0.00	0	37 180
SHOR	1.29+0.12	19	0.00±0.00	ő	0.00±0.00	0	10 238
SHK	-2.44+0.16	14	-0.66+0.12	7	-0.26+0.22	ä	54 90
SHL	-0.27±0.13	22	-0.07±0.22	2	0.00±0.00	ŏ	52 136
SHW	0.76±0.49	2	0.00±0.00	0	0.00±0.00	0	61 358
SIC	-1.31±0.39	Э	0.00±0.00	0	0.00±0.00	0	51 315
SID	1.62±0.34	5	0.00±0.00	0	0.00±0.00	0	26 288
SIU	-U+6(±U+24	22	0.00±0.00	0	0.00±0.00	0	69 330 SO 7
SJG	$0.03\pm0.10$ $0.19\pm0.17$	12	-0.48±0.13	6	-0.39+0.22	2	81 305
SKA	-6.09±0.40	.5	0.00±0.00	ŏ	0.00±0.00	õ	18 259
SKI	0.14±0.27	7	0.01±0.16	4	0.21±0.22	2	81 301
SKO	-0.79±0.10	23	-0.08±0.23	2	$0.00 \pm 0.00$	0	35 225
SLC	-0.58±0.26	7	$0.00\pm0.00$	0	0.00±0.00	0	56 349 70 357
	-0.68+0.28	0	0.07+0.19	⊿	0.00±0.00	ñ	33 244
SLL	-3.61±0.39	š	$0.00\pm0.00$	ō	0.00±0.00	õ	20 252
SLY	0.94±0.48	2	0.00±0.00	Ō	0.00±0.00	Ō	38 193
SMF	-1.08±0.08	16	0.08±0.09	13	0.00±0.00	0	35 249
SMY	-0.79±0.29	7	$0.00 \pm 0.00$	0	$0.00 \pm 0.00$	0	48 46
SNA	-3.05±0.15	15	-0.14±0.30	1	0.00±0.00	0	148 213
SNF	-0.07+0.15	4	0,00±0,00	0	0.00±0.00	0 n	51 2J1 71 131
SNY	-0.08±0.35	4	$0.00 \pm 0.00$	ŏ	0.00±0.00	ŏ	44 95
SOBI	-1.64±9.99	3	0.00±0.00	0	0.00±0.00	0	100 273
SOD	-5.89±0.11	31	0.00±0.00	0	0.00±0.00	0	11 252
SOF	0.38±0.26	9	0.00±0.00	0	0.00±0.00	0	34 224
SUH	-U+21±U+48	2	0.00+0.00	0	0+00±0+00	0	36 222
SOP	0.38+0.25	14	0.07+0.31	1	-1,12±0,32	1	31 235
SPA	-2.14±0.15	22	-0.05±0.09	15	0.25±0.22	2	163 180
SPC	0.26±0.23	15	0.00±0.00	0	D.00±0.00	0	29 231
SPF	-0.53±0.13	11	0.07±0.13	6	$0.00 \pm 0.00$	0	37 244
SRI	0.89±0.29	6	0.00±0.00	0	0.00±0.00	0	37 188
SRN	-U+13±U+49	10	0.00±0.00	0	0+00±0+00	0	31 220
SRO	0.99+0.48	2	0.00±0.00	ő	0.00+0.00	ŏ	47 253
SRS	-0.26±0.48	2	0.00±0.00	ō	0.00±0.00	ō	36 223
SRY	-1.12±0.16	14	0.00±0.00	0	0.00±0.00	0	55 84
SSB	-0.45±0.24	9	$0.00 \pm 0.00$	0	0.00±0.00	0	36 248
SSC	-1.07±0.10	20	-0.06±0.10	11	-0.04±0.31	1	34 255
SSE	-1.16±0.26	- 37	-U+ (3±U+18	17	0.00±0.00	0	35 250
SSR	0.12+0.24	10	0.00±0.00	10	0.00±0.00	ŏ	32 227
STB	-0.74±0.39	3	0.00±0.00	ō	0.00±0.00	0	31 249
STC	0.95±0.34	4	0.00±0.00	0	0.00±0.00	0	70 357
STJ	-1.02±0.16	15	-0.43±0.19	Э	0.00±0.00	0	50 303
STK	-0.65±0.13	15	0.00±0.00	0	$0.00\pm0.00$	U O	113 103 32 24F
SIK	0.23±0.12	<i>d</i> 11	0+00±0+00 ∩⊾0∩±∩.00	U 0	0.00±0.00	ñ	42 260
STU	-0.48±0.11	23	0.00±0.08	17	0.51±0.18	š	32 244
STV	-2.21±0.33	5	$0.00 \pm 0.00$	0	0.00±0.00	0	36 243
SUD	-1.13±0.39	3	0.18±0.22	2	$0.00 \pm 0.00$	0	57 325
SUE	-0.86±0.34	4	$0.00 \pm 0.00$	0	0.00±0.00	0	22 263

¢

τ.

Station	n time and	magn	itude	effe	cts	with	95% d	confide	nce	limits
Station	Time term(s)	NT	N Nov	Zemiya	Nt	S Nov	Zemlya	∋ N ₂ *	Δ°	φ°
CHE	-6 22.0 11	10	0.00		•			•		220
SVE	-4.98±0.50	3	0.00;	±0.00	0 0	0.00	)±0+00	0	15	169
SVT	1.32±0.45	5	-0.05	±0.18	5	0.76	±0.22	3	85	299
SVV	1.07±0.48	2	0.00	±0.00	0	0.00	$) \pm 0.00$	0	85 44	299
SYO	-4.42±0.15	15	0.00	±0.00	ŏ	0.00	)±0.00	ŏ	142	189
SYP	0.82±0.39	3	0.00	±0.00	0	0.00	0.00±0	0	72	356
TAB	1.63±0.14	22	0.00:	±0.00	0	0.00	)±0.00	0	36	192
TAF	0.12±0.25	11	0.00	±0.00	Ő	0.00	)±0.00	Ő	48	249
TAM	-0.32±0.34	10	0.00	±0.00	0	0.00	0.00±0	0	57	237
TAN	-0.24±0.28	7	0.12	±0,19	3	0.00	$0 \pm 0 \cdot 0 \pm 0$	0	92	187
TAU	0.15±0.13	24	0+00:	±0.00	Ő	0.00	)±0.00	0	131	103
TBR	-0.45±0.34	4	0.00:	±0.00	Ō	0.00	)±0.00	0	61	318
TBT	-0.07±9.99	2	0.00	±0.00	0	0.00	0.00±0	0	58	262
TBZ	-2.22±0.48	4	0.00	±0,00	0	0.00	)±0.00	0	21 33	252
TCE	0.99±0.48	2	0,00	±0.00	ŏ	0.00	0±0.00	ŏ	87	298
TCF	-0.65±0.08	25	0.05	±0.08	16	0.00	00.0±0	0	36	250
TDJ	-0.40+0.48	2	0.00	£0.00	0	0.00	)±0.00	U D	62	193
TDS	0.88±0.39	3	0.00	±0.00	ŏ	0.00	±0.00	õ	38	231
TEC	0.85±0.50	2	0.00	±0.00	0	0.00	00.0±	0	47	248
IEH TEN	2+08±0+18 0-40±0-39	21 4	0.00	±0.00	0	0.00	)±0.00	0	38	185
TET	0.39±0.19	12	0.00	±0.00	ŏ	0.00	)±0.00	ŏ	90	201
TFO	1.23±0.28	6	-0+34:	±0.16	5	0.00	0•0±0•00	0	72	348
TGI	1.57±0.25	8	0,00:	±0+00	0	0.00	0.00±0	0	40	175
TIA	0.69±0.32	5	0.00	±0.00	ŏ	0.00	)±0.00	0	48	105
TIC	-1.05±0.34	4	0.00	±0.00	Ō	0.00	)±0.00	Ō	75	243
TIK	-0.31±0.49	2	0.00:	±0.00	0	0.00	0.00±0	0	21	58
TIO	0.56±0.18	10	0.00	±0.00	0	0.00	)±0.00	0	32 53	253
TIR	-0.29±0.16	15	0.00	±0.00	ŏ	0.00	±0.00	ŏ	36	227
TIY	1.17±0.35	4	0.00	±0.00	0	0.00	00.0±0	0	45	109
TKL	-0.52±0.31	5 7	0.00	£0.00	0 0	0.00	)±0.00	0	69 68	343
TLB	-0.81±0.28	8	0.00	±0.00	ŏ	0.00	)±0.00	ō	31	218
TLG	0.36±0.41	3	0.00	±0.00	0	0.00	00.0±0	0	32	148
TLL TLS	0+68±0+88	5	0.00	±0+00	0	0.00	)±0.00	0 0	129	296 87
TMA	-0.31±0.26	7	-0.01	±0.15	5	0.00	20.00	ŏ	34	243
TMT	-0.04±0.39	3	-0.07:	±0.22	2	0.00	00.0±	0	60	317
TNN	-2+85±0+43	3	0,00	±0.00	0	0,00	)±0.00	0	86 40	129
TNO	-0.09±0.52	2	0.00	±0.00	ŏ	0.00	)±0.00	ŏ	36	244
TNP	0.03±0.19	11	0.00	±0.00	0	0.00	00.0±0	0	69	353
TNR	-0.46±9.99	2 14	0.00	±0.00	0	0.00	0±0+00	0	31	224
TOA	1.30±0.23	9	0.00	±0.00	ŏ	0.00	)±0.00	ŏ	44	14
TOL	0.64±0.12	23	0.61:	±0.12	19	0.18	8±0.15	4	43	253
TOUF	-0.36+0.40	25	0.48:	±U•14 ±0.00	، 0	0.00	)±0.00	0	126	102 243
TOV	1.63±0.28	6	-0.04	±0•34	1	0.00	)±0.00	ŏ	90	306
TPC	1.09±0.31	5	0.00	±0.00	0	0.00	)±0.00	0	73	352
TPH	$0.02\pm0.48$	2	0.00	±0.00	0	0.00	)±0+00	0	69	353
TPP	2.44±0.34	4	0.00	±0.00	ŏ	0.00	)±0.00	0	87	298
TPT	1.65±0.52	9	0.00	±0.19	3	0.19	9±0.31	1	120	26
TRD	0.62±0.68	2	0.00:	±0.00	0	0.00	(10.00)	0	66	156
TRM	-0.64±0.11	22	0.00	±0.00	Ő	0.00	$) \pm 0.00$	0	33 57	315
TRN	1.48±0.10	19	0.23	±0.08	15	0.15	0.15±0.15	4	87	298
TRO	-5.53±0.12	23	0.00	±0.00	0	0.00	00.0±0	0	12	270
TRT	-1.29±0.34	4	0.10	±0.00	3	0.00	)±0,00	0	130	103
TRZ	-0.10±1.10	2	0.00	±0.00	Ō	0,00	±0.00	ō	136	73
TSK	-1.59±0.15	18	-0.48	±0.14	8	0.00	0.00 D±0	0	54	83
TTG	1+10±0+23 -0.41+0.29	e 9	0.00	±U•U0 +0.00	0	0.00	)+0.00	U n	42 25	20
TTN	2.32±0.51	5	0.00	±0.00	ŏ	0.00	)±0.00	ŏ	62	106
TUC	1+15±0+10	21	-0.32	±0.09	13	-0.04	±0•30	1	74	348
TUL	-0.83±0.09	28	0+09:	±0.07	22	0.02	2±0+16	4	69	335 358
TVO	1.95±0.60	7	0+09	±0.24	2	0.00	)±0.00	0	123	28
UAV	1.51±0.39	6	-0.12	±0.23	2	0.12	2±0.31	2	92	307
UB0 UCC	0.00±0.28	7 22	-0+18:	±0-13	6	0,00	00+0±0	0	66 91	347 251
~~~	0.4120413	23	0.00			0.00		5	21	~~.

¢

L

Ċ

YKA YKA YROU YKA YKA	WTZ XAN YAK YER	MITS MSC S	MR MOL	umo Omu	E E E E		EIN FIN				WAM	WAB VVO	VTS VVI	VSK	VS I	VPL Adv	VOV YOU						VGL	V6B VFI	VDL VBY	VAR	uan Van	VAL	UPH C	UZH	UPP				565		Station
0.24±0.14 -0.75±0.12 -0.39±0.28 -0.52±0.35 -0.04±0.09 0.56±0.40 0.56±0.40	-1.75±0.67 0.44±0.35 -2.36±9.99 0.77±0.19	-0.32±0.29 -0.61±0.31 -0.06±0.11	-0.88±0.15 1.70±0.50	-0.10±0.40 0.67±0.32	-0.26±0.39 -0.21±0.08	0.73±0.48 -0.12±0.41	0.29±0.23 0.32±0.11	0.24±0.12	-1.22±0.61	1.09±0.44 0.46±0.39	0-58±0-13	-0.60±0.39 -0.37±0.27	-0.99±0.31 -0.29±0.39	-0.01±0.39 -0.39±0.39	-0.52±0.17 0.23±0.39	-0.32±0.39 -0.63±0.34	-0.42±0.28	0.01±0.39	81.0705.0- 01.0756.0-	-1.08±0.49	0.18±0.13	1.76±0.46	0.14±0.48	-0.21±0.39 -0.14±0.39	0.10±0.34 0.81±0.26	-1.12±0.21 -0.65±0.13	-2.32±0.16 0.29±0.54	-0.44±0.11	1.54±0.64	-0.94±0.39	-3,70±0,11	-7-18±0.11	-0.25±0.41	0.29±0.49 0.88±0.34	-0.10±0.30 -3.66±0.48 -0.31±0.40		Time and
ωωο12 + σ ²² 7	12 N 4 8	ມິນ	≥ 10	տո	4 4	ωN	23 -1 0	л 57 E	= = 2	ζω-	4 10 4	ຫພ	ພປາ	ωω	ωN	ω 4	- 1 - 07	ο ω α	ა ნ ე) A A N	, 1 9 a	40	ωN	ωω	4 1-	12	2 4	23 נ	лчи	υwι	ي ۳ ر	27	νω	01 4	υ ω 4	, 4	ubeu
0.00±0.00 -0.56±0.09 0.00±0.00 0.00±0.00 0.00±0.00 -0.05±0.00 0.00±0.00 0.00±0.00	0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00	0.00±0.00 0.00±0.00 0.57±0.12	0.30±0.12 0.00±0.00	-0.15±0.19 0.00±0.00	0.00±0.00 0.00±0.00	0.00±0.00	-0.06±0.20 0.00±0.00	-0.04±0.12	0.00±0.00		0.00±0.00	0.00±0.00	0.00±0.00 0.00±0.00	0.00±0.00	0.00±0.00	0.00±0.00 0.00±0.00	0.00±0.00	0.00±0.00	0.00#0.00	0.00±0.00	0.12±0.12	0.00±0.00	0.00±0.00	0.00±0.00	0.00±0.00 0.43±0.18	0.00±0.00	0.00±0.00	0.31±0.08	-0.20±0.23			0.00±0.00	0.00±0.00	0.00±0.00 0.00±0.00	0.00±0.00 0.00±0.00	Auto Celue	itude effec
00-000000	0000	~00	r 0	οw	00	00	000	o ~1 ∩	, o c	000	00	00	00	00	00	00	00	000	4 0 0		000-	- 0 (00	00	ωO	• •	00	° c		000	000	00	00	00	• • •		יי א ג ג
0.00±0.00 -0.49±0.22 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00	0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00	0.00±0.00 0.00±0.00 0.00±0.00	0.00 ± 0.00 0.00 ± 0.00	0.00±0.00 0.00±0.00	0.00±0.00	0.00±0.00 0.00±0.00	0.22±0.22 0.00±0.00	0.00±0.00		0.00±0.00	0.00±0.00	0.00±0.00	0.00±0.00 0.00±0.00	0.00±0.00 0.00±0.00	0.00±0.00	0.00±0.00 0.00±0.00	0.00±0.00	0.00±0.00		0.00±0.00	-0.14±0.22	0.00±0.00	0.00±0.00	0.00±0.00	0.00±0.00	0.00±0.00	0.00±0.00 0.00±0.00	0.08±0.16	0.00±0.31	0.00±0.00	0.00±0.00	0.00*0.00	0.00±0.00	0.00±0.00	0.00±0.00 0.00±0.00	amp. Cerm Britan - dwe Centra	ith y5% cor
00000000	0000	000	00	00	00	00	ο ωα	000	000	000	000	00	00	00	00	00	00	000	000	000) N F	- 0 (00	00	00	00	00	- 4) c	000	000	00	00	00	000	, N ^S	∩fide
44 353 58 353 123 215 123 28 45 263 51 133	135 72 48 115 28 73 39 215	40 159 63 320 29 250	32 258 32 250	71 337 33 134	32 249 32 246	71 356 55 88	29 215 29 251	30 240	910 910 137 76 137 805 99	68 356 25 233	125 98	70 335 95 93	34 224 33 239	38 222 38 222	30 221 38 222	38 223 40 232	35 247 33 237	37 222	39 225	58 148 33 248	30 236		37 223	38 223 61 356	33 235 34 242	50 146 36 224	41 219 36 176	34 268 34 268	30 26	29 228	86 336 19 246	16 251	26 134 36 228	27 121 68 359	50 315 33 238	5 - 5	nce limits

۲,

. ...

r,

Ċ,

ę

≻

۲

ćs.

	Station Station) time and Time term(s)	magn Nt	ilude effec N Nov Zemlya amp. term	ts w Ni	ith 95% cc S Nov Zemlya amp. term	nfide N2	nce lim ^° ¢°	its
ć	ZAG ZAK ZGN ZLA ZLP ZOBO ZST ZUL	0.35 ± 0.18 0.90 ± 0.41 -0.44 ± 0.48 -0.37 ± 0.34 1.26 ± 1.13 0.73 ± 0.16 0.38 ± 0.16 -0.82 ± 0.12	15 3 2 4 2 10 14 15	0.00±0.00 0.00±0.00 0.00±0.00 0.14±0.19 -0.29±0.32 -0.25±0.21 0.00±0.00 -0.32±0.10	0 0 3 1 3 0 14	0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 -0.01 ± 0.31	0 0 0 0 0 0	33 235 31 111 43 236 33 244 115 297 115 297 30 234 33 245	
" N _T is N ₁ ,N ₂ a	the number and N ₃ are t	of arrival ti he number of a	mes us amplitu	ed to estimate de observatio	the t ns use	ime term. d to estimate	the am	plitude te	rms.
١									
									•
0									·
2			. ,						•
		•	• •					· .	•
									•
							·		
2									
<i>t</i> .									
							•		
									1
		·							
٤									
C.									

UK UNLIMITED

Available from

ß

Ŷ

1

HER MAJESTY'S STATIONERY OFFICE

49 High Holborn, London W.C.1 71 Lothian Road, Edinburgh EH3 9AZ 9-12 Princess Street, Manchester M60 8AS Southey House, Wine Street, Bristol BS1 2BQ 258 Broad Street, Birmingham B1 2HE 80 Chichester Street, Belfast BT1 4JY or through a bookseller.

ISBN-0-85518205-9

Printed in England

© Crown Copyright 1994 MOD

UK UNLIMITED