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SUMMARY 

We present a new computer program to determine the partitioning of seismic plane waves at 
a plane interface between homogeneous isotropic media (solution of the Zoeppritz equations). This 
program rationalises the treatment of solid-solid, solid-fluid and fluid-fluid interfaces and the free 
surface, and considers both sub- and super-critical angles for incident P and S waves, including S waves 
with arbitrary polarisation direction and incorporating elliptical polarisation. The program can be 
invoked at different levels. Partitioning into reflected and refracted rays can be calculated for an 
incident P or S wave at a specified angle for specified media. Alternatively this partitioning can be 
calculated for the complete range of incident angles, and presented in a form suitable for graphical 
display. For each case a series of interfaces may be concatenated to simulate rays passing through a 
series of layers which may or may not be parallel. We present the theory in detail, and include an 
extensive review of the literature. We do this in particular because of the proliferation of errors and 
ambiguities in previous work, and because of confusion regarding different authors' definitions and 
sign conventions. Errors are reported and other authors' conventions are clarified. Examples are given 
to show the range of behaviour corresponding to a wide range of circumstances, and the program is 
applied to important interfaces within the Earth. The assumptions inherent in the Zoeppritz equations, 
and their consequent limits of applicability are stated, with some consideration of the practical ways in 
which these limits may become important. The emphasis of the examples and of the discussion is 
towards global seismology, and in particular towards problems which relate to earthquake/explosion 
discrimination. However, the theory and program are equally applicable to exploration seismology (in 
particular they form the basis of amplitude-versus-offset (AVO) analysis), and the literature review 
includes references in that branch of the subject. 

1. INTRODUCTION 

Calculation of reflection and refraction coefficients at various types of interface between 
different propagation media are required frequently in seismology-indeed whenever theoretical 
absolute or relative amplitudes are sought from a layered structure. Whenever ray theory can be 
applied to the partitioning of seismic waves at boundaries, a straightforward calculation of the 
coefficients is invaluable. In global seismology this leads to a prediction of the angular dependence of 
the amplitudes of seismic phases such as pp, sP  and PcP, which has an important effect on teleseismic 
waveforms. In seismic refraction the very existence of head-wave arrivals is associated with critical 
refraction at boundaries-behaviour which is embodied in the partitioning of spherical waves at those 
boundaries. In seismic reflection data the primary cause of the variation of observed amplitude with 
offset (AVO) is the behaviour of the seismic reflection coefficients at the target interface, and this 
variation has become a widely-used diagnostic in interpretation. 

In all cases the difficulties inherent in the prediction of absolute amplitudes in the real Earth 
mean that the variation of reflected or refracted amplitude with ray angle is important. Near critical 
angles of incidence the coefficients vary rapidly with angle, so that knowledge of the expected 
behaviour is crucial in interpretation, and has a high information content. The behaviour is, however, 
non-trivial and can be very sensitive to the structure as both longitudinal and shear waves are involved 
in the process. 

In applications such as ray tracing, generation of synthetic seismograms, and inversion by 
layer stripping, these coefficients may be calculated implicitly within a broader computation. 



Nevertheless, there are many situations where the coefficients are required explicitly. The present work 
arose from the need to estimate the effect of interfaces within the Earth on the amplitudes of seismic 
phases observed from earthquakes and underground nuclear explosions, to assist with their 
discrimination. For example, the relative amplitude method of determining earthquake source 
mechanisms (Pearce [l], [2] and [3]), and its later generalisation to other seismic source types by Pearce 
and Rogers [4], benefits from a reliable estimate of pP and sP reflection coefficients at the free surface 
(and where applicable at the sea bed and sea surface), and this estimate may need to include the effects 
of other interfaces within the Earth's crust. AV0 study of seismic reflection data in hydrocarbon 
exploration is another example where partitioning coefficients are needed explicitly. 

The relevant equations were given in the early work of Knott [5] and Zoeppritz [6]. Many 
publications have given the theory or results for various media, encouraged by the ease with which these 
equations can now be solved by computer. But notation varies, many works contain errors, and most do 
not state their sign convention. Many authors also fail to consider properly the behaviour at super- 
critical angles of incidence, when one or more of the resulting waves ceases to propagate; behaviour at 
super-critical angles is nevertheless important in real situations. There is also confusion between the 
partitioning of seismic energy, particle displacement and displacement potential, all of which are 
numerically different. There are parallel papers in the literatures of earthquake seismology and seismic 
exploration which are seldom cross-referenced, yet which deal with exactly the same material, again 
with different conventions. Another problem is that many authors have paid little attention to the limits 
of validity of the equations-essentially they apply to plane waves incident upon a plane interface, and 
their application to, for example, spherical waves, curved interfaces or interfaces which are closely 
spaced, is at best an approximation. It is essential to be aware of the effects of relaxing each of the 
initial assumptions, so that the validity or otherwise of the Zoeppritz equations can be established in 
practical situations. 

The origin of the present computer program is in an unpublished note (Blamey [7]), who 
gave the partitioning equations in particle displacement, for plane waves incident upon a plane solid- 
solid interface, taken from McCamy, Meyer and Smith [8], and for waves incident at a free surface, 
taken from Kolsky [g] pages 28-31. An associated FORTRAN computer program was later extended 
to include incidence either side of a plane solid-fluid interface, taken from the equations of Ergin [10]. 
A complex version of the program was written to enable waves beyond critical angles of incidence to be 
treated (Young, ZOEPP subroutine package, standard and complex versions, unpublished). 
Unfortunately all three references used for these different cases differ in their sign convention, and 
although some changes of sign were made when implementing the solid-air interface, inconsistencies 
remained. 

In this Report these and many other inconsistencies in the literature are pointed out, and a 
new computer program is presented. The theory is developed in some detail to allow comparison 
between this and other work, in particular with regard to the all-important sign conventions, the 
difference between displacement and displacement potential, and also to give an insight into behaviour 
at super-critical angles. Information relating to the limits of applicability of the equations is also 
included. We shall refer particularly to applications in global seismology although, of course, the 
theory and program can be applied quite generally within the limitations stated. Results computed 
using this program are presented graphically for a range of examples to indicate the range of behaviour 
possible, and results are presented for important interfaces in the Earth, providing a reference for the 
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behaviour of seismic body waves at these discontinuities. 

The new program gives complete treatment of incident P, SV and SH waves, at both sub- 'a 
critical and super-critical angles, with combined SV and SH allowing incident S with any polarisation 
direction relative to the interface. It treats elliptical polarisation, which is necessary to describe fully the 
behaviour at super-critical angles. All media types are treated as special cases in the same unified 
matrix formulation based upon the solid-solid interface, and the program is designed for different 
levels of use, ranging from single calculations as required for ray tracing algorithms, to a full output of 
coefficients for all resulting waves over the full range of incident angles. A series of interfaces may be 



concatenated so that the composite reflection or refraction coefficients can be calculated for a chosen 
sequence of reflectionslrefractions within a structure whose interfaces need not be parallel. 

Since real interfaces always pose questions concerning the limits of applicability of the 
equations, a list of the assumptions employed in their derivation is given in section 2. Our notation is 
given in section 3, with an introduction to wave behaviour as necessary to define appropriate quantities. 
In section 4 the theory relating to plane interfaces between all combinations of solid and fluid media 
are brought together using a common formulation, and examples to illustrate behaviour in various 
circumstances is given in section 5, using important interfaces in global seismology where possible. 
Differences between the notation of this and other publications are pointed out and explained in section 
6, together with a review of errors in past works. In section 7 the effects of relaxing each of the initial 
assumptions are outlined, with references to relevant work. In Appendix A the program is explained. 
The program listing, together with its user documentation, is given in Appendix B. 

2. PLANE WAVES INCIDENT UPON A PLANE INTERFACE-INITIAL ASSUMPTIONS 

In this section attention is confined to plane waves incident upon a plane interface-the 
corresponding partitioning equations for the amplitude of particle displacement are widely referred to 
as the Zoeppritz equations, and form the basis of the computer program. We consider a uniform, plane, 
monochromatic P or S wave incident upon a plane, abrupt interface between two semi-infinite, 
homogeneous, isotropic, perfectly elastic (and hence non-dispersive) media in welded contact. These 
assumptions are now listed and explained. 

(A) Reauirements for the incident wave 

(AI) Uniform The incident wave has the same amplitude at every point on any 
selected wavefront. 

(A21 Monochromatic The incident wave has a single frequency component. After 
establishing the required relations for a monochromatic wave of arbitrary frequency, these 
will be shown to be independent of frequency for sub-critical angles of incidence, enabling 
the principle of superposition to be used to extend the applicability to arbitrary waveforms 
(see section 7.1). However, for super-critical angles it will be shown that the form of the 
non-propagating or "evanescent" wave is frequency-dependent. 

(A31 Plane Any chosen wavefront lies in a plane which extends to infinity. The non- 
plane incident wave is considered in section 7.2. It must be remembered that waves from a 
point source (which is usually close to reality) are spherical and not planar. A plane wave is 
a good local approximation to a spherical wave at very large distances from the source, and 
is a good local approximation to any wave as long as variations in amplitude along a 
wavefront are small within a wavelength, and the radius of curvature of the wavefront is 
large compared with the area of wavefront that is being examined. Moreover, a point 
source at infinity in a halfspace still generates headwaves and surface waves at the boundary, 
since the approximation is only locally good. We cannot make the length of a boundary 
short compared with the distance to a point source if the boundary 'itself extends to infinity. 
However, the plane-wave case is more valuable than might be expected since cylindrical or 
spherical waves can be decomposed into a superposition of plane waves (see section 7.2), 
for example using the z-p transform. 

044) Stationary The incident wave is continuous throughout time. In principle, 
contravention of this assumption requires relaxation of assumption A2. In practice seismic 
waves are normally transient; this introduces a departure from the initial assumptions which 
is important in some circumstances. 



(B) Requirements for the interface 

(B])  Plane The interface is planar. The curved interface is considered in section 7.3, 
and the irregular interface in section 7.4. It must be remembered that on a global scale the 3 

interfaces of the Earth are spherical and not planar, although this will only become 
significant at very long periods. 
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(B21 Abrupt The two media are separated by a perfect discontinuity in the elastic 
moduli and density (and hence implicitly in the P- and S- wave speeds) with no transition 
zone. This condition clearly becomes more difficult to satisfy at higher frequencies. The 
non-abrupt interface is considered in section 7.5. 

033) Welded In the case of two solid media in contact, slip does not take place along 
the interface; this implies continuity of the two components of displacement which are 
parallel to the interface. If one or both media are fluid, then this condition is not 
applicable. It is possible for limited slip to occur between two solid media, or in an extreme 
case for the interface to be perfectly lubricated. These cases are considered briefly in 
section 7.6, and the differences in boundary conditions implied by perfect lubrication are 
considered in section 4.4. Additionally we assume that the media remain in contact, 
implying continuity of the normal component of displacement. 

( c )  Reauirements for the two media 

( c l )  Semi-infinite Each medium continues to infinity both along and away from the 
interface-i.e. there are no effects from other interfaces or end effects due to termination of 
the interface. The effect of other interfaces nearby may be important if closer than several 
wavelengths from the interface, and this effect will in general be frequency-dependent (see 
section 7.7). 

(c2)  Homogeneous In each medium the elastic constants and the density (and hence, 
implicitly, the P- and S- wave speeds) are independent of position. Relaxation of this 
condition implies wave-speed andlor density gradients, and hence non-plane waves (see 
section 7.2). 

(c31 Isotropic The P- and S- wave speeds are independent of particle motion 
direction in the medium. This normally implies that the medium is described by two elastic 
constants, but this does not have to be the case. A Poisson solid comprising masses held 
together with identical springs has only one elastic constant and is isotropic. By changing 
the stiffness of some of the springs, the medium becomes anisotropic with only two elastic 
constants. Treatment of anisotropic media requires appropriate generalisation of the 
equations and is not considered in this report. There are situations in which anisotropy may 
become important, in particular when the degree of anisotropy is sufficient to affect 
significantly the shear-wave signals; the reader is referred to Crampin [l l]. Violation of the 
assumption of isotropy is considered in section 7.9. 
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(c41 Perfectly elastic Both media are elastic with stress proportional to strain and can 
be described by two scalar elastic parameters, in addition to density. It is assumed that there 
are no viscous or other anelastic effects, and that the wave motions are of small amplitude so 5 

that finite strain effects can be neglected. Relaxation of these assumptions would invalidate 
the wave equation which we solve; this is considered in section 7.8. 

(c51 Non-dispersive The elastic constants (and hence, implicitly, the P and S wave 
speeds) are independent of wavelength. Deviations from this would result in angular 
dispersion of refracted waves derived from a non-monochromatic incident wave (as happens 



to light passing through a glass prism). The assumption of perfectly elastic media in 
assumption C4 implies no dispersion; if there is dispersion there must be energy loss, and 
anelasticity in the earth must, in principle, be associated with a small amount of dispersion to 
maintain causality. 

NOTATION AND INTRODUCTION TO CONCEPTS 

3.1 Definition of auantities and sign convention 

A summary of the notation used is given in figure l. Let the interface lie in the plane x3=0 
in the Cartesian system (XI ,X2,X3). Without loss of generality let waves be incident from positive X3 in 
the plane x2=0, which we define as the "ray plane", and which is sometimes referred to as the "sagittal 
plane". Particle displacement from equilibrium at the point x=(xl,x2,x3) on a ray is defined as 
u=(u1,u2,u3), measured in the same coordinate system. Let A ,  B, C ,  D, E, F, G ,  H, and I be the 
displacements of incident P, incident SV, reflected P, reflected SV, refracted P, refracted SV, incident 
SH, reflected SH and refracted SH respectively where, by definition, each S wave is resolved into two 
orthogonal components, both of which are normal to the ray-one in the ray plane (SV) and the other 
parallel to the interface (SH). Any polarisation of incident S can thus be treated by first resolving it 
into these two components. Of course, only if the interface is horizontal do SV and SH correspond to 
the true vertical and horizontal components respectively, though we follow the usual convention of still 
referring to these components as SV and SH. 

Further, let a ,  b, a ,  b, e , f ,  b, b and f be the respective angles between the ray paths of each 
wave and the normal to the interface. Here we have assumed the law of reflection in order to eliminate 
the separate angles c and d, and without loss of generality we have set the angles describing incident, 
reflected and refracted SH equal to the corresponding angles for SV. The waves are incident and 
reflected in layer i and refracted in layer ii-small Roman suffixes i and ii being used here to avoid 
confusion with the Cartesian directions 1, 2 and 3. The angles a ,  b, d and f are all positive when real 
(i.e. whenever they correspond to propagating waves) and lie between 0 and ~ 1 2 ;  the propagation 
direction of each wave has a component along positive XI. The P-wave speed, S-wave speed, density 
and two Lam6 elastic parameters in each of the layers i and ii respectively are denoted by Ui, Vi9 pi, A,, 
pi, Uii, Vii, pii, h i ,  and ,Uii. In contexts not specific to either layer the suffix is omitted. 

In addition to the above definitions, a sign convention for the measurement of each 
displacement A to I must be defined with respect to the ray direction and the interface, in order to be 
able to compare fully the incident and resulting waves. This convention is defined by the direction of 
arrows adjacent to each ray in figure 1, and requires some comment. Each of the displacements A to I 
represents an harmonic wave, which may be fully described by a displacement amplitude or 
"modulus" (which is always positive), and a phase angle defined in [0 ,2~] .  We therefore need to 
define for each wave the direction of displacement which corresponds to a chosen phase, say zero- 
phase. This is shown for each of A to I in figure l .  These directions might loosely be referred to as the 
"direction of positive displacement" but since we are defining displacement amplitude as a modulus, 
positive only, they are more accurately described as "directions of zero-phase". If we were instead to 
allow the displacement to be positive or negative, with the phase defined in [O,Z], then the directions 
shown would become directions of positive displacement. 

c .  

Our convention can be applied equally to transient waves. For example, if we consider an 
impulse in displacement, a direction of zero-phase defined in figure 1 can be thought of as the 
direction of this displacement if its phase is zero; if its phase is Z, then the impulse is in the opposite 
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direction. 

An harmonic wave may alternatively be fully described using a real and imaginary part of a 
complex number by making each of A to I complex; this is done in our computations. The modulus of 
the complex number is then equivalent to the modulus of our displacement, and the argument of the 



complex number is its phase. In figure 1 we use the same symbols A to I to label the directions of zero- 
phase for convenience. 

The definitions used here for the directions of zero-phase displacements of A  to I have been 
chosen so that those for the P waves A, C and E are all in the direction of propagation, while the zero- . 
phase directions of the SH displacements G, H and I all lie along positive X2. The directions of zero- 
phase for S V  displacements B, D and F then follow if a right-handed Cartesian system is demanded for 
the coordinate system [SV,SH,propagation direction] for each S wave. This same demand for all these a 

rays is essential to ensure that all rays are described with a self-consistent convention. Our choice of 
convention for the P waves A ,  C and E means that if an incident compressive impulse results in 
compressive reflected and refracted impulses, then A, C and E are all zero-phase. Further, an incident 
SH pulse, with disturbance towards positive X 2 ,  and which yields reflected and refracted pulses also 
towards positive X2, corresponds to G, H and I all zero-phase. Our definitions for S V  are such that 
zero-phase B, D and F all have a component towards negative X3. Although these choices are intuitive 
and are required to maintain self-consistency for the passage of waves through a succession of 
interfaces, most authors use a variety of other conventions (see section 6). 

Following the above convention, the displacement amplitude will always be expressed as a 
positive value; any "change of polarity" at the interface will be expressed in the phase. Thus a polarity 
change will be expressed as a n phase change, not a change of sign in the amplitude. This convention 
corresponds to the standard modulus/argument form of a complex number. 

In the theory which follows we refer to the complex displacements as A, B etc.; the 
displacement modulus of each wave is strictly IAl, IBI etc. Except where there may be confusion we omit 
the modulus signs. Where the phase is 0 or n, the displacement is real. 

Taking the incident P wave as an example, the modulus IAl and the phase @A are given by 

and 

Here we preserve the separate signs of cos@q and  sin@^ when using arctangent to find @A explicitly, 
since we define @A to range from 0 to 2n. Similar relations hold for the other waves B to I. 

If any of the reflected or refracted waves emerge at angles larger than the angle of 
incidence, then it is possible to increase the angle of incidence to a value at which the reflected or 
refracted wave emerges parallel to the interface. Such an angle is termed the "critical angle" of 
incidence for the appropriate reflected or refracted wave, and larger angles of incidence are "super- 
critical". In particular, an incident P or S wave may have a critical angle for the refracted P wave (and 
in extreme cases the refracted S wave), and an incident S wave will always have a critical angle for 
reflected P. Thus an incident S wave may have up to three critical angles. Super-critical angles of 
incidence result in non-propagating "evanescent" waves along the boundary, and non-trivial phase a 

changes in the remaining propagating waves; our complex algebra will include these cases implicitly as 
shown later. At incident angles for which all waves exist as propagating waves, the only phase change 
which can occur upon reflection or refraction is 180' (n  radians), corresponding merely to a change of * 
polarity. We refer to this as a "trivial" phase change, as distinct from intermediate phase changes 
which we term "non-trivial". Since for a phase of n the displacement is real, it is only at super-critical 
angles that we shall need to be concerned with complex algebra. 

Differences in the notation used by other authors and their consequences, together with an 
account of the errors of other work are given in section 6. 



3.2 Elliwticallv volarised S waves 

We have pointed out that any S-wave polarisation can be represented by resolving it into SV 
L- and S H  components, each with an appropriate displacement modulus and phase. Provided the SV and 

S H  amplitudes (i.e. their displacement moduli) are coincident on the ray at a given time, the wave is 
plane-polarised. However, this need not be the case. If the maximum displacements of the two 

L components are not coincident along the ray, the resultant displacement vector will rotate as the point of 
observation moves along the ray (and as time passes at any fixed point on the ray). This gives elliptical, 
or helical, polarisation, and the term "polarisation angle" can no longer refer to a plane of 
polarisation. In general an incident S wave may be of this form. 

It will be shown that the behaviour of SH at the interface is independent of the P-SV system 
of waves, so it follows from the above discussion that an incident plane polarised S wave with an 
intermediate polarisation angle (i.e. which is neither wholly SV nor wholly SH) will in general produce 
reflected and refracted S waves with different polarisation angles from that of the incident wave, on 
account of the different partitioning coefficients of the SV and SH components. Moreover, if an S wave 
with an intermediate polarisation angle is incident at an angle which is super-critical in respect of either 
reflected or refracted P, then the reflected and refracted S waves will acquire elliptical polarisation as a 
result of the non-trivial phase change suffered by the SV component but not by the SH component. If 
an intermediately polarised S wave is incident at an angle which is super-critical in respect of refracted 
S, then both the reflected SV and SH components will suffer (in general different) non-trivial phase 
changes. This is a practical way in which elliptically polarised S waves can be generated. Similar 
behaviour is observed in electromagnetic waves, as noted by, e.g., Stratton [l21 page 500, (although in 
that case there is no analogue of the P waves). This behaviour was used by Fresnel to produce 
circularly polarised light by total reflection. 

It is clear that we must include the most general form of S-wave polarisation for all the wave 
motions in our formulation, in order to ensure correct treatment not only of the relative phase (i.e. 
"polarity") of each travelling wave, but also the nature of the evanescent waves resulting from super- 
critical angles of incidence. After resolving each of the S waves into an SV and SH component as we 
have done, we ensure that the formulation is general by specifying a separate displacement modulus 
and phase for each P, SV and SH wave. We emphasise, though, that for the S waves, the quantities still 
refer to the SV and SH components separately. 

3 .3  Frequency dewendence and pulse shape 

The set of complex displacements and angles introduced in section 3.1 define the 
(monochromatic) wave motions fully. Since we shall see that according to the Zoeppritz equations the 
partitioning is frequency-independent for the propagating waves, it follows that these amplitudes can be 
used as a scaling factor for the reflection and refraction of any chosen incident waveform, provided the 
monochromatic wave has not suffered a non-trivial phase change. 

We are concerned strictly with continuous monochromatic plane waves, but our results can 
be extended to transient waveforms with certain limitations. At sub-critical angles of incidence all phase 
changes are either 0 or X ,  so a transient waveform retains its shape but is possibly inverted after 
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reflection or refraction. At super-critical angles of incidence, the non-propagating (evanescent) 
reflected or refracted waves, whose resulting angles have "passed beyond" 90' have a complex angle 
of reflection or refraction; evanescent waves have a frequency-dependent behaviour because, as we shall 
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see, they are associated with the interface itself and represent particle motion decaying away from the 
interface towards either side over a distance which depends upon wavelength. The behaviour of these 
evanescent waves is fully described by our formulation but results in a frequency-dependent expression 
for the decay (section 4.8). Moreover, since the remaining propagating waves associated with super- 
critical angles of incidence undergo non-trivial phase changes, any non-monochromatic incident wave, 
whether transient or stationary, has a different shape after reflection or refraction if the incident angle is 



super-critical. Indeed, the P wave may then have a different shape from the S wave in the same 
medium. In this situation it is not possible to regard the pulses simply as scaled by our amplitudes JAl to 

3.4 Combined treatment of SV and SH 7 

In cases where S waves have polarisation directions intermediate between S V  and SH, we 
may wish to describe the wave using parameters which make explicit its amplitude, angle of polarisation 1 

and eccentricity, rather than expressing the wave in terms of its separate SV and SH components. This 
is particularly so if the wave is elliptically polarised. The computer program does not currently have an 
option to express S-wave motion in this way, but appropriate quantities are defined here to allow for 
such an extension in the computation. 

The term "polarisation angle" is normally applied only to plane-polarised waves where it 
describes the angle between the direction of shear-wave particle motion and some reference direction in 
the plane normal to the ray direction. In the case of an elliptically polarised S wave, we extend the 
definition of polarisation angle to describe the angle at which the amplitude vector is a maximum as it 
rotates describing an ellipse. We adopt the convention (see inset in figure 1) that the polarisation angle 
is measured clockwise when viewed along the ray in the direction of propagation, with zero lying in the 
plane x2=0 (the ray plane) and towards negative X3. It follows that a zero-phase SV wave (i.e. B or D or 
F zero-phase with G or H or I zero amplitude respectively) always has a polarisation angle, defined as j ,  
k or l respectively, equal to zero. If SV and SH both exist and are in phase, the shear wave is plane 
polarised with an amplitude, defined here as J, K or L respectively, that depends upon the SV and SH 
amplitudes, and a polarisation angle which depends upon their ratio. If SV and SH are out of phase, the 
resultant amplitude depends additionally upon their phase difference; in this case the polarisation angle 
depends upon the amplitude ratio of SV and SH, and upon their phase difference if their ratio is not 
unity. The eccentricity of the ellipse is determined by the phase difference only; we denote the 
eccentricities by EJ, EK and EL for the incident, reflected and refracted waves respectively. 

The displacement vector derived from the orthogonal SV and SH waves describes an 
elliptical Lissajous' figure according to standard theory (see e.g. Braddick [l31 page 10). We define 
the polarisation angle in [-n,n], negative and positive phases corresponding to opposite senses of 
rotation of the displacement vector. With our definitions of the directions of positive SV and SH, the 
amplitude vector describes a right-handed ellipse when viewed along the propagation direction if S H  
leads SV by between 0 and n, and a left-handed ellipse if SH lags SV by between 0 and X. 

Considering first the incident S wave, let the Lissajous' figure be described in the coordinate 
system X', where lies along G (the zero-phase direction of SH), and X'2 lies along B (the zero-phase 
direction of SV) (see inset in figure 1). In this plane we may write the SH and SV components 
respectively as 

where $B and $G are the phases of the SV and SH components respectively, and for convenience we 
have chosen zero time so that there is zero phase lag in the XI1 component. Eliminating wt from 
equations (2a) and (2b) we obtain the equation of the ellipse: 

d 

In this equation we have lost information on whether G lags or leads B. 

In order to find the polarisation angle j ,  the S-wave amplitude J and the eccentricity EJ, we 
can rotate the X' coordinate system by an angle j into a system X" in which the major axis lies along X 2  
(see inset in figure 1). We then have 



The required rotation follows from, for example, Jones and Jordan [l41 page 55 

(5a) 
with 0 I j I n/2 for cos(qB - @G) 2 0, and n/2 < j I n for COS(@B - @G) < 0 

where the angle on the left hand side has been chosen to ensure that j is always measured to the major 
axis irrespective of the relative sizes of JBI and IGl. (This result can alternatively be obtained by 
converting equation (3) into polar coordinates (Rye), and setting dRlde = 0 to find the orientation of the 
major and minor axes.) In equation (5a) j is only defined in [O,n/2] because of the arctangent 
operation on 2j. We require j to be defined in [O,n], so the condition on @B-@G to achieve this is given. 

The relationship between the coefficients in equations (3) and (4) provides explicit 
expressions for J and EJ in terms of B, G and @B-@G (see for example Jones and Jordan [l41 pages 55 
and 56). For J we obtain 

1 1  where P = - + -  Q =  
lGI2 1BI2 

and for EJ we obtain 

with P and Q defined as in equation (5b). To complete these relations we point out that the phase 
difference @B-@G can be expressed in terms of the complex amplitudes B and G. From equivalents to 
equation (l  b) we obtain 

Since @B-@G must be defined in [-n,n] to provide information on the sense of rotation of the S particle 
motion vector, we have stated the sine and cosine explicitly. 

7. 

Similar equations to (5a-d) follow for the reflected S wave. For its polarisation angle k we 
obtain 

L 

with 0 I k I nl2 for cos(eD - @H) 2 0, and z/2 < k 5 n for  cos(@^ - @H) c 0 . 

For its amplitude K we obtain 



1 I- P + Q  for O t n a ;  - = P  for B=nx;  
K2 2sin2(#o - #H) K2 

(6b) 

For the eccentricity EK we obtain 

with P  and Q  defined as in equation (6b). The phase difference 4o-4~ is given by 

Similarly, for the refracted S wave, the polarisation angle 1 is given by 

( 7 4  
with 0 I l I d 2  for cos(#l; - 41) 2 0, and d 2  < 15 n for  cos($^ - 41) < 0 . 

The amplitude L is given by 

1 - -- P + Q  for gl ;c nn; -- I - P  for 4 = n n ;  
L2 2 ~ i n 2 ( $ ~  - $1) L2 

1 1  where P  = - + - 
Ill2 IFl2 

and the eccentricity EL is 

with P  and Q  defined as in equation (7b). The phase difference is given by 

Re(F) Re(0 Im(F) Im(0 . cos(#; - $1) = - .-+- 
IF1 Ill 

a-, 

l4 Ill 

. 
Although the above treatment has to some extent anticipated the theory to be given in the 

next section, it has been presented here to provide definitions of a full set of quantities for describing 
the vector motion of an arbitrary S wave. 



THEORY 

4.1 Displacement votentials for P and S waves 

The equations governing the reflection and refraction of elastic waves under the 
assumptions given in section 2 are most easily derived by formulating appropriate travelling wave 
expressions which are solutions of the P and S wave equations for the two media, and then imposing 
appropriate boundary conditions of displacement and stress at the interface. These boundary 
conditions provide the necessary relations between the displacement amplitudes and the phases of the 
six waves, which give an unique solution for any particular case. The relations between the six angles a 
to f also follow, constituting the familiar laws of reflection and refraction. 

We begin with the relation between the components of stress, p~ and strain eQ which, for an 
isotropic and perfectly elastic medium, reduces to Hooke's law in three dimensions-see for example 
Bullen [l51 pages 29-30: 

where 

Application of Gauss's law gives force per unit volume, and the application of Newton's second law 
yields the equation of motion (see for example Ewing, Jardetsky and Press [l61 page 6,  Jeffreys [l71 
page 31, Bullen and Bolt [l81 page 88): 

The separate application of the div and curl operators to this equation yields two forms of the wave 
equation, indicating that it is possible to propagate either dilatational (P) or rotational (S) disturbances. 
For propagating plane waves in isotropic media the particle motions of P and S waves are purely 
longitudinal and transverse respectively. 

For P waves, remembering that div(grad) = V2 we obtain 

a+2p ( )  V2(div U) = (div U) (P waves). 
at2 

For S waves, remembering that curl(grad) E 0 we obtain 

a2 (:) v2(curl U) = - (curl U) (S waves). 
at2 

The propagation speeds U and V, of P and S waves respectively, follow from equations (10) and (1 1): 

In the present problem the particle displacement u(x,t) at the point x at time t is, in general, 
the sum of displacements resulting from more than one disturbance, including both P and S waves. 
These two wave types may be distinguished by their different particle motions with respect to the ray. 



The particle motion of a P wave may be expressed as the spatial derivative of a scalar potential, and that 
of an S wave by the vector spatial derivative of a vector potential. We define scalar and vector potentials 
4 and such that 

u(x,t) = grad $(x,t) + curl v(x,t) (13) a 

(following, e.g., Ewing, Jardetsky and Press [l61 equation 1.20'), (We have also used the symbol @ for 
the phase of a signal, but it will always be clear from the context which meaning is intended.) J 

We can verify that these potentials do indeed describe the P and S motions by substitution 
of this definition into equations (10) and (1 1). (Here we simply substitute the second derivatives of the 
potentials, so that we demonstrate a necessary but not sufficient condition for verification. For a 
rigorous treatment see for example chapter 2 of Hudson [19].) 

Remembering that div(cur1) = 0, substitution into equation (10) yields: 

Using equation (12a), and remembering that div(grad) = V2, this reduces to 

We now substitute equation (13) into equation (11) for S waves. Remembering again that curl(grad) 
0, we obtain 

Using the identity V2 = grad(div) - curl(curl), and remembering again that div(cur1) = 0, this becomes 

The scalar and vector potentials both separately satisfy the wave equation; 4 is a field which 
describes P waves only and yr is a field which describes S waves only. The scalar and vector potentials 
are not physical quantities, but they enable that part of the displacement up(xl,x2,xg) which results from 
P waves, and that part u~(xl ,x2,x3)  which results from S waves to be separated, and solved 
independently. If the total displacement at the point U is required it is given simply by U = up+us (or U 

= up+usv+us~  if we resolve the S wave into SV and SH components). Of course, any number of P and 
S waves may be added in this way. 

4.2 The plane wave solution: relation between disolacement and displacement ootential 
1 

For plane waves we can proceed by attempting a trial substitution of a propagating 
monochromatic wave into equations (15) and (17) for P and S waves respectively. We know that any P 
wave contributions to the displacement at a certain time and place travel with one speed, and any S wave 4 

contributions travel at a different speed. It follows that plane-wave solutions to the wave equation will 
have a different form for the P and S waves, so it is sensible to solve for them separately using 
appropriate trial solutions. 

We first verify that the P-wave part of the displacement, up, and the S wave part us, also 
separately satisfy the wave equation. Application of grad to equation (15) gives 



I a2  grad(div(grad @)) = - -- (grad @) . 
u2 at2 

Use of the vector identity curl(cur1) = grad(div) - V2, and substitution of up = grad @ gives 

1 a2up curl(cur1 up) + v2up = - - 
u2 at2 

By definition we know that curl up = 0, so we obtain 

Application of curl to equation (17) and use of the vector identity curl(cur1) I grad(div) - 
V2, yields 

Substitution of us = curl \y and remembering that the operator curl(grad) = 0, we obtain 

Using the above vector identity again, and remembering that div us = 0, this becomes 

We have therefore shown that separate P- and S-wave solutions can be sought either in 
displacement (equations (20) and (23) respectively) or in displacement potential (equations (15) and 
(17) respectively). These sets of equations are similar and we expect their solutions to have a similar 
form. We first consider the general plane wave solution to equations (15) and (17), which we solve for 
the displacement potentials. Again we use the incident P and the incident S wave of figure 1 
respectively as examples; as this is a general form we omit the medium suffix i for clarity. We specify 
trial solutions of the form 

(xl sina - x3cosa) - iwt l (24a) 

and 

yr = (Bv1, B*, B@) exp - (xlsinb - x3cosb) - iwt [V" l 
respectively. Because we are substituting into the wave equation for the displacement potentials rather 
than for the displacements, we have defined different amplitudes from those of figure 1 .  For the scalar 
potential we introduce a scalar amplitude A4 (which will relate to the displacement amplitude A), and for 
the vector potential we introduce a vector amplitude (Bv1,Be,BY/3) (which will relate to both the 
displacement amplitudes B and G). 



For each wave the exponent defines the spatial and temporal variation of the wave motion. 
The first two terms give the spatial variation of the particle motion in the X1 and X3 directions 
respectively (there is no variation in X2), and for the P wave we can identify the horizontal wave 
slowness as (sina)lU and the vertical slowness as (cosa)lU. The horizontal and vertical wavenumbers are 
(osinn)lU and (ocosa)lU respectively. Provided a is real, these represent travelling waves resolved . 
along the two directions. (The X3 component is specified as negative because the wave motion 
proceeds with a component in the negative X3 direction.) The third term in the exponent, -iwt, gives 
the time dependence of the particle motion; the sign of the exponent gives waves travelling in the same .E 

sense as the slowness components, i.e. towards positive X1 and negative X3. Similar relations apply for 
the S wave with U replaced by V. 

If the whole exponent is imaginary we have uniform travelling waves; this is the normal 
case. If the whole exponent becomes complex then its real component corresponds to decaying 
motion, and this can happen in various ways. For example, if a becomes complex, this introduces a real 
part into the spatial terms in the exponent, and we have a wave decaying spatially; this occurs for 
evanescent waves (section 4.8). If U is complex then again this introduces a real part into the exponent, 
so that anelastic attenuation can be represented by a complex wave speed (section 7.8). 

There are important differences in numerical value and scaling between the displacement 
amplitudes and the displacement potential amplitudes, and in previous work it is not always clear which 
has been used. This is a major source of confusion and error in a number of works, an account of 
which is given in section 6. Before proceeding we therefore establish the relations between these two 
sets of amplitudes; again we choose the incident P and S waves as examples. 

We can evaluate u p  in terms of the displacement potential amplitude by taking the grad of 
equation (24a) to obtain 

i o 
u p  = - (A4sina, 0, -A4cosa xl sina - x3cosa) - iwt . 

U l 
This gives us the three components of the displacement amplitude expressed in terms of the scalar 
potential amplitude defined in equation (24a). If we express equation (25) in terms of the displacement 
amplitude as defined in figure 1, we obtain 

u p  = ( Asina, 0, -Acosa) exp (XI sina - x3cosa) - iot  l 
where we have used our definition of A in figure 1 to resolve the displacement amplitude into the 
required Cartesian components. From equations (25) and (26) the relation between the displacement 
and potential amplitudes for this wave is therefore 

The form of the factor iolU is generally applicable. The i shows that the displacement and 
the displacement potential are z12 out of phase, which we expect since the displacement is the gradient p 

of the potential. The o shows that the relationship is proportional to frequency, and this arises from the 
gradient being steeper at higher frequencies. The 1/U shows that the relationship depends upon the 
relevant seismic wave speed in the medium, and this is an important reason for us to be clear which 
amplitudes we are considering. When taking the ratios between the amplitudes of different waves, the 
i o  cancels out, so these quantities do not affect the Zoeppritz coefficients if we change between 
displacement and displacement potential. However, the wave speeds will in general be different for each 
wave, so this does mean the Zoeppritz coefficients are different depending upon whether we use 
displacement or displacement potential. 



A further point concerns the signs of A and A +  In equation (27) we see that A and A+ have 
the same sign. If we consider waves travelling in different directions, or if we change the definition of 
the coordinate axes in figure l, the signs of the X1 and X3 exponents of equation (24a) may also 
change, changing the signs of the displacement components when equation (24a) is differentiated to 
obtain equation (25). The signs of the components in equation (26) will also change, following the 
definition of A .  However, it turns out that irrespective of the propagation direction of the wave with 
respect to the coordinate axes, A and A+ have the same sign. Because we have defined the amplitudes of 
all three P waves to be in the direction of propagation, it follows that the equivalent relations to equation 
(27) for the reflected and refracted waves also have the same sign. However, if we were to redefine 
positive P-wave amplitude to point against the direction of propagation, then only the amplitude 
components in equation (26) would change sign, so that the displacement and displacement potential 
would always have the opposite signs. Of course, the displacement potential amplitude could be 
defined negative in equation (24a) to give both amplitudes the same sign, but this assumes that waves 
are defined with displacement amplitude opposite to the propagation direction. In conventions (e.g. 
some of those referred to in section 6) which do not define positive P-wave displacement amplitude 
along the direction of ray propagation for a waves, the relation between displacement and 
displacement potential changes sign depending upon the wave considered (section 6). This is a further 
reason for defining displacement amplitude positive in the direction of propagation for all P waves. 

Proceeding in a similar way for the S wave we take the curl of equation (24b) to obtain 

iw 
US = - (B cosb, -Bylcosb - B@sinb, B sinb) exp sinb - x3cosb) - iwt . (28) v ' @  '@ l 

This gives us the displacement amplitude expressed in terms of our displacement potential amplitudes 
and is equivalent to equation (25) for the P wave. In our definition of the S wave in terms of an SV and 
an SH component in figure 1, the SV component lies in the ray plane and so defines the X1 and X3 
Cartesian components, and the SH component lies parallel to the interface and so defines the X2 
Cartesian component. If we express equation (28) in terms of the displacement amplitudes defined in 
figure 1 we obtain the following relation for the S-wave particle displacement 

us = (-Bcosb, G, -Bsinb) exp - x3cosb) - iwt l (29) 

where again we have resolved the amplitudes B and G into their Cartesian components. Comparing 
coefficients in equations (28) and (29), we obtain three relations between the three components of the S 
wave displacement potential amplitudes and the two components of the displacement amplitude B and 
G. We have 

iw -Bcosb = - cosb . B@ v (30a) 

i CO G = - - (cosb . Bwl + sinb . By3) v (30b) 

iw -Bsinb = - sinb . By, . v ( 3 0 ~ )  

We see that one of equations (30a) and (30c) is redundant. We require an additional relation to 
eliminate one of the three displacement potential coefficients and this comes from the imposition of 
div = 0 without loss of generality (see Hudson [l91 equation (2.39)). From equation (24b) we have 



From equations (30a), (30b) and (31) we obtain 

i W G=-- i o 
Vsinb = - a 

In this case we see that the displacement amplitudes have opposite signs to the displacement potential 
amplitudes. With the coordinate system and amplitude definitions as in figure 1, the equivalent 
equations to (32a) and (32b) for the refracted S wave (involving F and I) are similar, but for the 
reflected S wave (D and H) there is a change of sign in the last term of equation (32b). 

In equation (32b) the relation between G and the displacement potential amplitudes 
depends upon the incident angle b. This is because the vector displacement potential of any 
component of an S wave lies along the normal to the plane containing the ray and the particle 
displacement direction. In the case of B, D and F the potential amplitude lies along the X2 axis, whereas 
for C,  H and I it lies at different angles in the ray plane. Thus the above change of sign for the 
reflected S wave is associated with the difference in ray direction rather than the particle motion 
direction. Moreover, our choice of convention in figure 1 has ensured that the terms in equation (32) 
do not change sign for different waves except to allow for different propagation directions. E.g. if the 
sense of D were reversed (defined towards positive Xg) the sign of the right-hand side of equation (32a) 
would change for the reflected wave. Such inconsistency has been avoided by our choice of a right- 
handed coordinate system in [SV,SH,propagation direction] for all rays (section 3.1). 

The above discussion highlights the importance of defining whether the amplitude of the 
displacement, or of the displacement potential, is plotted. We see that as well as a 6 2  phase change 
between the two amplitudes, the potential amplitude is scaled by the wavenumber, @/U or a / V  for P 
waves and S waves respectively. This implies a different scaling factor at different frequencies. In the 
case of an arbitrary plane wave the frequency does not appear in the ratio of the potential amplitudes of 
the different waves at the interface, but the wave speeds do. It is invariably the displacement amplitude 
which has physical meaning and which is the key factor in determining, for example, the validity of the 
ray approximation or the effect of neighbouring interfaces; we shall use the displacement amplitudes 
throughout. Comparisons with other work are made in section 6. 

4.3 Plane wave solutions for displacement 

We now require expressions for the total displacement (ul,u2,ug) = u(xl,x2,xg) at any point 
x(xl,x2,x3) in both media i and ii, and these can be defined by summing expressions for each wave 
motion as defined in figure 1. This will take account of the amplitudes and directions of each wave 
motion. For medium i (x3>O) we have four wave motions-the incident P and S waves, and the 
reflected P and S waves. We have 

U~(XI  ,x2,x3) = (Asina, 0, -Acosa) exp (xisina - x3cosa) - i a t  l 
+ (-Bcosb, G, -Bsinb) exp (xlsinb - x3cosb) - i o t  l 
+ (Csina, 0, Ccosa) exp (xisina + x3cosa) - iot l 
+ (Dcosb, H, -Dsinb) exp (xlsinb + xgcosb) - i a t  . l 



For medium ii (x3<O) we have only two wave motions-the refracted P and S waves: 

io uii(x1 ,x2,x3) = (Esine, 0, -Ecose) exp - (xlsine - x3cose) - iwt [ ui i l 
iw 

(34) 
+ (-Fcos, I, -Fsinj) exp - (xlsinf - xgcos. - iot . [ vi i I 

Thus each of equations (33) and (34) comprise three equations, one for each of the XI,  X 2 ,  and X3 
Cai-tesian components of displacement. 

We recall from the discussion in section 3.1 that each of the amplitudes A to I is specified 
complex to allow for possible phase differences between the waves, which may result from the 
application of boundary conditions. As already stated, these phase differences are non-trivial at super- 
critical angles of incidence. Normally either A, or both B and G are zero (depending upon whether we 
have incident P or S), and it is normally convenient to set the phase of the incident wave to zero, or 
perhaps K to simulate opposite polarity. Treatment of the arbitrarily polarised S wave is ensured by the 
specification of separate complex amplitudes for SV and SH, again as required for super-critical angles 
of incidence. 

4.4 Boundarv conditions for different cases 

We now state the boundary conditions which must be satisfied and applied to equations (33) 
and (34) in order to determine the required relations between the wave motions at opposing sides of the 
interface. Each boundary condition to be satisfied relates one component of particle displacement or 
one of the components of stress (two tangential and one normal) on the two sides of the interface. Thus 
there are, in general, six conditions governing ul, u2, u3, p31, p32 and p33 which depend upon the types 
of media comprising layers i and ii, and the nature of the contact at the interface. Various cases are 
discussed by many authors, for example Ewing, Jardetsky and Press [l61 pages 7 and 74 et seq, Officer 
[20] page 190 et seq, Jeffreys [l71 pages 31 and 35, and Bullen and Bolt [I81 page 140 et seq. 

In fact only two types of medium need to be defined explicitly, and these are the solid, 
which can sustain both dilatational and shear stresses, and the fluid (i.e. either liquid or gas) which can 
sustain only dilatational stress (and hence cannot support S waves). It will be shown that all cases of 
practical interest can be treated using the four possible combinations of these two media types, whose 
boundary conditions are given below. It will further be shown that the fluid can be treated as a special 
case of the solid, enabling one matrix equation to describe all possible cases. Where fewer than six 
boundary conditions need to be fulfilled, this is associated with a corresponding reduction in the 
number of unknowns in equations (33) and (34), since certain of the waves will not exist for the reasons 
stated. 

Medium i solid. Medium ii solid 

If both media are solid they are assumed to be in welded contact. This means that all three 

L .  
components of displacement and all three components of stress are continuous across the boundary: 

(U I )i = (U 1)ii (u2)i = (~2)i i  (u3)i = (~3) i i  (3 5 a-C) 

Medium i solid. Medium ii fluid 

If one of the media-say medium ii-is a fluid, the inability of a fluid to sustain shear 
means that both tangential components of shear stress in the solid must tend to zero at the boundary. 



Further, slippage can now occur along the boundary, so that equations (35a) and (35b) are relaxed. 
The continuity of normal displacement and stress is, however, retained. We have 

Medium i fluid. Medium ii solid 

If, instead, medium i is a fluid, then similar boundary conditions to equations (36) apply, 
with the media reversed: 

Medium i fluid. Medium ii fluid 

If both layers are fluid, there is still the possibility of slippage along the boundary, so that 
no conditions can be placed upon ul or u2. The knowledge that the two tangential components of 
stress are zero across the boundary provides no useful information, since shear motion can never be 
generated anywhere in either fluid. We have: 

The solid free surface 

An interface is described as a free surface if medium ii is a vacuum. In this case no 
conditions can be placed upon the displacement of the solid at the boundary, but all three stress 
components must vanish there: 

T11e fluid free surface 

If, instead, medium i is a fluid, then only equation (390 is required; equations (39d) and 
(39e) contain no useful information because shear stresses are not present anywhere in the fluid. We 
have 

The solid rigid boundarv 

Another special case is the rigid boundary (Ewing, Jardetsky and Press [l61 page 74), where 
all motion at the boundary is suppressed. If the medium is solid, this requires that all three components 

I 

of displacement are zero. We have: 

( u I ) ~  = 0 ( ~ 2 ) i  = 0 (u3)i = 0 . 

The fluid rigid boundary 

(4 1 a-c) 
1 

If, instead, the medium is a fluid, then it is not possible to constrain (ul)i or (~2) i ,  and only 
the normal component of displacement can be constrained to zero. Thus we have 



o e  
r, 

If two solid media are in contact at a perfectly lubricated interface, so that slippage can 
occur along the boundary, then the tangential components of shear in both media must tend to zero at 

i. the boundary. However, the requirement that the two media must remain in contact implies that 
continuity of normal displacement and stress are still required. We have 

This case is not considered further except in section 7.6. 

4.5 The solid-solid interface as a general case 

With a view to rationalising the code for programming the Zoeppritz equations, we 
introduce a unified procedure for computation rather than treating all cases separately, even though this 
may introduce some unnecessary calculations for the simplest cases (e.g. fluid-fluid boundary). It is 
now shown that all the cases discussed above, with the exception of the lubricated solid-solid interface, 
can be treated as special cases of the (welded) solid-solid interface. This can be seen most simply by 
inferring the required values of the Lam6 coefficients il and p,  and the density p, for each medium, and 
then using equations (12a) and (12b) to calculate the corresponding values required of their dependent 
variables which are used in the equations, namely the P- and S- wave speeds U and V respectively. Also 
of relevance is the hcompressibility k, and the relative size of the compressional and shear moduli, 
which is normally expressed using Poisson's ratio o. From equations (12a) and (12b), and the 
definitions of incompressibility and Poisson's ratio, we have respectively 

A solid medium, by definition, can sustain both compression and shear. Thus we require 
i1+(2/3)p>O and p - 0 .  Also we require p>O. (Note that i1>0 is not explicitly required, although a 
negative il implies that when an element of material is extended along one axis, it also extends along the 
other axes.) The above requirements will be satisfied if we have U>O, V>O for both media, and this is 
the most general form. If the two Lam6 parameters are equal, then a=0.25, ~ = d 3 ~  and the medium is 
referred to as a "Poisson solid". In any case it follows from equations (44a) and (44b) that we must 
have U>V. 

A fluid medium, by definition, can sustain compression but not shear. Thus we require A>0 
and p=O. Again we must have p>O. These conditions will be satisfied if U>O, and from equation (44b) 
we require that V=O as expected. Thus if medium i is a fluid, we set Vi=O, and if medium ii is a fluid we 
set Vii=O. Both of these conditions are applied if two fluid media are in contact. We see from equation 
(44d) that any fluid, whether liquid or gas, has 0=1/2, since il cancels whenever p=O. However, a liquid 
is hardly compressible, so that k (and hence 1 )  is very large, whereas a gas is highly compressible, with 
consequently much smaller values of k and p. Nevertheless, gases have much lower densities than 
liquids, so from equation (44a) we conclude that these numerical contrasts compensate, and 
consequently the P-wave speeds of liquids and gases are of the same order. 

For a solid or fluid free surface medium ii must be a void. This implies that medium ii has 
zero density, so we set pii=O. This is the condition which is required to define a void for medium 
i i .  From equations (84a) and (84d) we see that if LamC's parameters and density all tend to zero, the 
wave speeds become indeterminate, not zero. For a void, the values of Uii and Vii have no effect on the 
results for medium i. We may set Vii=O, in which case medium ii will behave as the limiting case of a 



zero-density fluid, so that the transmitted S-wave displacement is zero. However, we shall see in section 
4.7 that although the transmitted P-wave energy tends to zero as Pii tends to zero, its displacement 
amplitude still has to satisfy the free surface continuity of displacement, so the calculated P-wave 
displacement in the void is in general non-zero, and depends upon the angle of the notional transmitted 
P-wave as determined by Snell's law according to the value assigned to Uii. If we set Uii=O, the angle e 8 

will always be zero, and the value calculated for E will be equal to the normal surface displacement (see 
section 4.10). Although these points are academic for a true free surface, the behaviour in medium ii as 
pi; tends to zero is important when considering waves transmitted into the atmosphere at the Earth's 
free surface, for which pii is indeed non-zero, allowing atmospheric sound waves. This is discussed in 
section 5.5. 

For a solid rigid boundary we require that any compression or shear results in no strain in 
the second medium. This means that medium ii must have infinite density, so that pii=w. We shall 
show in section 4.7 that the behaviour of medium i is then independent of the values of Uii and Vii, as 
in the case of the free surface. 

For a fluid rigid boundary we again require pii=w, this time with y=O. A practical example 
which approximates to the fluid rigid boundary is when medium i is the Earth's atmosphere and 
medium ii the solid Earth. Then pii>>pi, and for acoustic waves incident in the atmosphere the 
condition pii== is a good approximation-i.e. there is negligible coupling of acoustic waves from the 
atmosphere to the Earth. 

It can be seen from the above that, while the free surface and the rigid boundary both have 
the characteristic that no energy is transmitted into medium ii, their different boundary conditions result 
in different reflection coefficients-they represent an infinitely rarefied, or an infinitely dense, medium 
ii respectively. Here we have contrived a rigid boundary by giving medium ii infinite inertia. This is 
not the same as giving medium ii infinite rigidity. From equations (44) infinite rigidity implies infinite 
wave speed, which is a different condition. We emphasise this point to avoid a possible confusion in our 
terminology. 

The perfectly lubricated (or indeed a partially lubricated) solid-solid interface cannot be 
incorporated into this scheme as its boundary conditions are conflicting with those of the normal solid- 
solid interface. Continuity of the tangential components of displacement and stress must be relaxed, 
and this results in different relations from the general case considered here. 

Finally we note that we must always have O<pi<w, so that medium i can sustain the waves 
which may be incident in it. 

4.6 ADDlication of boundarv conditions for the solid-solid interface 

We now apply the six boundary conditions of displacement and stress given in equations 
(35a-f), to the equations for the total wavefields given in equations (33) and (34) for the two media 
respectively. We first apply the boundary conditions separately for each component of particle 
displacement, ul, u2 and us, equating equations (33) and (34) separately for the three displacement 
components. It is clear that equality of amplitudes and exponents both have to be satisfied; we consider 
first the amplitudes. For the ul, u2 and us components respectively we obtain 
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Asina - Bcosb + Csina + Dcosb = Esine - Fcosf (45) 

-Acosa - Bsinb + Ccosa - Dsinb = -Ecose - Fsinf. (47) 

For the boundary conditions in stress we refer to equations (8a) and (gb), which give the 
stress components pij in terms of the spatial derivatives of the particle displacements. We are concerned 



with the three components of stress across the interface, which correspond to i=3 with j=l, 2 and 3, 
which from equations (8a) and (8b) are 

Taking the appropriate derivatives of equations (33) and (34), substituting them into two 
expressions similar to equation (48a) for the two media, and equating them, we get for p31 

- cosa - cosb pi Asina. - cosa + Dcosb cosb ([ ( o ; ) - B c O s b ( T ) + C s i n a . ( T )  

sina + - Acosa Bsinb Sinb + Ccosa sina Dsinb sinb [ . (7)- . (7) . (7)- - (TT)]) 

= pii  si sine . [T) - Fcosf . + [- Ecose. . (E) - Fsinf . (Ff]) . 

Rearranging, we obtain 

where we have eliminated pi and pii using equation (12b). 

Similarly, by substituting the appropriate derivatives from equations (33) and (34) into 
equation (48b) for the two media, we obtain for P32, 

which, rearranging, becomes 

Hcosb + I (7;) - (:;) - cosf = Gcosb . 

For the normal component of stress p33 we utilise equation (48c) similarly and obtain 



sin2a sinb cosb sin2a + D sinb cosb Ai [ A  -- B + C -  
ui Vi ui Vi 

cos& + B sinb cosb cos2a sinb cosb +O+A- +C--D 
u i  Vi u i  Vi I 

cos*, sinb cosb cos2a D sinb cosb + B  +C-- 
Vi u i  Vi 

sin2e F sinf cosf + + E = A i i  E- - cos2e + F sinf  COS^ ( u i i  Vi i u i i  Vi i I 
cos2e + F sinf cosf + 2,Uii E - 

Qi Vi i I 
Rearranging, and eliminating the Lam6 parameters using equations (12a) and (12b), we obtain 

Equations (43 ,  (46), (47), (50), (52) and (54) result respectively from application of the six 
boundary conditions equations (35a-f) to the amplitudes of the wave motions of equations (33) and 
(34). This corresponds to satisfying the boundary conditions at a chosen instant at one point on the 
interface. We further require to satisfy the boundary conditions at all times at all points on the 
interface, and to do this the exponents in equations (33) and (34) also have to be equated. Examination 
of equations (33) and (34) reveals that, ,for the continuity of displacement to be satisfied at all points on 
the interface at all times, the horizontal slowness of all the waves must be identical. We have 

sina - sinb - sine - sinf 
Uj Vj Ujj Vii 

This is of course simply a generalised form of Snell's law, and provides the relations necessary to 
eliminate the angles (apart from the appropriate incident angle) from the simultaneous equations. (In 
section 3.1 we assumed the law of reflection to avoid unnecessary additional variables, in particular the 
angles of reflection c and d, but a similar argument could be used to prove these equations also.) 

4.7 The Zoeppritz equations in matrix form 

Equations (43 ,  (46), (47), (50), (52) and (54) represent six simultaneous equations in the 
six (complex) unknowns C, D, E, F, H and I, which are the unknown displacement amplitudes, where the 
modulus of the complex value denotes the wave amplitude, and the argument its phase. We see that the 
equations derived from the boundary conditions in the X2 direction are independent of the others and i 

give two equations relating G to H and I, while the remaining equations can be used to solve for the 
remaining four unknowns. This separation corresponds to the well-known decoupling of SH 
partitioning at the interface from that of P and S V  together. 1 

We shall normally not be considering incident P and S together, in which case either A, or 
both B and G will be zero. Since P and S waves would approach the interface at different speeds, it is 
usually inappropriate to combine the effects of both P and S incident waves. We might, however, have 
an incident S wave which is polarised in a direction neither parallel to nor perpendicular to the interface, 
or indeed an incident S wave which is elliptically polarised (see section 3.2). In all cases the S wave is 



resolved into its SV and SH components B and G respectively. The separate P-SV and SH sets of 
equations are then solved, and the resulting components recombined for the reflected and refracted 
waves in order to find the resulting polarisation directions, which will in general be different. 

The angles a ,  b, d and f also appear in the six equations, and we use equation (55) to 
calculate the unknown angles d and f from the known angle (a or b for incident P or S waves 
respectively). 

We can express the two systems of simultaneous equations most conveniently as matrix 
equations, and they can be solved in this way by computer. From equations (45), (47), (50) and (54) 
we obtain, for incident P or SV (by setting either B=O or A=O respectively): 

/ cosb - sine cosf \ IC\ 
l - sinb cose sinf 

and from equations (46) and (52), for incident SH we obtain 

' -sina I cosb \ 

In the computational procedure we must be certain to avoid zero divides when densities or 
wave-speeds are set to zero. We must also remove any common factors in rows of the matrices which 
may remain if some elements become zero, otherwise equations will be lost and the problem will 
become under-determined. We recall from section 4.5 that each or all of the quantities Vi, Uii Vii and 
pii may be zero under certain circumstances, and that pii will tend to infinity in the case of a rigid 
boundary. Ui and pi cannot be zero since the minimum requirement is that medium i-as the incident 
medium-must support P waves. We first ensure that Vi, Ui i ,  Vii and pii do not appear in the 
denominator of any term in equations (56a) or (56b). This requires reformulation of the third row of 
the matrix equation (56a), to obtain 

= A  

cos2b ($1 sin2b 

+ B  

cosa 

sin2a 

sinb 

- (2) cos26 



It is not necessary to change row 2 of equation (56b) since SH waves cannot be incident in 
medium i if it is a fluid (i.e. if Vi=O). 
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Equation (57) will be in a suitable form if either or both media are solid or fluid, except in 
some special cases, which are now considered with reference to section 4.5. For a solid or fluid free 
surface the third and fourth terms in equation (57) become zero since pii=O; the same happens to terms 
(4,3) and (4,4) of equation (56a). There is then a common factor of ViUii in equation (57) which must 
be removed before computation, to avoid the third row of equation (56) becoming null if either of Vi 
or Uii is zero. Once this is done, we see that matrix equations (56) are no longer dependent upon the 
values of Uii or Vii, which is what we expect from section 4.5 in the case of a free surface (pii=O). The 
angles of refraction e and f still enter the first and second rows of equation (56a), and these are obtained 
from Snell's law, equation (53 ,  which does require values for Uii and Vii. Although the values of Uii 
and Vii  do not affect the behaviour in medium i if pii=O, they determine the angles e and f of the 
refracted rays from which amplitudes E and F are computed to satisfy the boundary conditions at the 
interface. Thus for a free surface it is sensible (though not necessary) to set Uii=Vji=O. In this case the 
transmitted S wave will have zero amplitude by analogy with a fluid, so F will be zero. The transmitted 
P wave will be at normal incidence for all incident angles (e=O), so its displacement amplitude E will 
equal the normal surface displacement (see section 4.10) since this is continuous across the interface. 
We reset E=O after computation. 

The above discussion illustrates the fact that the free-surface displacement boundary 
condition requires that the refracted amplitudes do not in general tend to zero as the density in medium 
ii  tends to zero. This is discussed in connection with the Earth's surface in section 5.5. 

For a rigid boundary (section 4.5) pii=w. For the P-SV system we must then divide 
equation (57) and the fourth row of equation (56a) through by pii, and elements (3,1), (3,2), ( 3 3 ,  
(3,6), (4,1), (4,2), (43) and (4,6) all become zero. A common factor of Vii must then be removed from 
row 3 (equation (57)). A common factor of Ui also appears in both rows 3 and 4, but this can remain 
as Ui can never become zero. In the resulting matrix equation rows 3 and 4 can only be satisfied if 
E=F=O, which means that there is zero displacement amplitude for refracted P and SV. This is 
expected; if these amplitudes were not zero, then infinite energy would be transmitted into medium ii 
because of its infinite density (see section 4.9). 

For SH incident at a rigid boundary, we divide the second row of equation (56b) by pii, and 
retain one non-zero term, giving I=0 (unless f=z12). This corresponds to zero displacement for 
refracted SH as expected. The first row then gives G=-H, which is also expected since there can be no 
resultant horizontal displacement at the rigid boundary. 

We make no special provision in the computer program for the rigid boundary; this would 
require a rigid-boundary flag to be specified. It is not possible to test for a rigid boundary in the input 
data simply on the basis of large piilpi, since a genuine solidlgas interface also has a large density ratio, z 
but is not rigid because of the compensating large ratio of the two Lam6 parameters Ai and Aii (see 
section 4.5). 
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In some of the above cases, one or more of the leading diagonal terms of the matrices in 
equations (56) become zero, so the method used to solve the matrix equations must be able to pivot the 
matrix to compute its roots. 



4.8 A note on super-critical angles of incidence 

Depending upon the values of Ui, Uii, Vi and Vii we may find that one or more of the sine 
terms in equation (55) becomes greater than 1.0, and it is straightforward to show that the associated 
angle then becomes complex. The sine of a complex angle may be expressed in terms of its real and 
imaginary parts as 

sin(x + iy) = sinx coshy + icosx sinhy . (58) 

From equation (55) we see that the sine of the resulting angle remains real (but with an absolute value 
greater than unity) when super-critical. It follows from equation (58) that cosx sinhy must be zero, 
which requires either y=O or x=z/2. Clearly the former condition indicates a real angle, so we must have 
x=7C/2. The angle is therefore complex, with the real part equal to n/2. Moreover, since sin(n/2)=1.0, it 
follows that the imaginary part is equal to the arccosh of the sine value. 

As already pointed out, this complex angle gives rise to non-propagating (evanescent) waves 
at the interface. This also results in non-trivial phase changes for the remaining propagating waves. 
Our complex implementation of the computer program allows for this possibility, by specifying the 
angles a to f and the amplitudes A to I to be complex. From the general form of the exponent in 
equation (33), it can be seen that when the resulting angle ceases to be real, the spatial term in the 
exponent has a real part, so that there is a non-propagating wave confined to the vicinity of the 
boundary, which decays exponentially with distance away from it. For the infinite plane waves we are 
considering, an evanescent wave effectively propagates along the boundary as it has the same slowness 
as the other waves, but since it does not propagate away from the boundary it does not contribute to the 
energy budget in section 4.9. We shall show the amplitude and phase of the evanescent waves in the 
results which follow, but their particle motions will not be discussed in detail except to calculate the 
motion at the free surface in sections 4.10 and 5.7. 

4.9 Enernv equations 

It follows from the energy equations originally formulated by Knott [5], that the 
contribution of each wave to the energy flux across the interface is proportional to the density, to the 
square of the displacement amplitude and to the wave speed, and is inversely proportional to the tangent 
of the incident or resulting angle (see for example Costain, Cook and Algermissen [21]). The energy 
budget at the interface can therefore be expressed as 

piUi2A2 + piVi2g2 - - piui2c2 + p i v i 2 ~ 2  + piiuii2E2 + p i i u i i 2 ~ 2  
tana tanb tana tanb tane tan. (59a) 

piVi2G2 - - piVi2~2 + piivii212 
9 a,b,e,f*O. 

tanb tanb tanf 

These equations do not hold for normal incidence, for which a=b=e=&O; the tangents then cancel and 
can be omitted. If any of a ,  b, d, f are complex, the corresponding terms are omitted; for complex 
incident or resulting angles (evanescent waves) there is no contribution to the energy density. Although 
evanescent waves can transport energy along the boundary, they cannot transport energy away from it. 

In the case of P and SV waves, either A or B will normally be zero. For incident, reflected 
or refracted waves approaching glancing angle (z12) the denominator becomes infinite, so the 
contribution to the energy budget approaches zero. This is because no energy can approach or emerge 
from the interface along travelling rays which are parallel to it. It follows that at glancing incidence the 
amplitude may become infinite without violating energy conservation. In particular, we shall see in 
section 5 that the amplitude of a reflected or refracted ray may become infinite as the corresponding 
critical angle of incidence is reached. 



It is also clear from equations (59) that one or more of the reflected or refracted wave 
amplitudes may be greater than that of the incident wave without violating energy conservation. In 
general, amplitudes become higher in media with lower density and wave-speeds, because the energy 
density corresponding to unit displacement amplitude is then lower, and because the energy is 
transported more slowly across the interface. Also, higher amplitudes may occur at larger angles 
because the width of the ray packet associated with unit length of interface is then narrower (the case of 
glancing angle discussed above is an extreme case of this). These points provide some physical insight 
to the form of equations (59). 

The difference between displacement amplitude partitioning at an interface (described by 
the Zoeppritz equations) and energy partitioning becomes especially important when one medium is a 
gas, so that there is a large density contrast. The energy in the gaseous medium will then usually be 
negligible for practical purposes compared with that in the solid or liquid medium. However, the 
amplitudes will, in general, still be comparable in the two media. This paradoxical behaviour is 
considered in section 5.5 in connection with the Earth's free surface. 

The principle of energy conservation expressed in equations (59) provides a convenient 
- . A /  h, means of checking any computational scheme for determining reflected and refracted amplitudes. 

k uch a check was one method used to verify the computer program described here. 

4.10 Motion at the free surface 

A seismometer at the Earth's surface records not the incident wave but the vector sum of the 
particle motions associated with the incident wave and the resulting reflected waves (and evanescent 
waves if they exist). This gives rise to important differences between the particle motions we observe 
and those of the incident wave. In the simple case of the normally-incident P wave, the addition of the 
reflected P wave of opposite polarity gives rise to a surface amplitude double that of the incident wave. 
In general the scaling is not the same for the horizontal and vertical components, so that the particle 
motion directions at the surface are also different from that of the incident wave. This gives rise to the 
concept of "apparent angle of emergence" (see e.g. Bullen and Bolt [l81 page 189) and affects the 
ratio of observed amplitudes on a three-component set of seismometers. 

It is possible to solve equations (56a, b) for the special case of the free surface, and hence to 
find expressions for the vertical and horizontal displacement components associated with an incident P 
wave or S V  wave, and the horizontal amplitude of an SH wave. However, these equations are 
complicated and it is more convenient to create expressions for the surface displacements in terms of 
the incident and resulting wave amplitudes A to I, and the incident angles a and b, and to substitute the 
results from the Zoeppritz calculations to compute the surface motion. 

Referring to figure 1, and assuming that we may have incident P, SV, and SH incident waves, I 

the three components of surface displacement ul, u2 and us are given by 1 
= Asina - Bcosb + Csina + Dcosb 1 

L12 = G + H 
u3 = - Acosa - Bsinb + Ccosa - Dsinb . 

I ' Here ul is the horizontal component in the ray plane, U;! is the horizontal component associated with 
SH particle motion, and u3 is the vertical component (figure 1). It is convenient to determine the ratio r 
of the surface amplitude to the incident amplitude for each component for each incident wave type. 
For the incident P wave we have 



Asina + Csina + Dcosb 
r l P  = Asina 

Acosa - Ccosa + Dsinb 
r3P  = Acosa 

and for the incident SV wave we have 

- Bcosb + Csina + Dcosb 
r l S V  = 

- Bcosb 

Bsinb - Ccosa + Dsinb 
r 3 s v  = Bsinb 

The result for the incident SH wave is trivial: 

Because G=H for all angles of incidence at the free surface, r 2 ~ ~  is always 2.0. 

We recall from section 3.1 that each of A to I are complex, to allow for phase differences 
between the waves. Thus complex algebra is required to compute the ratios r l p  etc., and each ratio has 
an amplitude and a phase. We must also remember that a,  b, d and f were defined complex in section 
3.1, to allow for the complex angles of incidence for evanescent waves. This is essential in order to 
obtain the correct displacement values at super-critical angles. As in the case of the reflection and 
refraction coefficients, the ratio is real with a phase of either 0 or n unless any of the waves are super- 
critical. We shall present numerical results in section 5.7. 

As pointed out in section 4.5, the replacement of the void in the second medium with a 
medium of very low density (i.e. a gas) has no significant effect on displacements at the interface. It 
follows from continuity of displacement that the displacement amplitudes in the gaseous medium must 
be similar to those in medium i; they do not tend to zero as pii tends to zero. This behaviour is implicit 
in the Zoeppritz equations but is stated explicitly as it is easily overlooked. It is of practical importance 
when the Earth's surface is considered in section 5.5. 

5 .  EXAMPLES. INCLUDING IMPORTANT INTERFACES IN THE EARTH 

t 5.1 Introduction to erawhic display and cases 

We now present a range of examples to show the partitioning of displacement amplitude for 
P and S waves incident at a wide range of interfaces. For each case we show the complete range of real 
incident angles a or b from 0" (normal incidence) to ~ 1 2  (glancing incidence), and we present the 
results graphically. The program can produce tables of results for a succession of incident angles (see 
Appendix A), but the graphical display used here is not included as part of the program. For each case 
three graphs are presented, each with incident angle (of either of P or S )  along the abscissa. The top 
graph shows the resulting angle of each reflected and refracted wave, the middle graph shows their 
displacement amplitudes and the bottom one their phase. The amplitude and phase values shown 



depend upon the amplitude and phase of the incident wave, which is also shown. Normally, for a single 
interface the amplitude would be set to (say) 1.0 with a phase of zero for all incident angles. If results 
were to be shown for an intermediate interface in a succession of interfaces, then the incident wave 
amplitude and phase may take any values, with dependence upon incident angle. 

Y 

It follows that each graph giving results for either incident P or SV may be an overlay of up 
to six curves, corresponding to each of the incident, reflected and refracted waves. For incident S H  
there will in general be an overlay of three curves. For an intermediately-polarised S wave there would i 

be an overlay of up to eight curves (all except incident P). Each curve is identified by its 
corresponding amplitude identifier A to I (see figure l). In the top graph (resulting angles) the real 
part of the angles a,  b, a, b, e, and f is plotted as appropriate for incident P and S, reflected P and S, and 
refracted P and S respectively; (each angle is real unless the wave is evanescent, in which case the angle 
is not shown). In the middle graph the moduli of complex amplitudes A to I are plotted as appropriate, 
and the bottom graph shows the arguments of these amplitudes (i.e. the relative phase of each signal). 
This follows the convention established in section 3.1 (figure 1). (In section 3.1 we have defined the 
phase in [0,2n], but in the graphs we show the phase in [-n,n]; this difference is unimportant.) 
Although we have defined phase over a range of 2n  with amplitude (modulus) always positive, in what 
follows the terms "polarity change" and "n phase change" are used interchangeably. 

For each curve, values are computed at intervals of 0.5" in incident angle, and the results are 
interpolated linearly to show a continuous curve on the graphs. This gives an adequate resolution to 
show the important features of each plot, but in a few cases minor artefacts occur. Examples are when 
the amplitude approaches a singularity (at a critical angle), or zero (where there is a discontinuity in 
gradient as the phase changes by n). If such a point is not sampled exactly, then the linear interpolation 
"misses" the extreme value. This results in short line segments with anomalous gradient in a few cases 
which are readily identifiable. Also on the bottom graph, the phase returns to zero at normal or 
glancing incidence if the amplitude becomes zero; again this has no significance since phase is 
undefined at zero amplitude. 

It should be remembered that if we were showing graphs for a series of interfaces during the 
passage of the ray, the incident angles sampled at any intermediate interface (and its corresponding 
graphs) would not be equally spaced and would not in general cover the complete range of angles 
unless the wave speed were the same as that in the first medium of the sequence. We emphasise that the 
graphs are plotted against the angle of incidence of the wave chosen, rather than against horizontal 
slowness (i.e. ray parameter). This means that the range of slownesses plotted is different for incident P 
and S waves, because in each case we plot against angle of incidence from 0" to 90". This is important 
to note when comparing graphs for incident P and S waves, or graphs of rays passing in opposite 
directions through the same interface. 

It is not normally appropriate to consider incident P and S waves together; their wave speeds 
are in any case different in each medium so in practice this would only be sensible for continuous 
stationary waves. Hence normally either A, or both B and G will be non-existent, i.e. zero. In the case 
of an S wave plane-polarised either in the plane perpendicular to or parallel to the interface (SV or S H  
respectively) G or B will also be zero respectively. If the wave is polarised in any other direction, or is 
elliptically polarised, then both B and G will be non-zero. We do not present such cases here. Since the 
SH system of waves behaves independently of the P-SV system of waves, appropriate proportions of 
incident SV and SH can always be added to simulate any polarisation, and the resulting amplitudes and 
phases resolved to obtain the resulting polarisations. 

Certain waves which do not exist are omitted from the graphs. These are any incident waves 
1 

which are set to zero, the nonexistent S V  and SH waves in a fluid medium, and resulting waves which 
cannot exist because the appropriate incident wave is zero (e.g. resulting ,SH waves when incident SH is 
zero). Waves which are evanescent for a range of incident angles are shown with a dotted line on the 
plots to emphasise that they are not propagating waves. They do not appear on the top graph since 
only real angles are shown there, but their amplitude and phase appear on the middle and bottom 



graphs respectively. However, the curves do not fully describe evanescent waves because their spatial 
dependence with distance is not shown. 

In all cases the numerical values of wave speeds and density in each layer are shown on the 
plots, and an incident wave displacement amplitude of 1.0 and a phase of 0" are specified for all angles 
of incidence. It should be remembered that there is no significant relationship between the resulting 
amplitudes from an incident P wave and an incident S wave of the same amplitude-these incident 
waves do not, of course, have the same energy and if comparison of wave energies is required then 
equations (59a) and (59b) must be used. 

The relationship between the incident and resulting angles (and hence the values of critical 
angles) is determined only by the ratio of wave speeds across the interface through Snell's law 
(equation 55). The size of these ratios (in particular whether they are greater or less than 1.0) is 
therefore crucial to the behaviour. The ratio of the amplitudes of each wave is determined also by the 
density, and it is therefore useful to say that the amplitude depends upon the "impedance", which is 
the product of density and wave speed. 

We attempt to show all classes of behaviour for different types of media and incident wave. 
Where possible we use the important interfaces of the Earth, as examples of the application of the 
program to known real situations of relevance to global seismology. We emphasise, however that the 
results are quite general, within the assumptions made in section 2, and so are equally applicable to 
reflectors and refractors encountered in exploration seismology. Additional cases are included to show 
special features of behaviour which are not represented by the major interfaces of the Earth. We 
consider the solid-solid interface, followed by the solid-fluid interface, then the fluid-fluid interface and 
finally the solid free surface and the fluid free surface. We show waves incident in both the higher 
wave-speed and the lower wave-speed medium. Higher wave speed usually implies higher impedance, 
but higher wave speed may be associated with lower density and such cases are also considered. For the 
solid-fluid interface we show waves incident in both the solid and the fluid. The fluid normally has the 
lower impedance but this does not have to be the case, and the higher wave-speed fluid is also 
considered. 

Table 1 gives a list of the cases considered, together with the relevant figure numbers. The 
figures and discussion consider one pair of media at a time, while the table gives examples in an order 
determined only by the parameters of the media, making it useful for reference. 

For each case we present one set of graphs showing the behaviour of the incident P wave; in 
the case of waves incident in a solid this is followed by two further sets of graphs for the incident SV 
wave and the incident SH wave. We recall that there is nothing special about SV or SH, since an S wave 
may have any plane or elliptical polarisation. Although we do not show such examples, the 
consequences of reflection and refraction of shear waves of intermediate and elliptical polarisation are 
implicit in our formulation. 

It is possible for an evanescent wave which results from super-critical incidence at one 
interface to be "incident" on a second interface, and for this to result in propagating waves; this might 
occur if we consider passage of a ray through a series of interfaces. However, the amplitude of any 

t .  
propagating waves which result in these circumstances depends upon the separation of the interfaces, 
since the evanescent wave decays in amplitude away from the first interface (section 4.8). We do not 
consider such cases here, though they can become important in the case of multiple media with 
different wave speeds, as met in seismic reflection sections. It would be straightforward to extend the 
program to treat them if the separation between interfaces were specified as input, although in real 
situations it is likely that other assumptions in section 2 would be violated in such circumstances. 

We shall describe the first solid-solid case, exemplified by the MohoroviEiC (Moho) 
discontinuity, in particular detail to highlight those features of the graphs which are common to many 
or all of the succeeding cases. We shall also discuss the sea bed in more detail as the first example of 



the solid-fluid interface. The sections on these two interfaces should therefore be consulted when 
referring to other sections. 

5.2 The solid-solid interface 

5.2.1 The Mohorovic'iC (Moho) discontinuitv 

5.2.1.1 Introduction g 

The wave-speed and density contrast between the lower crust and upper mantle varies widely 
throughout the Earth. Here we consider "classical" values for the continental Moho. We specify 
U=6.5 krnlsec and p=2.9 glcc above the interface and U= 8.1 krnlsec, p=3.3 glcc below. These wave 
speeds are taken from Mueller and Landisman [22]) and the density contrast from Woollard [23]. In 
both cases V is derived assuming a Poisson solid (i.e. A=p or u=.\/~v; see equations (44)). Similar 
values would be reasonable for the Moho beneath oceanic crust (see for example Ewing [24]). 

5.2.1.2 P incident from above (figure 2) 

Figure 2 shows results for a P wave incident from above (that is, in the low wave-speed 
medium). At normal incidence the reflected and refracted S waves have zero amplitude. It is not 
possible for conversion between P and S waves to take place at normal incidence since the particle 
motions of the incident and resulting waves are in that case orthogonal. (We refer to a conversion from 
P to S or S to P as a "mode conversion".) It follows that the fractional change in the amplitude of a 
mode-converted wave as we move away from normal incidence changes very rapidly, since it is 
increasing from zero. Thus if we can measure such a wave, its amplitude is much more indicative of the 
wave-speed and density contrast than that of a reflection or refraction which is not a mode conversion. 
Alternatively, if we know the wave-speed and density contrasts, then the amplitude is very indicative of 
the angle; an example of this is the phase sP (see section 5.5). 

At normal incidence the amplitude is partitioned between the reflected and refracted P 
waves in a ratio which depends upon the impedance contrast; we expect more to be reflected for a 
higher contrast. In this case the reflected P is about one fifth of the amplitude of the incident wave. 

We see that at normal incidence the incident, reflected and refracted P waves are all of the 
same polarity; in particular, there is not a polarity reversal upon reflection when the wave is incident in 
the lower wave-speed medium. We see that the refracted SV wave has the opposite polarity to that of the 
reflected SV wave. This means that, for the positive incident P wave, the reflected and refracted SV 
waves are both polarised away from the interface (figure 1). Of course, there is no reflected SH since 
this cannot be generated from incident P. 

As the angle of incidence is increased the refracted P wave remains the dominant wave; 
indeed its amplitude increases until at 45O incident angle it becomes of higher amplitude than the 
incident wave. (This does not violate energy conservation because energy flux depends also on the 
moduli and density-section 4.9.) At about 52" incident angle the amplitude of the reflected SV wave 
passes through zero and its polarity changes; this means that its polarisation is now towards the interface 
when the incident P wave is positive (figure 1). The amplitude of the reflected P wave varies little over 
near-normal angles of incidence. This is an important principle in the stacking of different offset traces 

# 

in common-depth-point processing of seismic reflection data. Nevertheless, amplitude-versus-offset 
(AVO) analysis of pre-stack reflection data depends upon the observation of such differences in the 
presence of favourable wave-speed contrasts (section 8). 

. 
There are many circumstances in which a resulting wave changes polarity upon passing 

through zero amplitude as the angle of incidence is changed. The angle at which this occurs can be an 
important diagnostic of the wave-speed contrast across the interface, and in seismic reflection surveying 



it is sensible to avoid stacking offset ranges which contain signals of opposite polarity. These issues are 
discussed by Levin [25]. 

The amplitude of the refracted P wave continues to increase until at about 54" incident 
angle the critical angle is reached and the refracted P wave emerges at 90" (along the interface). This 
corresponds to the angle at which a Moho-refracted head wave would leave the Moho. The refracted P- 
wave amplitude becomes infinite but this does not violate energy conservation for the reasons given in 
section 4.9. Beyond the critical angle the refracted P wave becomes evanescent, and we see non-trivial 
phase changes for the remaining propagating waves as expected (section 4.8). Beyond the critical 
angle for the refracted P wave, the amplitude of the reflected P wave is high, and approaches that of the 
incident wave. This corresponds to the high-amplitude "wide-angle reflections" often recorded on 
seismic refraction lines from interfaces at the top of a higher wave-speed medium. Less easy to detect is 
the change of phase with reflection angle, which is predicted in figure 2 for the super-critical range. 

As the angle of incidence approaches 90" the S waves drop to zero amplitude as does the 
evanescent wave, and the incident wave is simply converted to a reflected P wave of equal amplitude; 
this corresponds to a wave travelling horizontally in the first medium, with the interface having minimal 
effect. At glancing angle of incidence, as for normal incidence, mode conversion is not possible 
because the P and S waves have only orthogonal components when resolved normal to and parallel to 
the interface. 

The resulting angle of refracted P changes rapidly as the critical angle of incidence is 
approached. By contrast, the reflected and refracted SV, which do not become critical, have resulting 
angles which change less rapidly as glancing incidence is approached. This behaviour applies 
generally; the angle of reflection or refraction changes rapidly as a function of incident angle as the 
respective critical angle of incidence is approached, while the rate of change of the reflection or 
refraction angles of all other waves with respect to incident angle tends to zero as glancing incidence is 
approached. 

The qualitative form of these graphs would remain similar if the wave-speed andlor density 
contrasts were changed, but the numerical values of the key amplitudes and angles would change. This 
is generally the case; if there is significantly different behaviour an additional case will be presented 
(see for example section 5.2.2). 

5.2.1.3 SV incident from above (figure 3'2 

Figure 3 shows results for an S wave polarised in the ray plane (SV), incident from above on 
the Moho; this yields very different results from the P wave. The form of the graphs is generally more 
complicated because there are generally more critical angles for an incident S wave than for a P wave. 
This results from the fact that S waves travel slower than P waves. 

At normal incidence the P waves have zero amplitude because mode conversion is not 
possible. As in the case of the P wave, most of the energy is refracted because the impedance contrast 
across the interface is not large. We see that all three SV waves have the same polarity (i.e. the same 
phase) and reference to figure 1 shows that the incident and reflected SV waves have opposing particle 
motion directions, and that the refracted SV polarisation is similar to that of the incident SV. 

At about 23' incident angle the reflected SV passes through zero amplitude with a change 
of polarity (n change in phase). At about 27" incident angle the same happens to the reflected P wave, 
though the amplitude of the refracted SV wave still dominates. At 28" incident angle refracted P is 
critical, though this hardly affects the amplitude or the phase of refracted SV. At about 35" incident 
angle reflected P becomes critical, again without significant effect on refracted SV. At about 54" 
refracted SV becomes critical. We see that the approach of this third critical angle has associated with it 
a strong increase in refracted SV amplitude (it exceeds that of incident SV beyond about 47" incident 



angle). This is by contrast with the first two (P-wave) critical angles, which do not have an infinite 
singularity. 

Beyond the third critical angle all the resulting waves are evanescent except for the reflected 
S wave. Thus all the incident energy must pass to reflected S. Since the law of reflection requires these 
two waves to have the same angle, their wavefronts must have the same energy density, so conservation 
of energy requires that they have the same amplitude, which we observe on the graphs. This is 
somewhat analogous to "total internal reflection" in optics. In the seismic case (solid-solid interface) it 1 

can only happen for an incident S wave because an incident P wave can never have a critical angle for 
reflected S. 

At glancing incidence, when the evanescent wave disappears, the incident and reflected S 
waves are seen to have opposite polarity. Reference to figure 1 reveals that the particle motion is in the 
opposite direction for the glancing incident and reflected S waves. 

The order in which the three critical angles occur depends upon the wave-speed ratios, so 
that there can be a much larger range of behaviour as a function of incident angle than is typical for P 
waves. This highlights the importance of having the ability to run cases.with any chosen parameter 
values. 

5.2.1.4 SH incident from above (figure 4) 

Figure 4 shows results from an incident S wave as above, but polarised parallel to the 
interface (SH). As for all cases of SH the behaviour is relatively simple. Only the three SH waves exist. 
At normal incidence we see that the same percentage of SH is refracted as for the SV wave in figure 3. 
This has to be so, because SV and SH are indistinguishable at normal incidence as they both have 
particle motions parallel to the interface. Away from normal incidence the percentage is different 
because some of the SV (but none of the SH) may be converted to P. I 

At normal incidence the reflected SH has opposite polarity to incident SH, and the refracted 
SH has the same polarity. Reference to figure 1 shows that this implies that the incident and reflected 
particle motions oppose, and that of refracted SH is the same as incident SH. This is similar behaviour 
to that observed for SV above. (In the case of a normally-incident SV wave, the convention of figure 1 
requires the reflected SV to have the same polarity if the incident and reflected particle motions to add 
destructively, whereas for SH waves destructive interference is achieved if the normal and reflected 
particle displacements have opposite polarity; this is a consequence only of our choice of sign 
convention.) 

At 43" incident angle the reflected SH passes through zero amplitude and changes polarity, 
and the amplitude of refracted SH then exceeds that of incident SH. This is not a significant angle in 
SV, but for SH it is important. At this angle (whose numerical value depends upon the wave-speed 
ratio) there is no partitioning of energy; the only effect on the travelling SH wave is a change in its 
direction of propagation. 

The critical angle for refracted SH is reached at 54O, which must be the same as for SV since 
this angle depends only upon the wave-speed ratios. As for SV, beyond this angle there is total internal , 
reflection and the incident and reflected SH have the same amplitude. At glancing incidence the phase 
of reflected SH is 7c different from that of incident SH. Reference to figure 1 shows that the particle 
motion directions of these two waves are opposed at the interface; this is the same behaviour as observed 
for SV in figure 3. 

5.2.1.5 P incident from below (figure 51 I 
l 

We next consider waves incident in the high wave-speed medium; that is, incident on the 
Moho from below. Figure 5 shows an incident P wave for this situation. A P wave incident in the 



higher wave-speed medium has the highest wave speed of all four wave speeds. Therefore there can be 
no critical angles and the behaviour is simpler than for the P wave incident from the lower wave-speed 
medium. At normal incidence we see that no S waves are generated (as expected), and that most of the 
incident P wave is transmitted, as it is when the P wave is incident in the lower wave-speed medium 
(figure 2); this depends upon the impedance contrast. The amplitude of the refracted P wave is higher 
than that of the incident wave. (This does not contravene conservation of energy because the energy 
corresponding to a given amplitude is lower in a lower impedance medium-see section 4.9.) We also 
see that the reflected P wave undergoes a n phase change (i.e. its polarity is opposite to that of the 
incident wave). Reference to the sign convention in figure 1 confirms that this means a positive 
incident P wave generates a negative reflected P wave. This is a difference from the behaviour in figure 
2, where there is no polarity change. It is generally true that a near-normally incident P wave reflects 
with opposite polarity off a lower wave-speed medium; light behaves similarly. In seismology an 
important case is the phase p P  reflected from the Earth's surface (see section 5.5). 

As the angle of incidence increases there is little change in the resulting P amplitudes until 
about 60°, when there is rapid change up to glancing incidence, when all resulting energy must be in 
the reflected P wave. As previously pointed out, the fractional change in resulting SV amplitudes near 
normal incidence is large because they are zero at normal incidence; this means that the resulting S 
waves are much more indicative of incident angle than the P waves are. For this case, there are no 
changes in polarity of any resulting waves from normal incidence to glancing incidence. 

In section 5.2.1.2 the existence of high-amplitude wide-angle P-wave reflections was 
pointed out. By contrast with figure 2, figure 5 shows that there is no high-amplitude wide-angle 
reflection if the incident medium has the higher wave speed. This means that such reflections are not 
observed when there is a "wave-speed inversion", where the wave-speed is decreasing with depth. 

5.2.1.6 SV incident from below (figure 6) 

Figure 6 shows an SV wave incident at the Moho from below. At normal incidence the 
refracted SV wave dominates because of the low impedance contrast, as for the P wave in figure 5. The 
reflected (but not the refracted) SV has opposite polarity to the incident S V ,  and reference to the 
convention in figure 1 shows that the particle motion of all three waves is in the same direction. This is 
different from the behaviour at near-normal incidence when the SV wave is incident in the lower 
impedance medium (figure 3), in which incident and reflected SV have the same polarity (i.e. opposing 
particle motions). This is analogous to the different behaviour of reflected P according to whether it is 
reflected off the higher or lower wave-speed medium. 

Away from normal incidence, the reflected SV wave passes through zero amplitude with a n 
phase change (change of polarity) at 26' incident angle. Because the incident S wave has a lower wave 
speed than either the reflected or refracted P waves, there are two critical angles. At 36' the critical 
angle for reflected P is reached, and at 46' that for refracted P. These angles are associated with 
discontinuities, but not singularities, in amplitude. There is no third critical angle, and hence no total 
internal reflection, because the refracted S wave is in the lower wave-speed medium. If the wave-speed 
contrast were greater, so that the refracted P wave had a lower wave-speed than the incident S wave, then 
there would only be one critical angle-for the reflected P wave; this situation is considered in section 
5.2.2. 

At glancing incidence the reflected SV wave, which then contains all the resulting energy, 
has opposite polarity to the incident wave, which from figure 1 implies opposing particle motion 
directions for the two waves. This is similar to the behaviour of incident SV in a low wave-speed 
medium at glancing angle of incidence (figure 3). (Whether the phase difference is shown as +nor  -n 
is, of course, immaterial.) 



5.2.1.7 SH incident from below (figure 7) 

Figure 7 shows results for an incident SH wave in the same situation. At normal incidence 
all three waves have the same polarity, so that the incident and reflected SH particle motions are in the I 

same direction; this is the same behaviour as for the incident SV wave (figure 6). Indeed, we conclude 
that P, SV and SH all behave similarly at normal incidence in that their incident and reflected particle- 
motion directions oppose when the incident medium has the lower wave speed (figures 2, 3 and 4 I 

respectively), and they reinforce otherwise (figures 5, 6 and 7 respectively). 

As in the case of SH incident in the lower wave-speed medium (figure 4) there is an angle at 
which there is no partitioning and all energy is transmitted. This occurs at 59" and comparison with 
figure 4 shows that this is equal to the refraction angle of zero partitioning in that case, so this 
represents the same slowness, as we would expect from reciprocity. Beyond this angle, reflected S H  
changes polarity, but since SH is incident in the higher wave-speed medium, there is no critical angle. 

At glancing incidence the incident and reflected SH particle motions are opposed. Indeed, 
we conclude that, at glancing incidence, the particle-motion directions of the incident and reflected 
waves are opposed in the case of incident P, SV and SH, and irrespective of whether the incident 
medium has the lower wave speed (figures 2, 3 and 4 respectively) or the higher wave speed (figures 5, 
6 and 7 respectively). Although implicit in the boundary conditions, this behaviour can be understood 
more straightforwardly from energy conservation requirements, especially for incident S waves. 
Incident and reflected waves at glancing angle cannot contribute to the energy flux across the interface. 
For S waves at glancing incidence there is no reflected P wave to contribute to this budget either, so 
displacement at the interface must be zero to avoid refracted waves generating an energy flux in 
medium ii. 

5.2.2 High wave-speed contrast (figures 8-13) 1 
At the Moho discontinuity considered above, the S-wave speed in the high wave-speed ~ 

medium is less than the P-wave speed in the low wave-speed medium. If the wave-speed contrast 
between the two media is greater, then both wave speeds in one medium become less than both wave 
speeds in the other, and this has a significant effect on the behaviour of the curves. Figures 8-13 show 
results for an interface of this type, and these figures may be compared directly with figures 2-7 ~ 
respectively. ~ 

For a P wave incident in the low wave-speed medium (figure 8) there are two critical angles, 
rather than one for the Moho (figure 2) because refracted SV can now become super-critical (in this 
example the critical angles occur near 29" and 64" incident angle). Otherwise the behaviour is similar 
except that the non-trivial phase changes at super-critical angles of incidence are different. Behaviour 
at glancing incidence is the same as in figure 2. 

For incident SV in the lower wave-speed medium (figure 9) all three resulting waves become 
super-critical as in the case of the Moho (figure 3), but reflected P and refracted SV become super- 
critical in the opposite order because of their different relative wave speeds. As in the case of the Moho, 
there is a large singularity at the critical angle of incidence corresponding to SV. In this example the 
critical angles occur near 17", 30' and 36", and there is total reflection beyond this angle; this does not 

i 

occur at any angle for the Moho case. An abrupt change in the phase of reflected P can be seen at 31" 
incident angle. h 

Incident SH in the lower wave-speed medium (figure 10) is similar to that for the Moho 
(figure 4) except for its critical angle of incidence. 

For waves incident in the higher wave-speed medium there is very little difference in the I 
case of an incident P wave (figure 11 compared with figure 5). For incident SV (figure 12 compared i 



with figure 6) refracted P does not become super-critical, so that there is only one critical angle. An 
interesting feature is that there is one super-critical angle (at about 43') at which the phases of all the 
resulting waves becomes zero; at this angle the polarisation of reflected S resulting from incident S of 
an intermediate polarisation direction will (exceptionally) not be elliptically polarised. The same effect 
occurs in figure 6 at about 39" incident angle but is less noticeable there on account of its proximity to 
the critical angle. Incident SH (figure 13) behaves in a similar way to that in figure 7 for the Moho. 

5.2.3 Anomalous Poisson' s ratio (fieures 14-1 9) 

An alternative ordering of the wave speeds at a solid-solid interface can occur if the 
Poisson's ratios are very different for the two media. In this case it is possible for the higher S-wave 
speed to be in one medium and the higher P-wave speed to be in the other medium (which we still refer 
to as the "higher wave-speed medium"). Results for such a case are shown in figures 14-19; 
comparison can be made directly with figures 2-7 respectively for the Moho. As expected, there is 
some change in the order at which critical angles are reached, and there are also some differences in the 
polarities of some resulting waves. 

For waves incident in the lower wave-speed medium, incident P (figure 14) results in only 
refracted P becoming super-critical. Because of the S wave-speed differences, reflected SV now has no 
polarity change at normal incidence whereas refracted SV does. The behaviour is opposite in this 
respect to the Moho (figure 2). However, the polarity of reflected SV still switches over before the 
critical angle. For incident SV (figure 15) refracted SV does not become super-critical, therefore there 
is no singularity in its amplitude. Again, the change in relative wave speeds results in polarity 
differences compared with the Moho case (figure 3), so that reflected P, rather than refracted P now has 
a phase of 7c at normal incidence. Incident SH (figure 16) does not become super-critical for this case, 
unlike in the case of the Moho (figure 4). 

For waves incident in the higher wave-speed medium, incident P (figure 17) results in 
reflected and refracted S with polarities opposite to those for the Moho case (figure 5). This difference 
arises from the difference in ratios of the two S-wave speeds in the two cases. For incident SV (figure 
18) all three resulting waves go super-critical even though the wave is incident in the medium with the 
higher P-wave speed. There is in this case a singularity at the critical angle of incidence for refracted 
SV, and all three resulting waves have different polarities from those for the Moho case (figure 6 )  at 
near-normal incidence. Incident SH (figure 19) becomes super-critical, and at normal incidence 
reflected SH has a polarity change, since it is reflected off a medium with a higher S-wave speed. This 
does not occur for the Moho case (figure 7), for which SH is reflected off a medium with lower S-wave 
speed. This circumstance of polarity change is opposite to the behaviour of reflected P waves, which 
typically have a polarity change when reflected off a medium with lower P-wave speed. It is important 
to remember that the significance of a polarity change is different for P and S waves in view of their 
different particle motions, and the effect that this difference has when the boundary conditions are 
imposed. 

5.3 The solid-fluid interface 

5.3.1 The sea bed (figures 20-23'1 

This interface gives rise to pP and sP  beneath the oceans. It is also an important interface in 
marine seismic reflection surveying. Often there are sediments with low wave speed beneath the sea 
bed, but these may be thin, and may be much less than a wavelength in thickness depending upon the 
recorded frequency range, in which case they will not be "seen" by the incident wave. We choose a P- 
wave speed of 6.0 kmlsec in the solid layer. This is likely to be a realistic wave speed as "seen" by 
seismic waves with frequency 1 Hz or lower in global seismology; the speed may be too high for the 
higher frequencies in seismic reflection data, where the incident wave may spend several wavelengths in 
a low-wave speed topmost solid layer. For the sea layer we use 1.5 kmlsec. 



We first consider a P wave incident from below in the solid (figure 20). This case is similar 
to that of figure 5 (solid-solid interface with P wave incident in the higher wave-speed medium) except 
that medium ii cannot sustain S waves because it is a fluid. The results are similar. The absence of any 
refracted SV wave does not make a significant difference to the remaining waves, except that the 
reflected P wave passes through zero amplitude with a change of polarity at 55" incident angle, and 
back again at 79". We shall see below, when considering the core-mantle boundary, that this effect 
results from the higher wave-speed contrast rather than because the refractive medium is a fluid. A 
second difference is in the amplitude ratios near to normal incidence. At the sea bed a larger 
proportion of the upward-going incident P wave is reflected than for the Moho, because the wave-speed 
contrast is much greater. However, the amplitude of the refracted P wave is very much higher than for 
the Moho (figure 5), because medium ii has a much lower wave-speed. This results in a higher 
displacement amplitude for a given energy (section 4.9). 

We next show an SV wave incident from below the sea bed (figure 21). This case can be 
compared with figure 6. Because the S wave cannot be transmitted into the fluid, all the S wave energy 
is reflected at normal incidence, so the incident and reflected S waves have the same amplitude. Away 
from normal incidence reflected and refracted P waves can also be generated, so the amplitude of the 
reflected S wave is less; it passes through zero amplitude, with a change of polarity, at an angle of 
incidence of about 33'. This behaviour is similar to that in figure 6 except that the angle is different on 
account of the different wave-speed contrast. 

The critical angle of incidence for reflected P is reached at 35". The reflected P amplitude 
approaches infinity at this angle; this is not the case in figure 6. There is no second critical angle 
because the refracted P wave (in the sea layer) travels slower than the S wave in the incident layer. This 
situation occurs only for an interface with very high wave-speed contrast, the sea bed being a rare 
example. 

At glancing incidence all energy is transferred to the reflected S wave, with particle motions 
in opposing directions at the reflection point, as for the solid-solid case (figure 6). 

Figure 22 shows an SH wave incident at the sea bed. This case is trivial since all energy has 
to be transferred to reflected SH at all angles. The absence of a refracted SH results in no change of 
polarity as the angle of incidence is increased, so that at glancing incidence the incident and reflected 
particle motions reinforce at the interface; this is a difference from the solid-solid interface behaviour 
(figure 7). 

Figure 23 shows results for a P wave incident in the fluid. This corresponds to a downward 
travelling P wave in the sea and so is important in marine seismic reflection surveying, and in the 
consideration of sea reverberations (pwP etc.) in teleseismic observations. Because of the high 
impedance contrast most energy is reflected, so that at near-normal incidence the reflected P wave has a 
much higher amplitude than the refracted P wave. This ratio remains almost constant, with only a small 
conversion to refracted SV, as the angle of incidence is increased. However, because of the high 
impedance contrast, the critical angle of incidence for refracted P is reached rapidly, at only 14". At 
26" the second critical angle is reached, corresponding to the refracted SV wave, and so for all larger 
incident angles there is total internal reflection as observed in figure 3 for the solid-solid case (section 
5.2.1.3), with the incident and reflected P waves having the same amplitude. This means that only near- 
vertical P waves in the sea give rise to propagating waves beneath, and that seismic sources in the sea 
layer will typically give rise to high-amplitude evanescent waves. 

This case may be compared with the similar solid-solid case in figure 2 (the Moho), though 
its impedance contrast is much higher. At glancing incidence the P-wave particle motions oppose at the 
point of reflection, as in the case of the solid-solid interface (figure 2). 



5.3.2 The core-mantle boundary (CMB) (figures 24-3 1 )  

This interface is unusual in the Earth because it represents an interface with a large inversion 
of P-wave speed, while there is still an increase in density. We take first the speeds and densities from 
the Jeffreys-Bullen (JB) model (see Jeffreys [17]), which gives U=13.64 krnlsec, V=7.304 kmtsec and 
p=5.68 glcc above the interface, and U=8.1 krnlsec, p=9.43 glcc below (the outer core is taken to be 
fluid). There has been some uncertainty in the values for wave speeds and densities in the outer and 
inner core. The more recent Preliminary Reference Earth Model (PREM) of Dziewonski and Anderson 
[26] gives U, V and p above the boundary as 13.72 krnls, 7.26 kmls and 5.6 glcc respectively, with U 
and p below the boundary as 8.06 km/s and 9.9 glcc respectively. We show results for both sets of 
values; this will give an idea of the range of behaviour associated with the acknowledged uncertainty in 
medium parameters, and some significant differences will be highlighted. 

The assumption that this interface is abrupt may be unsound for short-period waves. When 
calculating the phases of waves that have traversed the outer core it must be remembered that, apart 
from possible polarity changes at interfaces, some core phases pass through a cusp within the outer core 
on account of the high rate of wave-speed increase beneath the core-mantle boundary; such a cusp has 
a ~ 1 2  phase change associated with it. 

Figures 24, 25 and 26 show respectively the curves for P, SV and SH, incident from above, 
computed using the values of Jeffreys; figure 27 gives those for a P wave incident from below. These 
may be compared with the corresponding figures 20, 21, 22 and 23 respectively for the sea bed solid- 
fluid interface discussed above, and here we note only the main differences. We note that these are the 
first curves for which Poisson's ratio in a solid is not assumed to be 0.25, and instead the S-wave speed 
is given explicitly. 

Although the forms of the curves for the sea bed and the core-mantle boundary are similar, 
the contrast in wave speeds across the interface is much less for the core-mantle boundary. For waves 
incident in the solid, this results in differences in the key angles of incidence. In particular, for the 
incident P wave there is a large difference in the angles at which the reflected P wave passes through 
zero and changes polarity. A major difference from the sea bed for the incident P wave occurs at 
normal incidence, where the amplitude of the reflected P wave is almost zero. This may be unexpected 
in view of the lower impedance contrast compared with the sea bed, but arises because of the inverse 
density contrast, which results in a very low impedance contrast for P waves. This has an important 
effect on the observed amplitude of the phase PcP. We might expect to see a reversed-polarity PcP at 
near-normal incidence in view of the outer core being a lower-impedance medium. However, figure 24 
predicts no significant PcP at normal incidence, and when its amplitude becomes significant above 
about 15" angle of incidence, its polarity is no longer reversed with respect to the incident wave. 

For incident SV a difference arises from the fact that at the sea bed the P-wave speed in the 
fluid is lower than the S-wave speed in the solid, whereas at the core mantle boundary it is not. 
Therefore in figure 25 there are two critical angles of incidence rather than one; for near-normal angles 
of incidence the SV wave behaves similarly. The phase of refracted P beyond the critical angle of 
incidence for reflected P is close to zero between incident angles of 40" and 65" incident angles. This 
is an important result which shows that SKP does not suffer significant changes in pulse shape at larger 
epicentral distances due to super-critical angles of incidence. Again the behaviour of SH (figure 26) is 
simple with total reflection at all incident angles. 

The P wave incident from below (figure 27) exhibits one critical angle of incidence (for 
refracted P), but none for refracted SV as its speed is lower. The critical angle is reached at a higher 
incident angle than for the sea bed case (about 37") because of the lower wave-speed contrast. 

Figures 28, 29 30 and 31 show equivalents to figures 24, 25 26 and 27 respectively, 
computed using the PREM model. For incident P from above (figure 28) there is no zero in the 



retlected P amplitude near to normal incidence, and no associated polarity change. This is important 
since it means that PcP is predicted to have no polarity change at normal incidence when using the 
PREM model, whereas a polarity change is predicted for the Jeffreys-Bullen model. This behaviour is 
determined by the ratio of the P-wave impedances in the two media (product of density and wave 
speed). The ratio of the P-wave impedances of the incident and refractive media is greater than unity j 

(1.01) for the Jeffreys-Bullen model and less than unity (0.96) for the PREM model. The high 
sensitivity of the behaviour to the model arises because the wave-speed and density contrasts are 
opposite, making the impedance contrast very close to unity. + 

For incident SV from above (figure 29) reflected SV (as well as refracted P) has a trivial 
phase change between angles of incidence of 40' and 65" despite being super-critical to reflected P. 
This means that ScS with intermediate polarisation angles at these larger angles of incidence will appear 
plane-polarised; this is not so for the Jeffreys-Bullen model (figure 25). Incident SH from above 
(figure 30) behaves essentially the same as for the Jeffreys-Bullen model (figure 26). 

For P waves incident from below (figure 31) there is a polarity change at normal incidence, 
rather than no polarity change until an angle of incidence of 10' as in the Jeffreys-Bullen model 
(figure 27). This difference in behaviour is associated with the difference in behaviour for P waves 
incident from above, already pointed out. However, in this case it is unlikely to be of practical 
importance since near-normal reflection from the underside of the core will only occur for phases such 
as PKIKKIKP at very small epicentral distances. 

5.3.3 The inner-core boundary (ICB) (figures 32-39) 

The wave-speed and density contrasts across this boundary are not well known, though the 
inner core is known to be solid. Again we present results using the both the JB parameters given in 
Jeffreys [17], and those from PREM [26]. Jeffreys gives U=9.4 kmlsec and p=14.2 glcc above the 
interface and U=11.16 kmlsec, p=16.8 g/cc below, where a Poisson solid is assumed. PREM gives 
U=10.36 kmlsec and p=12.2 glcc above the interface and U=11.02 kmtsec, V=3.50 km/s and p=12.8 
glcc below; here the S-wave speed is given explicitly. There have been many proposals for a transition 
zone spanning this boundary, over a depth range up to 300km (see e.g. Bolt [27]) so the abrupt 
interface may not be valid, at least for short period waves. Moreover, many seismic waves approach this 
interface at large incident angles, when its behaviour will be particularly sensitive to the nature of the 
interface and to the angle of incidence itself. At longer periods the curvature of the interface will 
become significant, leading to a violation of assumption B1 in section 2. 

Figures 32, 33 and 34 show results for incident P, SV and SH waves respectively incident 
from below, and figure 35 shows the curves for a P wave incident from above, all using the Jeffreys 
parameters. We can see that the behaviour is in general intermediate between that of the sea bed and the 
core-mantle boundary, as expected. 

Figures 36, 37, 38 and 39 show equivalent results to those of figures 32, 33, 34 and 35 
respectively, using the PREM parameters. An important difference in parameters results from the S-  
wave speed in the inner core, which is given explicitly in the PREM model and which indicates a highly 
anomalous Poisson's ratio. The S-wave speeds used for the inner-core are therefore very different for 
the two models. This has a major effect only on incident SV from below (figure 37), which has the two 
critical angles of incidence (for reflected and refracted P) much closer together, and at 28" and 30" 
rather than at 35' and 43' in the case of the Jeffreys-Bullen model (figure 33). Incident SH from 
below (figure 38) is totally reflected at all angles of incidence, and is therefore identical for both 
models. 

P 

5.3.4 The high wave-soeed fluid (figures 40-43) 

The three examples of the solid-fluid interface so far considered all have a lower P-wave 
speed i n  the fluid, though the core-mantle boundary has a higher density in the fluid. We now show 



results for an example in which both the P-wave speed and the density of the fluid medium are higher 
than in the solid. These are shown in figures 40-43. It is sensible to compare waves incident in the 
solid with those incident in the lower wave-speed solid in the case of a solid-solid interface, so that we 
compare figures 40, 41 and 42 with 2, 3 and 4 respectively. For the incident P wave (figure 40) the 
behaviour is similar to that in figure 2 except that the absence of a refracted SV wave results in a 
different polarity for reflected SV. If we compare with a solid-fluid interface with a low wave-speed 
fluid (say the sea bed, figure 20) we see that reflected P has no polarity change in the present case, 
unlike in the case of the sea bed. This is in agreement with the usual behaviour of reflected P which has 
no polarity change when reflected off a higher wave-speed medium. 

For incident SV (figure 41) refracted P becomes super-critical so that there is total 
reflection beyond about 36" since there is no refracted S wave. This behaviour is rather different from 
both the solid-solid case (figure 3) and the sea bed (figure 21). 

Because there is no refracted S, SH is totally reflected at all angles of incidence as for the 
sea bed (figure 22), and as for the sea bed there is no polarity change. It is different for the solid-solid 
case (figure 4) where a critical angle of incidence for refracted SH is reached. 

5.4 The fluid-fluid interface (seawaterlsediment) (fipures 44 and 45) 

The fluid-fluid interface is unusual in practice since a plane interface is unlikely to be 
sustained between two fluids except in special cases. One example of interest arises from the existence 
of deep marine sediments with a high water content. Wood [28] considered the acoustic properties of 
an aqueous suspension under the assumption of no rigidity. Although it is now generally thought that 
most marine sediments have non-zero rigidity, experimental data presented by Hamilton and Bachman 
[29] show that for porosities of the order of 80%, P-wave speeds and densities indicate very low 
rigidity. A consequence of this is that the elastic moduli have little effect on the wave speed, which is 
lower than that of water on account of the higher density (see equation (12a)). At a porosity of 80% 
wave speeds as low as 1.490 km/s are observed (figure 7 of [29]), corresponding to a density of 1.4 
grntcc (figure 14 of [29]). By comparison, the wave speed and density of sea water are about 1.53 k d s  
and 1.02 g d c c  respectively. 

This example is shown in figures 44 and 45, for P waves incident from below and above 
respectively. Since only P waves can exist in either medium the behaviour is simple in principle. The 
core-mantle boundary is the only other example here which has a density contrast opposite to the wave- 
speed contrast. This has an effect upon the amplitudes and positions of zeros in amplitudes, which are 
governed by impedance ratios (section 5.1), but does not affect the positions of critical angles, which 
are determined by wave-speed ratios only. In figure 44 there is a polarity change in reflected P at 71°, 
before the critical angle is reached at about 76"; beyond this there is total reflection with a non-trivial 
phase change. In figure 45 there is also a polarity change in reflected P, at about 76'. These polarity 
changes arise because the impedance (product of wave speed and density) contrast is opposite to the 
wave-speed contrast. When the impedance contrast is "normal", the P wave reflected in the lower 
wave-speed medium has zero phase change at all angles of incidence including normal incidence, and P 
wave reflected in the higher wave-speed medium have a phase change at all angles of incidence. 

5.5 The solid free surface (Earth's surface) (fipures 46-48) 

We use the Earth's surface as an example of an interface in which the second medium is a 
void. Of course, the Earth's atmosphere differs from this in one important respect-its density is non- 
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zero, giving rise to atmospheric sound waves. Because the density contrast is large, the energy 
transmission from the Earth to the atmosphere has a negligible effect on the behaviour in the solid 
layer, so that the atmosphere may be taken as a void, provided we are not concerned with that small part 
of the energy which is transmitted. If we are, then the atmosphere must be specified as a fluid medium 
ii with appropriate P-wave speed and density; some consequences of taking account of the atmosphere 
are mentioned at the end of this section. 



Because, for a void, layer ii is assumed to have zero density the amplitudes of reflected 
waves at the free surface do not depend explicitly upon the near-surface wave speeds Ui and Vi, or 
density pi, but only upon the ratio of the two wave speeds. The presence of near-surface sediments 
usually produces thin lower wave-speed surface layers, whose importance in the amplitude partitioning 
will depend upon whether the layer thicknesses are a significant fraction of the seismic wavelength of 
interest. For short period (1 second) signals the wavelength in the crust is around 10 km, but for those 
of long period (20 seconds), wavelengths are about 150 km. We set Uiz6.0 kdsec ,  representing an 
average of near-surface wave speeds neglecting sediments (see, e.g. Mueller and Landisman [22]), and 
we set pi=2.9 glcc (an average value following Woollard [23]). A Poisson solid is assumed. 

The free surface is an important interface both in global seismology and in local and 
exploration seismology. In global seismology the reflected amplitudes of the phases p P  and s P  are 
important in the analysis of seismic sources, in particular where teleseismic observations of the seismic 
source using these phases is used to constrain source mechanisms, as for example with the relative 
amplitude method [4]. At the station the behaviour of incoming S waves at larger incident angles is 
also important. In seismic reflection surveying, multiple reflections involving the solid free surface can 
be important, but deviations from plane waves mean that the results presented here are not valid for 
reflections above shallow buried sources. 

Figures 46, 47 and 48 show respectively the curves for an incident P, SV and SH wave. We 
first consider the incident P wave. The reflected P-wave amplitude passes through zero at an incident 
angle of 60" (this angle is exact for a Poisson solid) and again at about 77". A change of polarity 
occurs at both of these angles, so that the reflected P wave has a polarity opposite to incident P except 
for a small range of intermediate angles near to glancing incidence. It is interesting to note that the 
opposing polarities of the incident and reflected waves at near-normal incidence corresponds to a 
reinforcement of their particle motions at the interface. As pointed out in section 4.10 it is the sum of 
these motions which is recorded by a surface seismometer, and in section 5.7 this surface motion is 
considered for all angles of incidence. 

Considering the incident S V  wave, at near-normal incidence the incident and reflected SV 
waves have opposing particle-motion directions at the interface. The amplitude of reflected SV passes 
through zero at an angle of incidence of 30" (this angle is exact for a Poisson solid). The critical 
incident angle for reflected S occurs at approximately 35" (for a Poisson solid as assumed in this 
example) and this has important implications for S waves arriving at a seismic station at greater angles 
of incidence. The evanescent wave, being associated with the interface, will contribute to the particle 
motion at the surface, so that the particle motion recorded will not have a simple relationship to the 
incident S wave. The angle of incidence of direct S may be greater than the critical angle in the case of 
closer teleseismic distances (say less than 40") depending upon the near-surface wave speed. Beyond 
the critical angle the SV is totally reflected. 

The incident SH wave, figure 48, is always totally reflected, so that a reflected S wave of any 
intermediate polarisation direction will be elliptically polarised beyond the critical angle for reflected P. 

If the void were replaced by an appropriate fluid layer to yield results for waves in the 
atmosphere, the effect on the incident and reflected wave amplitudes in the subsurface would be 
negligible because the transmitted energy is small. However, as noted in sections 4.5 and 4.9, the 
displacement amplitudes of the waves refracted into the atmosphere are comparable with those in the 
subsurface; indeed continuity of displacement at the interface gives rise to an atmospheric P-wave 
whose amplitude is exactly twice that of a normally-incident P wave. This paradoxical result is 
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important when considering reports of "earthquake sounds". Although the transmitted energy is small 
because the density is low (section 4.9), local microearthquake signals may be sufficiently high 
frequency to be perceived by the ear, but not felt. This results in "true" earthquake sounds, as distinct 
from secondary audible effects resulting from the shaking of objects in the presence of high seismic 
intensity. 



5.6 The fluid free surface (sea surface) (figure 491 

The sea surface is important in global seismology because of the sea reverberations pwP, 
pwwP etc. associated with the surface reflection p p .  These were first identified by Mendiguren in 1972 
[30]; see also Pearce [31]. The sea surface is also important in marine seismic surveying where similar 
multiples are prominent on recorded data. Figure 49 shows a P wave incident at the sea surface; this is 
a simple case since the wave is always totally reflected, with a change of polarity at all incident angles. 

Of special interest is the composite effect of the sea layer on the passage of a P wave, 
compared with the true pP reflection from the sea bed. The amplitude of this "first sea reverberation", 
usually referred to as pwP,  can be found by multiplying the coefficients of the upward transmitted P 
wave at the sea bed (figure 20), the reflection at the sea surface (figure 49) and the downward 
transmitted wave at the sea bed (figure 23). The new computer program described in Appendices A 
and B can provide such cumulative coefficients if successive interfaces along a raypath are 
concatenated. 

If we wish to consider seismic waves transmitted from the sea into the atmosphere, then 
medium ii must be changed from a void to a fluid with suitable wave-speed and density, as described 
for the solid free surface in section 5.5. Similar arguments apply, though it may not be valid to regard 
the sea surface as planar at wavelengths corresponding to audio-frequencies. 

5.7 Dis~lacement at the solid free surface (figures 50-5 1 )  

In section 4.10 a formulation was given for computing the total displacement at the free 
surface by adding the displacements of the incident and resulting waves. A seismometer at the free 
surface records one component of this displacement. Normally we are concerned with the displacement 
of the incident wave rather than that of the free surface, and the differences may become important if 
we are taking relative amplitudes of the different components of this displacement. Following 
equations (61) to (63) we express this difference as the ratio of the surface displacement to the incident 
wave displacement, computed separately for each of the three components, and separately for incident 
P, SV and SH. It follows that if this ratio is the same, and in phase, for any two components, then the 
ratio of the incident wave displacements for the two components will be the same as the ratio of the 
surface displacements, so that relative amplitude observations of those components may be used without 
a correction. In these circumstances the particle motion of the incident wave and the free surface are in 
the same direction. In other circumstances a correction must be made before the observed relative 
amplitudes of the two components can be used as if they represent the particle motion of the incident 
wave. As pointed out in section 4.10, the ratios are complex to allow for phase differences, and for an S 
wave incident at a super-critical angle the evanescent waves must be included in the computation. In 
general this results in elliptical particle motion at the free surface for super-critical angles, even if the 
incident S wave is plane-polarised. 

In figure 50 we show the ratio of surface displacement to incident wave displacement for the 
vertical, radial and transverse components as a function of incident angle in the case of the incident P 
wave, for a Poisson solid. (The radial component is the horizontal component in the ray plane, and the 
transverse component is the horizontal component normal to the ray plane.) As before, the 
"horizontal" is defined as parallel to the surface. Figure 50a shows the modulus of the ratio and 
figure 50b shows the phase of the ratio. The vertical and radial components are not equal in amplitude 
but have a ratio of about 0.85 at normal incidence, increasing to unity at an angle of incidence of 60". 
Beyond 70" the ratio deviates considerably from unity, and approaches infinity at glancing incidence. 
The transverse component is, of course, zero. Figure 50b shows that there is no phase difference 
between the surface displacement and the incident wave displacement at any angle of incidence. 

It is not immediately apparent how the curves in figure 50 arise from equations (61a-c) 
since the displacements A ,  C and D which appear in those equations are themselves variables which 



depend upon the angle of incidence. Of course, at normal incidence the amplitude of the radial 
component of the incident P wave is zero, as is the radial component of the surface displacement, but it 
is seen from figure 50 that the ratio remains finite. To confirm figure 50 analytically we may consider 
the "apparent angle of emergence" (Bullen and Bolt [l81 page 189), which is the angle of emergence 
of the P wave as deduced from the particle motion at the free surface. If we denote this by 6, then r 

equation 8.18 of reference [l81 gives the relation between the apparent and actual angles of emergence 
for a Poisson solid: 

remembering that reference [l81 expresses angles with respect to the boundary rather than the normal. 
The ratio of the vertical and radial amplitude curves in figure 50 is given by 

Eliminating B from equations (64) and (65) we obtain 

From this it can be seen that the ratio is equal to 6312 for a=O, 1.0 for a=n/3 and is infinite for a=n/2; 
this is the behaviour of figure 50a. 

Figure 51 shows results for an incident S wave. Since an incident SV wave relates only to 
the vertical and radial components, and an incident SH wave relates only to the transverse component, 
both are shown on the same figure. As mentioned in section 4.10 the behaviour of SH is trivial; the 
surface displacement is twice that of the incident wave at all angles of incidence, with no phase change. 
At near-normal incidence the curves corresponding to the vertical and radial components are the same 
as for the P wave at near-normal incidence, but their ratio passes through unity at about 30" and grows 
larger towards the critical angle at about 35", where it becomes infinite. Beyond the critical angle of 
incidence there is a phase difference between the incident wave and the surface displacement (figure 
5 1 b), and this is different for the vertical and radial components. This results in an elliptical particle 
motion at the surface even when the incident S wave is plane-polarised. It follows that to recover the 
amplitude and polarisation direction of the incident S wave, each component of the observed surface 
motion must first be phase-shifted to correct for this difference. In practice, the presence of multiple 
layering usually makes the surface motion even more complex, so that incident S waves are not 
normally used for waveform studies at post-critical angles of incidence. It is important to remember, 
though, that even from about 5" before the critical angle of incidence, the surface displacement behaves 
very differently from the incident wave (figure 51). 

The curves shown in figures 50 and 51 are similar to those presented by Evans [32]. If the 
medium is not a Poisson solid (i.e. UIV # 63),  the curves have a similar form, but features may occur at 
different incident angles. We emphasise that all these results are valid for plane waves only. In 
particular, the behaviour of waves impinging on the surface from a buried point source are in some 
circumstances quite different; this is discussed in section 7.2. 

6. NOTATION DIFFERENCES AND ERRORS IN OTHER WORK 

In his paper on the reflection and refraction of plane waves in 1946, Fu [33] began: "Even 
though the literature on this problem is enormous, there seems to be still room for further discussions". 
The increase in this literature has not diminished during the succeeding fifty years, and it is unfortunate 
that many of these publications have contained or reported on errors and inconsistencies. These 
include errors and omissions in the definition of notation, in the equations, and in the computed curves. 



We describe and explain specific cases, together with a comparison of different authors' methods of 
presentation, in order to minimise the likelihood of the present work adding to the confusion. 

We shall refer to the convention defined in section 3 and illustrated in figure 1. As 
explained in section 3.1, figure 1 shows directions of zero-phase corresponding to the displacements of 
the six waves A to I; this is because we choose to define displacement in terms of a modulus and a 
phase. When comparing with other work in which the displacement amplitude is allowed to be positive 
or negative (so that phase only needs to be introduced at super-critical angles) our directions of zero- 
phase may be regarded as equivalent to the positive (as opposed to negative) sense of displacement. 

Most authors who have considered the solid-solid interface have used a convention which 
differs from ours only in that the sense of C is reversed. These include Richter [34], McCamy, Meyer 
and Smith [8], Costain et a1 [21] and [35], Singh et a1 [36] and previous versions of the program 
ZOEPP (solid-solid section). A common source of confusion under that convention is that if incident 
and reflected P are both in the same sense (for example compressive) then the two amplitudes are 
nevertheless of the opposite sign. Although of the above authors only Singh et al. actually define their 
sign convention, a further source of confusion is that their defining diagram contains two errors, as 
noted by Hales and Roberts [37]. First, it shows the reflected P amplitude, C, along rather than opposed 
to the direction of propagation (i.e. it is shown as in our figure l), and secondly it shows the reflected 
SV amplitude, D, towards negative rather than positive X1. 

The above confusion would have been revealed for the simple case of a P wave incident at 
near-normal incidence at the free surface or against a lower wave-speed medium. However, there are 
specific circumstances which served to obscure it. Singh et al. present no computed results; McCamy et 
al. plot only the modulus of the displacement (although they do not make this clear), and Costain et al. 
do not consider incident P. For incident S, Costain et al. annotate their curves for reflected and 
refracted waves with 180" phase changes, which occur as a function of angle on each curve; they do not 
relate these phases to the phases of the incident wave, although non-trivial phase changes are given for 
super-critical angles. Of course, the polarities of resulting waves with respect to the incident waves at 
pre-critical angles (which we represent as the presence or absence of a phase change), are of 
fundamental importance. 

For SH, Richter duplicates the use of B, D and F for his SH waves rather than using G, H 
and I respectively, but his senses correspond to our figure 1. 

Still further confusion arises because most authors who consider the solid-fluid and fluid- 
solid interfaces (for example Ergin [10]), and previous versions of the program ZOEPP (solid-fluid and 
fluid-solid sections) use another alternative convention. Although not stated, it agrees with our notation 
(figure 1)  except that the incident SV amplitude (or zero-phase direction), B, is in the opposite sense- 
i.e. towards positive X1. Ergin also duplicates the use of B and D for incident and reflected SH 
respectively, and since his (unstated) convention agrees with ours for SH, this means that the Cartesian 
system formed by [SV,SH,propagation direction] represents a left-handed rather than a right-handed 
system for the incident S wave. This is not self-consistent because it means that the incident and 
reflected S wave conventions are oppositely handed; it causes particular confusion if interfaces are to be 
concatenated in successive computations. 

Aki and Richards [38] page 139 et seq. derive scattering matrices, to account 
simultaneously for incident P and S waves in both media. Their sign convention differs from ours in 
the senses of the incident and refracted SV. Their upward propagating waves are defined as being in 
the direction of their negative Z, which is in the same direction as our incident waves. The upward 
travelling incident waves in their tables 5.3 therefore correspond to our geometry and have the same 
signs in their exponents. The signs for both the X and Z components of the premultipliers for the 
incident and refracted SV are of opposite sign to those in our equation (33) on account of this 
difference in the sense of their amplitude definitions. Surprisingly, the definition of their SH sign 
conventioii (their figure 5.7) does not show the sense of these waves, but from their table 5.2 it follows 



that all three SH waves are in the same sense, as in our convention. As in publications previously 
referred to, it follows that the incident, reflected and refracted S waves do not all form a system of the 
same handedness in [SV,SH,propagation direction]. 

The convention used by Aki and Richards is used by Young and Braile [39], who take their I 

equations from Macelwane [40]. Young and Braile do not consider SH, and present only energy ratios 
in their results. Gubbins [41] (page 62) defines SV in the opposite sense to us, but fails to give a 
convention for refracted P or SV. He defines all three SH waves in the opposite sense to us. , 

In addition to the papers published in the journals and books on earthquake seismology as 
referred to above, there has been a similar history of papers in the exploration seismology literature, 
during the same time period, but usually with no cross references and again with generally different 
conventions of notation (e.g. Muskat and Meres [42], Muskat [43], Bortfeld [44], Koefoed [45], Daley 
and Hron [46], Tooley et a1 [47]). Most of these references do not define their conventions explicitly, 
except for Bortfeld and Koefoed. Koefoed uses the same convention as ours, although he does not 
consider incident S. Bortfeld uses the opposite sense to us for the incident and refracted S V  waves. 
Daley and Hron [46] state (p 129) that coefficients differ "slightly" depending upon whether 
potentials or amplitudes are used, and they say that there is no difference for SH waves; this fails to 
illuminate the fundamental difference in behaviour of displacement and displacement potential (section 
4.2). Also, their figure 2.1 is upside down. Miles [48] gives the Zoeppritz equations for incident P in 
her figure 4. The convention differs from ours only in the sense of refracted P. She gives a diagram 
defining this convention which has the wrong sense for reflected S. She also states erroneously, with the 
aid of a misleading vector diagram, that the displacement is zero at the interface, rather than continuous. 

Because amplitude-versus-offset (AVO) analysis is a topic in seismic reflection surveying, its 
literature also tends to refer only to the earlier work published in the journals of exploration 
geophysics. This application of the Zoeppritz equations is discussed separately in section 8. 

Waters [49] pages 39-40 uses the convention that we adopt here, and defines this 
convention in a diagram (his figure 2.8). He also warns that many papers contain errors of sign or use 
different sign conventions. Unfortunately his equation 2A.6, which gives the Zoeppritz equations in 
matrix form, contains two elements with incorrect sign. These are the elements (3,3) and (3,4) of his P 
matrix. The diagram defining his convention is, however, correct. The equations used by Waters were 
taken from Sheriff ([50] pages 248-249) as corrected by Sheriff [51]. Sheriff states that the Zoeppritz 
equations describe the partitioning of energy, and that it is energy which is plotted in his graphs, 
although he refers to the graphs as displaying amplitude; he refers to the equations in terms of potential 
as "Knott's equations". In fact, the Zoeppritz equations [6] are those which relate displacements, and 
those of Knott [5] relate the energy (section 4.9). 

Additional problems of sign convention and definitions arise at super-critical angles. Many 
authors (e.g. McCamy, Meyer and Smith [8] page 924, Singh, Ben-Menahem and Shimshoni [36] page 
278, and Officer [20] page 196) state that at super-critical angles of incidence the resulting angle of the 
corresponding wave becomes imaginary. We have shown in section 4.8 that the angle becomes 
complex rather than imaginary, with its real part equal to ~ 1 2 .  

The non-propagating evanescent waves associated with super-critical reflection or refraction 
represent a disturbance decaying in amplitude away from the interface, and with a wavelength along the 
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interface equivalent to the apparent horizontal velocity of the travelling waves (which is the same for all 
the waves). If the incorrect sign is used for computing the complex square root associated with the 
exponent in the super-critical case, the evanescent wave amplitude instead becomes infinite away from 

.. 
the interface and, more subtly, the phase shifts associated with the remaining propagating waves will be 
in error. It was pointed out by Singh, Ben-Menahem and Shimshoni [36] that Jeffreys [52] made this 
error, and that since McCamy, Meyer and Smith [8] used this convention, some of their curves are in 
error beyond the critical angles. Moreover, Costain, Cook and Algermissen [21], who used the correct 
sign for the complex square root, later published a Corrigendum [35], prompted by the incorrect 



equation of Jeffreys [52], in which their correct curves were replaced by erroneous ones. This 
confusion is discussed in more detail (correctly) by Singh, Ben-Menahem and Shimshoni [36]. 

Many authors develop their theory in terms of scalar and vector potentials for the P and S 
waves respectively, rather than in terms of displacement. Some of these authors, e.g. Ewing, Jardetsky 
and Press [l61 and Officer [20] give final expressions for potential amplitudes rather than for 
displacement amplitudes, and these may be of opposite sign. We have explained in section 4.2 that 
these two alternative amplitudes are different, and some authors do not make this fact explicit. It must 
be remembered that the potential amplitudes are scaled by the appropriate seismic wave speed 
(equations (27) and (32)), and that the physical quantity normally required is the displacement, or 
perhaps the energy, but not the potential since this has no physical significance. 

Many authors plot the square root of the energy ratio: this loses information on particle- 
motion direction, and its numerical values must not be confused with displacement, energy, or 
displacement potential. Ewing et al. plot the displacement potential ratio for the fluid-fluid interface, 
and they give expressions in terms of potentials, except for the case of SH. 

Achenbach ([53] page 182 et seq.) does not state his convention; he uses the same 
convention as ours but does not include incident S V  in his matrix formulation. 

Finally we note that some authors, (e.g. Costain, Cook and Algermissen [21.] and [35], 
Gubbins [41]), have the waves incident in layer 2 rather than in layer 1, and that some authors, (e.g. 
Ewing, Jardetsky and Press [l61 chapter 3, Bullen and Bolt [l81 page 141, Officer [20] page 191) 
specify angles relative to the interface rather than relative to the normal. 

Because of the mutual inconsistencies between the conventions of McCamy, Meyer and 
Smith [8], Kolsky [g] and Ergin [10], the previous versions of the computer program ZOEPP were not 
using the same convention for the solid-solid, solid-fluid and solid-air cases, and in this respect were in 
error. Using the convention of figure 1 a single matrix formulation has been constructed that satisfies 
all media combinations. 

DEPARTURES FROM THE INITIAL ASSUMPTIONS 

7.1 The non-monochromatic incident wave 

In principle we may superpose monochromatic waves to obtain any signal shape. The 
Zoeppritz equations have solutions which are independent of frequency in that the graphs of amplitude 
and resulting angle are independent of CO at pre-critical angles. However, in other respects there are 
important frequency-dependent effects to be considered. 

First, any phase change that is independent of frequency corresponds to a shift in time or 
space which is a certain fraction of a wavelength or period respectively. Such phase changes therefore 
shift different frequencies by different amounts in time or space. In the case of a non-monochromatic 
waveform this results in a change in waveform shape associated with the phase change, except that a 
phase change of n will simply change the polarity of the waveform without changing its shape. A 
consequence of this is that the resulting propagating waves have a different shape from the incident 
waveform at super-critical angles-i.e. those angles for which the resulting waves suffer non-trivial 
phase changes (section 4.8). This change in shape depends upon the wave speed, so that the 
propagating waveforms in the two media will then in general have different shapes, as will the P and S 
waves in the same medium. 

Secondly, the evanescent waves generated at the interface at super-critical angles decay away 
from the interface at a rate which depends upon frequency (section 4.8); longer wavelength waves 
decay away over a longer distance. It follows that the particle motion for a non-monochromatic 
evanescent wave is complicated and dependent upon the frequency content of the signal and the 



distance from the interface. This is one reason why observed shear-wave particle motions become 
complex in the region of an interface at large angles of incidence. 

A further complication arises at super-critical angles of incidence for an S wave which has 
an intermediate polarisation direction (i.e. it has components of both SV and SH). At incident angles I 

super-critical for reflected or refracted P, the reflected and refracted S waves become elliptically 
polarised because the non-trivial phase change is suffered by SV, but not by SH. At incident angles 
super-critical for refracted S, both the SV and SH components suffer non-trivial phase changes but * 

these are in general different (compare for example figures 3 and 4), so the reflected S wave is again 
elliptically polarised. The behaviour of the reflected and evanescent waves in this situation has been 
examined in detail by Hudson [54]. Because incident S waves are often super-critical for reflected or 
refracted P over a wide range of incident angles (outside a range that is often termed the "shear wave 
window"), it is easy to see how reflected or refracted S waveforms can have complex particle motions 
even for a simple wave-speed structure. 

Most seismic waves are not stationary but are transient. In the simplest case a short 
monodirectional pulse may be incident at an interface. Such a transient pulse always contains a wide 
range of frequencies. The above frequency-dependent effects are then important; at super-critical 
angles of incidence the pulse changes its phase upon reflection or refraction, and so in general becomes 
bidirectional (i.e. an "N-shaped" wave). 

7.2 The non- lane incident wave 

If the incident wave is not planar this has a substantial effect on the behaviour at the 
interface. The wave motions substituted into the wave equation in section 4 are plane waves; plane 
waves are always an approximation to the non-plane waves of all real situations. 

The behaviour of spherical or cylindrical waves incident at the surface (due to a buried 
point source and line source respectively) is referred to as "Lamb's problem". The situation is much 
more complicated than for the plane wave approximation, and includes critically refracted "head 
waves" and surface waves, which complicate the waveforms at any interface including the surface (see 
e.g. Aki and Richards [38] chapter 6, and Bullen and Bolt [l81 page 146). Solutions for spherical and 
cylindrical waves are given by many authors. For example, exact solutions for the case of an incident P 
wave are given by Bortfeld [55], [56], and by Krail and Brysk [57], who give numerical results. 

A spherical wave suffers geometrical spreading and this has associated with it a reduction of 
energy density on the wavefront as the wavefront expands. Upon abrupt change of wave speed there is 
an abrupt change in curvature of the wavefront, and this happens upon refraction, and upon change of 
mode between P and S for both reflection and refraction. This gives rise to an additional factor in the 
reflection coefficient for the phase sP (see e.g. Pearce [3]). This factor is always important for a mode- 
converted reflection because the ratio of the P and S wave speeds is always very different from 1.0. It 
was omitted by Fitch, McCowan and Shields [58], causing errors in s P  amplitudes of the order of a 
factor of two, which were corrected by Fitch [59]. 

The detailed theory of head waves is given by Cerveny and Ravindra [60]. P- and S- wave 
energy is reflected from all points along the interface at their respective critical angles. These waves 
form the basis of seismic refraction surveying and equivalent arrivals do not exist for plane waves, for 
which the only arrival is an arrival reflected from the interface, having originated at the one point on the 
incident wave which has the correct lateral position. To explain head waves Huygens' principle can be 
used to conclude that a spherical wave can be described by a linear superposition of plane waves at a 
range of angles. This decomposition can be done formally using the Sommerfeld integral; in reflection 
seismology this is commonly referred to as the z-p transform (see e.g. Treitel, Gutowski and Wagner 
[61]). We can then apply Zoeppritz' equations to each plane wave component. 



As a result of the above effects the polarisation of an S wave incident at the free surface 
from a spherical wave may become elliptical, even at small (pre-critical) angles of incidence, and 
incident shear waves are contaminated by an S-to-P head wave. These effects have been studied in 
detail by Booth and Crampin [62], who show synthetic seismograms and particle-motion diagrams for 
surface motion due to a buried point source at various distances and frequencies. These diagrams show 
that the plane-wave surface motion presented in figures 50 and 51 are greatly modified in many 
situations appropriate to local observations of earthquakes, though shear-wave particle motions can 
remain less elliptical immediately beyond the critical angle than for plane waves. In general, the 
spherical-wave behaviour becomes more different from the plane-wave behaviour with increasing 
wavelength and increasing wavefront curvature (i.e. decreasing distance from the source). Results 
presented in [62] help to show when this effect is significant. 

7.3 The curved interface 

If the interface is significantly curved, then it will act as a lens to incoming plane waves and 
the resulting waves will not be planar. In these circumstances a transient wave will change its shape 
upon reflection or refraction (Aki and Richards [38] chapter 9). The Kirchhoff approximation may be 
used for such interfaces (see e.g. Wenzel, Stenzel and Zimmermann [63]). This situation is relevant in 
the Earth for longer period seismic waves, particularly at the core-mantle or inner-core boundaries 
which have greater curvatures than the Earth's surface. 

7.4 The irregular interface 

An irregular interface results in scattering of energy, which in. general will be frequency- 
dependent. Behaviour will be different according to whether the variations are smaller than, similar to 
or greater than the seismic wavelength. A study of the reflection and refraction of plane waves at a 
periodic interface between two media has been made by Sato [64], and more recently by Fokkema [65], 
[66], and Fokkema and van den Berg [67]. Other methods used for rough interfaces are the method of 
Aki and Larner [68] and perturbation theory, e.g. by Gilbert and Knopoff [69]. 

7.5 The non-abrupt interface 

If the change in wave-speed takes place over a distance which is long compared with the 
wavelength, then it will approximate to a wave-speed gradient, and the ray will curve through it, to the 
same final angle of refraction as if there were an abrupt interface. By Snell's law the ratio of the angles 
of incidence and refraction depends upon the ratio of the two wave speeds, and not upon any 
intermediate refractions. However, in this high-frequency extreme there is no energy partitioning, and 
so no reflected energy or conversion between P and S waves upon refraction. 

Pilant [70] reviews work on determining reflection and transmission coefficients at non- 
abrupt interfaces. Gupta [71.], [72] considers the case of a linear transition in wave-speed between two 
uniform layers. Lapwood, Hudson and Kembhavi [73], [74] and Lapwood and Hudson [75] consider a 
more general case. 

In global seismology most interfaces appear abrupt at observable seismic wavelengths, but 
this is not so in exploration seismology. The wavelengths may then be comparable with the depth 
range over which the wave speed changes, while longer wavelengths may see an abrupt interface. The 
consequence is a tendency for more low-frequency energy to be reflected than high frequency energy. 
A similar effect is observed in the presence of anelastic attenuation, and therein lies an ambiguity which 
is difficult to disentangle (see Ziolkowski and Fokkema [76]). 

7.6 The lubricated solid-solid interface 

If the contact between two solid media is not welded, then the boundary conditions 
imposing tangential displacement continuity (equations (35a) and (35b)), and those imposing 



continuity of tangential stresses (equations (35d) and (35e)) must be relaxed. In the extreme case, in 
which there is no stress transfer between the media, the tangential stresses fall to zero; this case has been 
considered by Chang [77]. A situation of more practical significance is where there is imperfect 
welding, so that slip is allowed but there is still friction. This might be realistic for waves passing 
through a medium with large-scale fluid-filled cracks with high pore pressure. This situation is ) 

considered by Murty [78], whose theory is developed further by Schoenberg [79]. The lubricated 
solid-solid interface is now important in non-destructive testing (see e.g. Nagy [80]). 
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7.7 Non-semi-infinite media: wave-speed gradients and proximity of other interfaces 

As with irregular and non-abrupt interfaces, the effects of other interfaces depend upon the 
ratio of the linear dimensions to the wavelength. If a second interface is closer than about one 
wavelength, then the disturbances at the two interfaces interfere, and even if they are not close, there 
may be constructive or destructive interference as a function of angle. We can see how a succession of 
closely spaced interfaces approaches equivalence to a wave-speed gradient. A thin layer sandwiched 
between two halfspaces is not seen by waves whose wavelength is long compared with the separation. 
Such waves will see one interface, or if the two halfspaces are identical, no interface. It follows that a 
succession of closely-spaced interfaces may be traversed by a low-frequency wave as if passing through 
a single medium with a wave-speed gradient, while the same succession will result in energy partitioning 
according to the Zoeppritz equations for a high-frequency wave. Consequences of this for the 
frequency content of seismic reflection data are discussed by Ziolkowski and Fokkema [76]. 

At angles of incidence which are super-critical for both refracted P and refracted S, all 
energy is reflected. If such a layer is achieved by means of a non-abrupt interface, a high-frequency 
wave which does not "see" the interface will nevertheless be refracted back by the wave-speed gradient, 
so that it too will effectively be "reflected". One can therefore say that the reflection response of the 
sequence of interfaces is non-white at pre-critical angles of incidence and white at super-critical angles 
of incidence. This condition is formally expressed as the critical reflection theorem by Fokkema and 
Ziolkowski [81]. 

A common situation is the prevalence of low wave-speed surface layers, whose thickness 
may be of the order of a wavelength; this may be important both in global and exploration seismology, 
at their respective length scales. Interference between multiple reflections is possible, and such layers 
may not be seen by longer wavelengths. The composite effect of a near-surface structure may 
therefore be complicated and frequency-dependent. 

Similar behaviour occurs at super-critical angles of incidence. If the separation of two 
interfaces is less than the penetration of the evanescent wave away from the interface, then the non- 
propagating wave may become a propagating wave again after refraction at the second interface. In 
these circumstance we have an incident evanescent wave, which is represented by a complex angle of 
incidence associated with the required horizontal slowness. Although the Zoeppritz equations include 
this case implicitly for a monochromatic incident wave, it must be remembered that the frequency- 
dependent decay of an evanescent wave away from the first interface will result in an incident amplitude 
at the second interface which decreases with increasing frequency. 

7.8 Imperfectly elastic media 

If the media either side of the interface are not perfectly elastic, the waves are attenuated as 
they pass through the media and their behaviour at the interface is affected. The wave amplitudes 
suffer an exponential decrease with distance and frequency if a constant Q model is assumed (i.e. if we 

. 
assume that the fractional loss of energy per cycle is independent of frequency), and this attenuation 
can be described by making the elastic moduli, and hence the seismic wave speeds complex. This 
introduces the possibility of a real part in the complex exponential of the plane-wave trial solution. 
Borcherdt [82] and [83] investigate this, and Krebes [84], gives the corresponding modified equations 
and presents numerical results. Other examples are given by BourbiC and Gonzalez-Serrano [85] and 



Kelamis [86]. We point out that those papers use different notation from ours, and from each other, so 
that their results require careful interpretation. Further work includes that of Cooper [87] and Buchen 
[881. 

In general the effects are greatest for intermediate angles of incidence, and are unlikely to 
affect teleseismic observations significantly. They may be important in seismic exploration however, 
especially where target interfaces are close to zones of high attenuation. 

If the P- and S- wave speeds depend upon the direction of particle displacement in the 
medium, the medium is said to exhibit seismic anisotropy and the behaviour of waves incident at an 
interface is more complicated, even in the case of plane waves. In general the particle motions are no 
longer parallel to or perpendicular to the ray direction, and the ray direction is not normal to the 
wavefront. Since P-wave particle motion is generally along the ray direction, the main effect on P 
waves is a variation in wave-speed with propagation direction. For S-waves the effects are much more 
complicated since particle motion may be in any direction in the plane normal to the ray; one result is 
the splitting of S-waves into near-orthogonally polarised components travelling at different wave 
speeds. The specific case of transverse isotropy (by which we mean that the wave speeds are the same in 
all directions in the plane of the interface) has been considered by Daley and Hron [89]; some 
comments on the more general problem are made by Evans [32]. 

8. AV0 ANALYSIS AND APPROXIMATIONS TO THE ZOEPPRITZ EOUATIONS 

As summarised in table 1, figures 2, 5, 8, 1 1 ,  14 and 19 all show results for a P wave 
incident at a solid-solid interface. Together these results suggest that the amplitude of a reflected P 
wave resulting from a near-normally incident P wave varies little with angle of incidence. Indeed this is 
normally assumed when multiple-offset traces are stacked in seismic reflection sections. However, there 
are special cases where the change with incident angle can be quite large, and this forms the basis of 
AV0 analysis in seismic reflection processing. In 1955 Koefoed [90] found that large differences in 
UlV between the two media (corresponding to a large difference in Poisson's ratio) can give rise to 
larger variations in reflected P amplitude with angle of incidence. Although this variation is not 
especially large in our figure 14 (which shows a case of high contrast in Poisson's ratio-see table 1) 
the variation is more pronounced if Uii/Vii is larger than UilVi (with Uii>Ui); figure 14 shows the 
opposite case. 

It happens that this large variation in UIV is prevalent in situations found in hydrocarbon 
exploration. A gas-bearing sandstone between shale layers provides a classic example, giving rise to 
high-amplitude reflections (sometimes referred to as "bright spots") together with a large variation in 
amplitude with incident angle. This can be contrasted with a similar situation in which the sandstone is 
instead water-saturated. First examples of observed AV0 data interpreted in this way were given by 
Ostrander [91]. 

Shuey [92] has re-expressed the Zoeppritz equations in a way which isolates the 
combination of media properties which can be determined explicitly from the variation of amplitude 
with incident angle. He also derived analytic approximations to the equations which are valid for 
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different ranges of incident angle. Further approximations relating incident and reflected P waves were 
derived by Mallick [93]. 

AV0 analysis of seismic reflection data has become an important application of the 
Zoeppritz equations [94], and the program presented here can be used to predict the AV0 behaviour 
for any media properties and any angle of incidence. It can also be used to predict the behaviour of 
incident and reflected shear waves, which is likely to become the subject of greater attention in the 
future. 
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APPENDIX A 

COMPUTER PROGRAM-BRIEF DESCRIPTION 

The computer program for calculating the Zoeppritz equations was originally written as a 
series of subroutines in Fortran IV based upon the conventions given in Blamey [7] .  This new version 

J follows the sign convention established in this Report as summarised in figure 1. Justification for this 
convention is given in section 3.1, and differences from other work are explained in section 6. The new 
version is written in Fortran 77 with some extensions, and is compatible with Fortran 90. 

The amplitude, phase and resulting angles of reflected and refracted P and S waves for a 
given incident P or S wave are computed by subroutine ZOMAT, which is given with its dependent 
subroutines in Appendix B1. The arguments in ZOMAT are used to input the wave type (P or S) and 
its incident amplitude and phase, with S separated for convenience into S in the ray plane normal to the 
interface (SV) and S in the plane of the interface (SH). Wave speed, density and layer type (solid, fluid 
or void) for each layer are input via COMMON blocks, which are used also for output. Full details are 
given in Appendix B1. 

Appendix B2 gives an example of a driver for subroutine ZOMAT-subroutine ZOEPP. 
Subroutine ZOEPP is called once to generate output for any chosen combination of media types and 
incident wave type(s). ZOEPP calls subroutine ZOMAT once for each of a sweep of incident angles. 
This package, with added graphics, was used to generate the results shown in figures 2-49 of this report. 
Combinations of media are solid/solid, solidlfluid, fluidlsolid, fluidlfluid, solidlvoid and fluidlvoid. Input 
data comprise the P-and S-wave speeds and density of the two media, with a switch to indicate whether 
the medium is solid, fluid, or void, and whether the incident wave is P or S. The output is available in 
an array and consists of tables of resulting angle, displacement amplitude, and phase of the incident and 
all resulting waves, as a function of incident angle. Full details are given in Appendix B2. The results 
may easily be graphed as in figures 2-49. 



APPENDIX B 

COMPUTER PROGRAM-LISTING AND DOCUMENTATION 

C SUBROUTINE ZOMAT(TYPE,ANG,AMP~,PHASE~,AMP~,PHASE~) 
C 
C Solution of the Zoeppritz equations for a single incident wave 
C 
C 
Caveat : These subroutines are part of a suite of programs which is 
C software quality registered. Software is supplied on the 
C understanding the user is responsible for validation and 
C accepts that the authors have no liability for its use or 
C misuse. 
C 
C 
C This subroutine calculates the displacement amplitude, phase, and 
C resulting angle of each wave (in general reflected P, reflected S, 
C refracted P and refracted S) resulting from a P or S wave incident 
C at a given angle at the interface between two media with given 
C parameters. The subroutine uses complex algebra so that both the 
C displacement amplitude and phase of each wave are calculated, and 
C evanescent waves (corresponding to super-critical and hence 
C complex angles of reflection and/or refraction) are fully treated. 
C Even the incident wave may be evanescent; this is useful if a 
C succession of interfaces is concatenated, and waves become super- 
C critical only in intermediate layers. (However, because an 
C evanescent wave suffers frequency-dependent decay away from the 
C originating interface, an appropriate correction must be applied 
C to its amplitude before using it as an incident wave at a 
C subsequent interface. If this is not done, amplitudes will only 
C be valid for transmission of an evanscent wave through a zero- 
C thickness layer.) 
C 
C For definition of sign convention and other information see: 
C 'Amplitude versus offset (AVO) and the Zoeppritz equations for 

partitioning of seismic waves at an interface: theory, new 
computer program, examples and review of past errors' by 
R G Pearce and J B Young, AWE Report 03/96, HMSO 1997. 

INPUT 

Incident wave information is passed in as arguments thus: 

TYPE CHARACTER"2 'P ' for incident P; 'S ' for incident 
S. Often SV (the component of S in the 
ray plane) or SH (the component of S 
parallel to the interface) is considered 
alone, in which case either AMP1 or AMP2 
can be set to 0.0; see below) 

ANG COMPLEX*16 Angle of incidence in degrees. For real 
angles (normal travelling-wave case) set 
the real part to the angle (between 0.0 
and 90.0) and the imaginary part to 0.0. 
For an evanescent incident wave the 
imaginary part will be non-zero, and ANG 

C will normally be derived from the output 



of a previous call to ZOMAT. 

AMP1 REAL*8 ) If TYPE='P ' ,  then AMP1 and PHASE1 are 
PHASE1 REAL*8 ) the amplitude and phase of the incident 
AMP2 REALX8 ) P wave and AMP2 and PHASE2 are unused. 
PHASE2 REAL*8 ) If TYPE='S ' ,  then AMP1 and PHASE1 are 

the amplitude and phase of the SV 
component (ie in the ray plane) and AMP2 
and PHASE2 are the amplitude and phase 
of the SH component (ie parallel to the 
interface). PHASEl and PHASE2 may be 
set to 0.0 unless the incident wave is 
an S wave which is not plane-polarised, 
in which case PHASEl and PHASE2 will be 
different. Normally AMPl and AMP2 
should be positive, with 'negative 
polarity' being indicated by PHASE1 
and/or PHASE2 being set to 180.0. If 
AMPl or AMP2 are negative, its sign is 
changed and 180.0 added to PHASEl or 
PHASE2 as appropriate. 

The layer parameters are input via COMMON thus: 

COMMON /LAYERl/ 

TYPE1 CHARACTER*8 Medium of incident layer. 'SOLID ' 
or 'FLUID ' 

URL I REAL * 8 P-wave speed in incident layer 

VRLI REAL * 8 S-wave speed in incident layer. 
Defaults to URLI/SQRT(3.0) (Poisson 
solid). Not used if TYPEl='FLUID ' 

RRLI REAL * 8 Density of incident layer 

COMMON /LAYER2/ 

TYPE2 CHARACTER*8 Medium of second layer. 'SOLID ' ,  
'FLUID ' or 'VOID I 

URFII REALX8 P-wave speed in second layer. Not used 
if TYPE2='VOID l 

VRFII REAL*8 S-wave speed in second layer. Defaults 
to URFII/SQRT(3.0) (Poisson solid). 
Not used if TYPE2='FLUID ' or 
'VOID l 

RRFII REAL*8 Density of second layer. Not used if 
TYPE2='VOID l 

Note: Wave speeds only appear as ratios in the formulae, as 
do densities. Any units may therefore be used for wave 
speeds and densities 

OUTPUT 

The input and computed values of angle, amplitude, and phase of 
each wave are stored in COMMON /ZOCOM/ thus: 

AP , AAMP , APHASE Angle, amplitude and phase of Incident P 
ASV , BAMP , BPHASE Angle, amplitude and phase of Incident SV 
ARLP,CAMP,CPHASE Angle, amplitude and phase of Reflected P 



ARLSV,DAMP,DPHASE Angle, amplitude and phase of Reflected SV 
ARFP,EAMP,EPHASE Angle, amplitude and phase of Refracted P 
ARFSV,FAMP,FPHASE Angle, amplitude and phase of Refracted SV 
ASH,GAMP,GPHASE Angle, amplitude and phase of Incident SH 
ARLSH,HAMP,HPHASE Angle, amplitude and phase of Reflected SH 
ARFSH,IAMP,IPHASE Angle, amplitude and phase of Refracted SH 

In each case the angle is COMPLEX*16 and the amplitude and phase are 
REAL*8. For travelling waves the real part of angle will contain 
the angle of incidence/reflection/re£raction in degrees, and the 
imaginary part will be zero. For evansecent waves the imaginary 
part will be non-zero. 

The COMMON /ZOLOG/ contains logical variables defining the 
existence (or otherwise) of the above waves. 

The COMMON /ZOCMT/ defines constants required by the program 
and can be changed to satisfy the precision of the host 
computer. 

The COMMON /ZOWSP/ is working space for the program including 
space for the matrices defined by the formulae. 

Subroutine ZOMAT calls associated subroutines SETUP and CINVERT, 
and associated functions AMPLIT, PHASE, RESULT and CDASIN 
(complex double-precision arc-sine) in addition to standard 
library functions 

SUBROUTINE ZOMAT (TYPE, ANG, AMP1, PHASE1 , AMP2, PHASE2 ) 
COMMON /LAYERl/TYPEl, URLI,VRLI, RRLI 
COMMON /LAYER2/TYPE2,URFII,VRFII,RRFII 
COMMON /ZOLOG/ LP,LSV,LRLP,LRLSV,LRFP,LRFSV,LSH,LRLSH,LRFSH 
COMMON /ZOCOM/ AP,AAMP,APHASE,ASV,BAMP,BPHASE, 
1 ARLP , CAMP, CPHASE , ARLSV, DAMP, DPHASE , 
2 ARFP, EAMP , EPHASE, ARFSV, FAMP , FPHASE , 
3 ASH,GAMP,GPHASE,ARLSH,HAMP,HPHASE, 
4 ARFSH, IAMP, IPHASE 
COMMON /ZOCMT/ RADEG,ZERO,SMALL,HALF,ONE,TWO,THREE,PI,NINETY,ONE8O 
COMMON /ZOWSP/ TYPE8,U,UR,US,W1V,VR,X 
DIMENSION O(4) ,T2(4) ,TYPE8(2) fl(4,4) ,UR(4) ,US(4) 3(4), 
1 V(2,2) ,VR(2) ,X(2) 
INTEGER I,J 
LOGICAL LP,LSV,LRLP,LRLSV,LRFP,LRFSV,LSH,LRLSH,LRFSH 
COMPLEX*16 CRLA,CRLA2,CRLB,CRLB2,CRFE1CRFE2,CRFFICRFF2, 
1 U,UR,US,W,V,VR,X,ANG,DANG,SDANG,CDASIN,A,B,G, 
2 AP,ASV,ARLP,ARLSV,ARFP,ARFSV,ASH,ARLSH,ARFSH, 
3 RESULT 
REAL* 8 URLI , VRLI , RRLI , URFII , VRFII , RRFII, 
1 AMP1,PHASE1,AMP2,PHASE2,0,R,RIRADEGl 
2 ZERO,SMALL,HALF,ONE,TWO,THREE,PI,NINETY,ONE~O, 
3 AAMP,APHASE,BAMP,BPHASEICAMP,CPHASEIDAMP,DPHASE, 
4 EAMP,EPHASE,FAMP,FPHASE,GAMP,GPHASE,HAMP,HPHASE, 
5 IAMP,IPHASE,AMPLIT,PHASE 
CHARACTER"2 TYPE,T2,P,S,SH1SV 
CHARACTER"8 TYPEl,TYPE2,TYPE8,SOLID,FLUID,VOID,INCDNT,BLANK 
EQUIVALENCE (T2 ( 1 ) , TYPE8 ( 2 ) ) 
DATA P/'P '/,S/'S '/,SV/'SV1/,SH/'SH'/, 
1 SOLID/'SOLID '/,FLUID/'FLUID '/,VOID/'VOID ' 1 ,  
2 INCDNT/'Incident'/,BLANK/' ' / 

INITIALISE ZOCMT VALUES, RESET ZOCOM TO ZERO AND ZOLOG TO FALSE 
CALL SETUP 
TYPE8 ( 1 ) =INCDNT 
TY PE8 ( 2 ) =BLANK 

SET DENSITY RATIO 
R=RRFII/RRLI 



SET DEFAULT WAVE SPEEDS 
IF(TYPEl.EQ.SOLID.AND.VRLI.LE.ZERO)VRLI=URLI/DSQRT(THREE) 
IF(TYPE2.EQ.SOLID.AND.VRFII.LE.ZERO)VRFII=URFII/DSQRT(THREE) 

PROCESS INPUT FOR INCIDENT S 
IF (TYPE .NE. P) THEN 
T2 (2) =S 
INCIDENT SV PARAMETERS 
IF(AMP1.NE.ZERO)THEN 
LSV=.TRUE. 
ASV=ANG 
BAMP=AMPl 
BPHASE=PHASEl 
IF(AMP1.LT.ZERO)THEN 
BAMP= -BAMP 
BPHASE=BPHASE+ONEBO 

END I F 
END I F 
INCIDENT SH PARAMETERS 
IF(AMP2.NE.ZERO)THEN 
LSH=.TRUE. 
ASH=ANG 
GAMP=AMP2 
GPHASE=PHASE2 
IF(AMP2.LT.ZERO)THEN 
GAMP= -GAMP 
GPHASE=GPHASE+ONEBO 

ENDIF 
ENDIF 
WAVE-SPEED RATIOS FOR SNELL'S LAW 
O(l)=URLI/VRLI 
O(2) =ONE 
0(3)=URFII/VRLI 
0(4)=VRFII/VRLI 

PROCESS INPUT FOR INCIDENT P 
ELSE 
T2 (2) =P 
INCIDENT P PARAMETERS 
IF(AMP1.NE.ZERO)THEN 
LP=. TRUE. 
AP=ANG 
AAMP=AMPl 
APHASE=PHASEl 
IF(AMP1.LT.ZERO)THEN 
AAMP=-AAMP 
APHASE=APHASE+ONEBO 

ENDIF 
ENDIF 
WAVE-SPEED RATIOS FOR SNELL'S LAW 
O(l)=ONE 
0 (2) =VRLI/URLI 
0(3)=URFII/URLI 
0 ( 4 )  =VRFII/URLI 

ENDIF 

SET COMPLEX INCIDENT AMPLITUDES 
A=DCMPLX(AAMP*DC~~(APHASE/RADEG),AAMP*DSIN~APHA~E/RADEG~~ 
B=DCMPLX(BAMP*DC~~(BPHASE/RADEG),BAMP*DSIN~BPHASE/RADEG~ 
G=DCMPLX(GAMPXDCOS(GPHASE/RADEG),~AM~*Ds1~(GPHASE/RADEG)) 

SET RESULTING ANGLES BY COMPLEX SNELL'S LAW 
DANG=ANG/RADEG 
SDANG=CDSIN (DANG ) 



CRLA=CDASIN(SDANG*O(l)) 
CRLA2=CRLA+CRLA 
CRLB=CDASIN ( SDANG*O ( 2 ) ) 
CRLB2=CRLB+CRLB 
CRFE=CDASIN(SDANG*O(3)) 
CRFE2=CRFE+CRFE 
CRFF=CDASIN(SDANG*O(4)) 
CRFF2=CRFF+CRFF 

C 
C SET UP P-SV MATRIX STANDARD EQUATION 

U(1,l) = CDSIN(CRLA) 
U(1,2) = CDCOS(CRLB) 
U(1,3) = -CDSIN(CRFE) 
U(1,4) = CDCOS(CRFF) 
UR ( 1) = -CDSIN (CRLA) *A 
US(1) = CDCOS(CRLB)*B 
U(2,l) = CDCOS(CRLA) 
U(2,2) = -CDSIN(CRLB) 
U(2,3) = CDCOS(CRFE) 
U(2,4) = CDSIN(CRFF) 
UR ( 2 ) = CDCOS (CRLA) *A 
US(2) = CDSIN(CRLB)*B 
U (3,l) = CDSIN (CRLA2 ) *VRLI*VRLI*URFII 
U(3,2) = CDCOS(CRLB2)*VRLI*URLI*URFII 
U(3,3) = CDSIN(CRFE2)*VRFII*VRFII*URLI*R 
U(3,4) = -CDCOS(CRFF2)*VRFII*URFII*URLI*R 
UR(3) = CDSIN(CRLA2)*VRLI*VRLI*URFII*A 
US(3) = -CDCOS(CRLB2)*VRLI*URLI*URFII*B 
U(4,l) = -CDCOS(CRLB2) 
U (4,2) = CDSIN (CRLB2 ) * (VRLI/URLI) 
U(4,3) = CDCOS(CRFF2)*(URFII/URLI)*R 
U(4,4) = CDSIN(CRFF2)*(VRFII/URLI)*R 
UR ( 4 ) = CDCOS (CRLB2 ) *A 
US (4) = CDSIN(CRLB2) * (VRLI/URLI) *B 

C SET UP P-SV MATRIX EQUATION ROW 3 FOR VOID LAYER 
IF(R.EQ.ZERO)THEN 
U(3,l) = CDSIN(CRLA2)*VRLI 
U(3,2) = CDCOS(CRLB2)*URLI 
U(3,3) = ZERO 
U(3,4) = ZERO 
UR(3) = CDSIN(CRLA2)*VRLI*A 
US ( 3 ) = -CDCOS (CRLB2 ) *URLI *B 

END I F 
C SET UP P-SV MATRIX EQUATION ROW 3 FOR FLUID/FLUID 

IF(R.GT.ZERO.AND.VRLI.LE.ZERO.AND.VRFII.LE.ZERO)THEN 
U(3,l) = ZERO 
U(3,2) = CDCOS(CRLB2)*URLI*URFII 
U(3,3) = ZERO 
U(3,4) = -CDCOS(CRFF2)*URFII*URLI*R 
UR(3) = ZERO 
US(3) = -CDCOS(CRLB2)*URLI*URFII*B 

ENDIF 
C 
C IF INCIDENT S, SET UP SH MATRIX EQUATION AND REORDER RH 
C COLUMNS OF P-SV MATRIX EQUATION 

IF (TYPE.NE. P) THEN 
V(1,l) = DCMPLX(ONE,ZERO) 
V(1,2) = -DCMPLX(ONE,ZEROl 
VR(1) = -DCMPLX(ONE,ZERO)*G 
V(2,l) = CDCOS(CRLB)*VRLI 
V(2,2) = CDCOS(CRFF)*VRFII*R 
VR (2 ) = CDCOS (CRLB) *VRLI*G 
UR(1) = US(1) 
UR(2) = US(2) 
UR(3) = US(3) 



IF INCIDENT S, SOLVE SH MATRIX EQUATION AND SET OUTPUT PARAMETERS 
CALL CINVERT(V,2,2) 
DO J=1,2 
X (J) =DCMPLX (ZERO, ZERO) 
DO I=1,2 
X(J)=X(J) + V(J,I)*VR(I) 

ENDDO 
ENDDO 
HAMP = AMPLIT (X ( 1 ) , VRLI ) 
IAMP = AMPLIT(X(2),VRFII) 
HPHASE = PHASE (X ( 1) , VRLI) * RADEG 
IPHASE = PHASE(X(2),VRFII) * RADEG 
IF (AMP2. NE. ZERO) THEN 
LSH = .TRUE. 
ARLSH = RESULT (CRLB,VRLI) * RADEG 
ARFSH = RESULT ( CRFF , VRFI I ) * RADEG 
IF(TYPE1.EQ.SOLID)LRLSH = .TRUE. 
IF(TYPE2.EQ.SOLID)LRFSH = .TRUE. 

ENDIF 
ENDIF 

SOLVE P-SV MATRIX EQUATION AND SET OUTPUT PARAMETERS 
CALL CINVERT(U,4,4) 
DO J=1,4 
W (J) =DCMPLX ( ZERO, ZERO) 
DO I=1,4 
W(J)=W(J) + U(J,I)*UR(I) 

ENDDO 
ENDDO 
CAMP = AMPLIT(W(l),RRLI) 
DAMP = AMPLIT (W ( 2 )  ,VRLI) 
EAMP = AMPLIT(W(3) ,RRFII) 
FAMP = AMPLIT(W(4),VRFII) 
CPHASE = PHASE(W(1) ,RRLI) * RADEG 
DPHASE = PHASE(W(2) ,VRLI) * RADEG 
EPHASE = PHASE(W(3),RRFII) * RADEG 
FPHASE = PHASE(W(4),VRFII) * RADEG 
IF(AMP1.NE.ZERO)THEN 
ARLP = RESULT(CRLA,RRLI) * RADEG 
ARLSV = RESULT (CRLB,VRLI) * RADEG 
ARFP = RESULT(CRFE,RRFII) * RADEG 
ARFSV = RESULT(CRFF,VRFII) * RADEG 

ENDIF 
IF(.NOT.LP.AND..NOT.LSV.AND.LSH)RETURN 
IF(TYPE1.EQ.SOLID.OR.TYPEl.EQ.FLUID)LRLP = .TRUE. 
IF(TYPE2.EQ.SOLID.OR.TYPE2.EQ.FLUID)LRFP = .TRUE. 
IF(TYPE1.EQ.SOLID)LRLSV = .TRUE. 
IF(TYPE2.EQ.SOLID)LRFSV = .TRUE. 

RETURN 
END 

FUNCTION AMPLIT(UDE,VEL) 
COMMON /ZOCMT/ RADEGtZEROtSMALL 
REAL * 8 RADEG,ZERO,SMALL,AMPLIT,VEL 
COMPLEX*16 UDE 

C 
AMPLIT=ZERO 
IF(DABS(VEL).LE.SMALL)RETUm 
AMPLIT=CDABS(UDE) 
RETURN 



END 

FUNCTION PHASE(ANGLE,VELOC) 
COMMON /ZOCMT/ RADEG,ZERO,SMALL,HALFIONEITWOITHREE,J?I 
REAL * 8 RADEG,ZERO,SMALL,HALF,ONE,TWO,THREE,PI 
REAL*8 VELOC,PHASE,AMPLIT,IMAGIN 
COMPLEX*16 ANGLE 

PHASE=ZERO 
IF (DABS (VELOC) . LE. SMALL) RETURN 
AMPLIT=DREAL(ANGLE) 
IMAGIN=DIMAG (ANGLE 
IF (DABS (AMPLIT) . LE. SMALL) RETURN 
PHASE=DATAN2 (IMAGIN,AMPLIT) 
RETURN 
END 

FUNCTION RESULT(ANGLE,VELOC) 
COMMON /ZOCMT/ RADEG,ZERO,SMALL 
REAL * 8 RADEG,ZERO,SMALL,VELOC 
COMPLEXX16 ANGLE,RESULT 

R E ~ ~ L T = D C M P L X ~ ~ E R ~ , ~ E R ~ )  
IF(DABS(VELOC).LE.SMALL)RETURN 
RESULT=ANGLE 
IF (DABS (DIMAG (ANGLE ) ) . LE. SMALL THEN 
RESULT=DCMPLX(DREAL(ANGLE),ZERO) 

ENDIF 
RETURN 
END 

FUNCTION CDASIN(Z) 

COMPLEX DOUBLE PRECISION ARC-SINE FUNCTION 
(USES STANDARD FORMULA - E.G. J W DETTMAN 'APPLIED COMPLEX 
VARIABLES' MACMILLAN (1965) P61) 

COMMON /ZOCMT/ RADEG,ZERO,SMALL,HALF,ONE,TWO,THREE,PI,NINETY,ONE80 
REAL * 8 RADEG,ZERO,SMALL,HALF,ONEiTWOiTHREE,PI,NINETY~ONE8O 
COMPLEX*16 CDASIN,Z,W 

W=CDSQRT(Z*Z-ONE) 
W=CDLOG ( Z+W) 
CDASIN=DCMPLX(PI/TW~-DIMAG(W) ,DREAL(W)) 
RETURN 
END 

Complex matrix inversion routine 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Method : Direct Gaussian Elimination With Full pivoting 
Restriction on matrix type (symmetric etc) : None 

This is a modifed version of the 'gaussj' routine from 
Numerical Recipes in FORTRAN 

Calling cinvert(A,n,np) 



C . . . . . . . . . . . . . . . . . . . . . . .  
C 
C A(l:n,l:n) is the complex input matrix 
C A is stored in a matrix of dimension np*np (A(np,np)) 
C n is the number of rows (or columns) of A that are used 
C On exit from the routine, A contains the inverse 
C 

SUBROUTINE CINVERT(A,N,NP) 
1 INTEGER N,NP, NMAX, I, ICOL, IROW, J, K, L, LL, INDXC, INDXR, IPIV 

COMPLEX*16 A,DUM,PIVINV 
DOUBLE PRECISION BIG 
DIMENSION A(NP,NP),INDXC(50),INDXR(50),IPIV(50) 
DATA NMAX/50/ 

C 
DO J=l,NMAX 

IPIV (J) =O 
ENDDO 

C 
DO I=l,N 

BIG=O . ODO 
DO J=l,N 
IF(IPIV(J) .NE.l)THEN 
DO K=l,N 
IF (IPIV(K) .EQ.O) THEN 
IF (CDABS(A(J,K)).GE.BIG)THEN 
BIG=CDABS (A (J, K) ) 
IROW=J 
ICOL=K 

ENDIF 
ELSE IF ( IPIV (K) . GT .l) THEN 
WRITE (6,6) 

6 FORMAT(' Singular Matrix In CINVERT ' )  
ENDIF 

ENDDO 
ENDIF 

ENDDO 
C 

IPIv(ICoL)=IPIv(ICoL)+1 
IF (1ROW.NE.ICOL) THEN 
DO L=l,N 
DUM=A ( IROW, L ) 
A(IROW,L)=A(ICOL,L) 
A(ICOL,L)=DUM - 

ENDDO 
ENDIF 
INDXR ( I ) = IROW 
INDXC (I) =ICOL 
IF (A(ICOL,ICOL).EQ.O.O) WRITE (6,6) 
PIVINV=l.O/A(ICOL,ICOL) 
A(ICOL,ICOL)=(~.ODO,O.ODO) 
DO L=l,N 
A(ICOL, L) =A(ICOL,L) *PIVINV 

ENDDO 
DO LL=l,N 
IF(LL.NE.ICOL)THEN 
DUM=A ( LL , ICOL ) 
A(LL,ICOL)=(O.ODO,O.ODO) 
DO L=l,N 
A(LL,L)=A(LL,L) -A(ICOL,L) *DUM 

ENDDO 
ENDIF 

ENDDO 
ENDDO 
DO L=N,l,-1 
IF(INDXR(L) .NE.INDXC(L) )THEN 



DO K=l,N 
DUM=A(K, INDXR(L) ) 
A(K, INDXR(L) ) =A(K, INDXC(L) ) 
A ( K ,  INDXC (L) ) =DUM 

ENDDO 
ENDIF 

ENDDO 
C 

RETURN 
END 

U M P L E  - OF A DRIVER FOR ZOMAT 

! 
C SOLUTION OF ZOEPPRITZ' AMPLITUDE EQUATIONS FOR VARIOUS MEDIA 
C 
C 
Caveat : These subroutines are part of a suite of programs which is 
C software quality registered. Software is supplied on the 

understanding the. user is responsible for validation and 
accepts that the authors have no liability for its use or 
misuse. 

SUBROUTINE ZOEPP(ALF1,BET1,RHO1lINDIILAY1, 
ALF2,BET21RH02,1ND21LAY21 
AMPI, PHASE1, AMP2, PHASE2, 
T,N,M, SANG,DANG, WAVE) 

SUBROUTINE ZOEPP This is an example driver for the 
Zoeppritz coefficient subroutine ZOMAT. It generates results for 

C a range of incident angles for either an incident P wave, pure SV 
C wave, pure SH wave, or S wave (resolved into SV and SH). The 
C angles of incidence may comprise a single value or a sweep of 
C values with constant increment up to the complete range of angles 
C from normal to glancing incidence. The same displacement 
C amplitude and phase for all angles of incidence in the sweep is 
C used. This subroutine does not exploit the full generality 
C of subroutine ZOMAT in that only real angles of incidence are 
C permitted (ie evanescent incident waves are excluded - see 
C subroutine ZOMAT) . Treatment of evanescent reflected and 
C refracted waves is included. An associated subroutine SET sets 
C up the output results matrix (see below). 
C 
C For definition of sign convention and other information see: 
C 'Amplitude versus offset (AVO) and the Zoeppritz equations for 

partitioning of seismic waves at an interface: theory, new 
computer program, examples and review of past errors1 by 
R G Pearce and J B Young, AWE Report 03/96, HMSO 1997. 

DESCRIPTION OF PARAMETERS (all double precision) 

ALFl P-wave speed in the incident layer (inout) 
BET1 S-wave speed in the incident layer (inout) 
RHO1 Density of incident layer (inout) 

(Note: Wave speeds only appear as ratios in the formulae, 
as do densities. Any units may therefore be used for wave 
speeds and densities) 

INDl Indicator for the incident layer (in) 
INDl = 0 Fluid layer, Incident P 



INDl = 1 Solid layer, Incident P 
INDl = 2 Solid layer, Incident SV 
INDl = 3 Solid layer, Incident SH 
INDl = 4 Solid layer, Incident S (resolved into SV and SH) 

LAY1 Medium of incident layer (out) ('SOLID ' or 
'FLUID ' ) 

ALF2 P-wave speed in second layer (inout) 
BET2 S-wave speed in second layer (inout) 
RH02 Density of second layer (use zero for void) (inout) 
IND2 Indicator for second layer (in) 

IND2 = 0 Fluid layer 
IND2.GT.0 Solid layer 

LAY2 Medium of second layer (out) ('SOLID ' ,  'FLUID ' 
or 'VOID ' 1  

AMP1,PHASEl Displacement amplitude and phase in degrees of 
incident P, SV or SH wave according to the value of IND1. 
If IND1=4, these refer to incident SV (in) 

AMP2,PHASE2 Unused unless IND1=4, in which case these refer to 
the amplitude and phase in degrees of incident SH (in) 

SANG Value of first incident angle in degrees (in) 
DANG Increment of incident angle for a sweep of angles (in) 

(If zero the single value of SANG only is computed) 
M is the number of real angles computed (out) 
N is the total number of angles computed (in) 

Note. In this subroutine, layer types (solid, fluid or void) 
are determined by the values of IND1, IND2 and RH02 alone, as 
indicated above. If BETA1 and/or BETA2 are zero, these will 
default to Poisson solid values (see subroutine ZOMAT for 
details) 

RESULTS MATRIX 

The results matrix is of the form (C.£. subroutine SET) 
T(N,3,9) (out) 
WAVE(9) (out) 

The nine blocks in T(N,3,9) contain 
1) Incident P 
2) Incident SV 
3) Incident SH 
4) Reflected P 
5) ReflectedSV 
6 )  ReflectedSH 
7) Refracted P 
8) RefractedSV 
9) RefractedSH 

WAVE contains the information on which blocks exist 

The three blocks in T(N,3,9) contain, for each of the nine 
blocks 
1) Incident or resulting angle in degrees 
2) Displacement amplitude (modulus) 
3) Phase in degrees 

SPECIFIC CALLS FOR DIFFERENT INCIDENT WAVE TYPE AND MEDIA TYPE 
COMBINATIONS 

Although any combination of incident wave type an media types can 
be specified in a call to ZOEPP as above, using appropriate values 
of INDl and IND2, subroutine ZOEPP is also provided with nine entry 
points for the specific incident wave type and media type 
combinations. The arguments in these entry points have the same 
meaning as in the call to ZOEPP. In all incident S cases, AMP1 and 



PHASE1 refer to the SV component, and AMP2 and PHASE2 refer to the 
SH component. Use of these calls is as follows 

INCIDENT P SOLID / SOLID (statements 100) 
CALL ZIPS2S(ALF1,BET1,RHO1,ALF2,BET2IRHO2lAMPl,PHASEl, 
T,N,M, SANG, DANG) 

INCIDENT S SOLID / SOLID (statements 200) 
CALL ZISS~S(ALF~,BET~,RHO~,ALF~,BET~~RHO~~AMP~~PHASE~,AMP~,PHASE~, 
T,N,M, SANG, DANG) 

INCIDENT P SOLID / VOID (statements 300) 
CALL ZIPS2V(ALFl,BETl,RHO1,AMP1,PHASEl,T,N,M,SANG,DANG) 

INCIDENT S SOLID / VOID (statements 400) 
CALL ZISS2V(ALF1,BET1,RH011AMP11PHASE1,AMP2,PHASE2, 
T,N,M, SANG,DANG) 

INCIDENT P SOLID / FLUID (statements 500) 
CALL ZIPS2F(ALF1,BET1,RHO1IALF2IRH02IAMP1IPHASEllTlNlM,SANGlD~G) 

INCIDENT S SOLID / FLUID (statements 600) 
CALL ZISS2F(ALF1,BET1,RHO1,ALF2,RH02,AMP1,PHASEltAMP2,PHASE2, 
T, N,M, SANG, DANG) 

INCIDENT P FLUID / SOLID (statements 700) 
CALL Z~PF~S(ALF~,RH~~,ALF~,BET~~RH~~,AMP~,PHASE~,T,N,M,SANG,DANG) 

INCIDENT P FLUID / FLUID (statements 800) 
CALL ZIPF2F (ALF1, RHO1, ALF2, RH02, AMP1, PHASEl, T, N, M, SANG, DANG) 

INCIDENT P FLUID / VOID (statements 900) 
CALL ZIPF2V(ALFl,RH01,AMP1,PHASE1,T,N,M,SANG,DANG) 

SUBROUTINE ZOEPP(ALF~,BET~,RHO~~IND~,LAY~,ALF~,BET~,RHO~,IND~, 
1LAY2,AMP1,PHASEl,AMP2,PHASE2,T,N,M,SANG,DANG,WAVE) 

DIMENSION T(l81,3,9),WAVE(9),LAYER(3) 

COMMON /LAYERl/TYPEl,URLI,VRLI,RRLI 
COMMON /LAYER2/TYPE2,URFIIIVRFIIlRRFII 
COMMON /ZOLOG/ LP,LSV,LRLP,LRLSV,LRFP,LRFSV,LSH,LRLSH,LRFSH 
COMMON /ZOCOM/ AP,AAMP,APHASE,ASV,BAMPIBPHASEI 
1 ARLP,CAMP,CPHASE,ARLSV,DAMP,DPHASE, 
2 ARFP,EAMP,EPHASE,ARFSV,FAMPIFPHASEI 
3 ASH,GAMP,GPHASE,ARLSH,HAMP,HPHASE, 
4 ARFSH , IAMP , IPHASE 
COMMON /ZOCMT/ RADEG,ZERO,SMALL,HALF,ONE,TWO,THREE,PI,NE~O 

COMPLEX*16 AP,ASV,ARLP,ARLSV,ARFP,ARFSV,ASH,ARLSH,ARFSH,ANG 
REAL*8 ALF1,BET1,RHO1,ALF2,BET2,RH02,AMP1IPHASEl,AMP2lPHASE~l 
1AMPF1, PHASF1, AMPF2, PHASF2, T, SANG , DANG 
REAL*8 AAMP,BAMP,CAMP,DAMP,EAMP,FAMP,GAMP,HAMP,IAMP, 
lAPHASE,BPHASE,CPHASE,DPHASE,EPHASE,FPHASE,GPHASE,HPHASE,IPHASE, 
2ANGMAX,URLI,VRLI,RRLI,URFII,VRFII,RRFII, 
~RADEG,ZERO,SMALL,HALF,ONE~TWO,THREE,PI,NINETY~ONE~~ 
INTEGER L,M,N,IND,INDl,IND2 
CHARACTER*8 TYPE~,LAY~,TYPE~,LAY~,LAYER 
LOGICAL WAVE,LP,LSV,LRLP,LRLSV,LRFP,LRFSVILSHlLRLSH,LRFSH,FINISH 
DATA LAYER/'SOLID ','FLUID ','VOID ' / 



IND=INDl+l 
AMPFI=AMPl 
PHASFl=PHASEl 
AMPF2 =AMP2 
PHASF2=PHASE2 
GO TO (1,1,1,4,5) IND 
AMPF2=ZERO 
PHASF2=ZERO 
GO TO 5 
AMPFl=ZERO 
PHASFl=ZERO 
AMPF2=AMPl 
PHASF2=PHASEl 

INCIDENT P SOLID / SOLID 

ENTRY ZI~S~S(ALF~,BET~,RHO~,ALF~,BET~~RHO~~AMP~,PHASE~, 
lT,N,M, SANG,DANG) 



URLI=ALFl 
VRLI=BETl 
RRLI=RHOl 
URFII=ALF2 
VRFII=BET2 
RRFII=RH02 
IF(URLI.LT.URFI1)THEN 
ANGMAX=DASIN(URLI/URFII)*RADEG 
ELSE 
ANGMAX=NINETY 

ENDIF 
CALL ZOMAT ( ' P ' , ANG, AMPF1, PHASF1, ZERO, ZERO) 
CALL SET (T, L,M,ANG,DANG, ANGMAX, FINISH) 
IF(.NOT.FINISH)GO TO 150 
GO TO 1000 

INCIDENT S SOLID / SOLID 

ENTRY ZISS2S(ALF1,BET1,RHO1,ALF2,BET2,RH02,AMPl,PHASEl,~P2, 
lPHASE2,T,N,M,SANG,DANG) 

URLI =ALF1 
VRLI=BETl 
RRLI=RHOl 
URFII=ALF2 
VRFII=BET2 
RRFII=RH02 
IF(URLI.LT.URFI1)THEN 
ANGMAX=DMINl(DASIN(VRLI/URLI),DASIN(VRLI/URFII~ )*RADEG 
ELSE 
ANGMAX=DASIN(VRLI/URLI)*RADEG 

ENDIF 
GO TO (290,290,260,270,280),IND 
CALL ZOMAT('S ',ANG,AMPFl,PHASFl,ZERO,ZERO) 
CALL SET(T,L,M,ANG,DANG,ANGMAX,FINISH) 
IF(.NOT.FINISH)GO TO 260 
GO TO 1000 
CALL ZOMAT ( ' S ' , ANG , ZERO, ZERO, AMPF2, PHASF2 ) 
CALL SET(T,L,M,ANC,DANG,ANGMAX,FINISH) 
IF(.NOT.FINISH)GO TO 270 
GO TO 1000 
CALL ZOMAT('S ',ANG,AMPFl,PHASFl,AMPF2,PHASF2) 
CALL SET(T,L,M,ANG,DANG,ANGMAX,FINISH) 
IF(.NOT.FINISH)GO TO 280 
GO TO 1000 



INCIDENT P SOLID / VOID 

ENTRY ZIPS~V(ALF~,BET~,RHO~,AMP~,PHASE~,T,N,M,G) 

URLI =ALFl 
VRLI=BETl 
RRLI=RHOl 
URFII=ZERO 
VRFII=ZERO 
RRFII=ZERO 
ANGMAX=NINETY 
CALL ZOMAT ( ' P ' , ANG, AMPF1, PHASF1, ZERO, ZERO) 
CALL SET(T,L,M,ANG,DANG,ANGMAX,FINISH) 
IF(.NOT.FINISH)GO TO 350 
GO TO 1000 

INCIDENT S SOLID / VOID 

ENTRY zISS~V (ALF1, BET1, RHO1 , AMP1, PHASE1 , AMP2 , PHASE2 , 
IT, NI M, SANG, DANG) 

URLI =ALFl 
VRLI=BETl 
RRLI=RHOl 
URFII=ZERO 
VRFII=ZERO 
RRFII=ZERO 
ANGMAX=DASIN(VRLI/URLI)*RADEG 
GO TO (490,490,460,470,480) ,IND 
CALL ZOMAT ( ' S ' , ANG, AMPF1, PHASF1, ZERO, ZERO) 
CALL SET(T,L,M,ANG,DANG,ANGMAX,FINISH) 
IF(.NOT.FINISH)GO TO 460 
GO TO 1000 
CALL ZOMAT ( ' S ' , ANG, ZERO, ZERO, AMPF2 , PHASF2 ) 
CALL SET(T,L,M,ANG,DANG,ANGMAX,FINISH) 
IF(.NOT.FINISH)GO TO 470 
GO TO 1000 
CALL ZOMAT('S ',ANG,AMPFl1PHASF1,AMPF2,PHASF2) 
CALL SET(T,L,M,ANG,DANG,ANGMAX,FINISH) 
IF(.NOT.FINISH)GO TO 480 
GO TO 1000 



INCIDENT P SOLID / FLUID 

ENTRY Z~PS~F(ALF~,BET~,RH~~,ALF~,RH~~,AMP~,PHASE~,T,N,M,S~G,DANG) 

URLI=ALFl 
VRLI=BETl 
RRLI=RHOl 
URFII=ALF2 
VRFII=ZERO 
RRFII=RH02 
IF(URLI.LT.URFII)THEN 
ANGMAX=DASIN(URLI/URFII)*RADEG 
ELSE 
ANGMAX=NINETY 

ENDIF 
CALL ZOMAT('P ',ANG,AMPFl,PHASFl,ZERO,ZERO) 
CALL SET (T, L, M,ANG, DANG, ANGMAX, FINISH) 
IF(.NOT.FINISH)GO TO 550 
GO TO 1000 

INCIDENT S SOLID / FLUID 

ENTRY Z ~ S S ~ F ( A L F ~ , B E T ~ , R H ~ ~ , A L F ~ , R H ~ ~ , A M P ~ , P H A S E ~ , ~ P ~ , P H A S E ~ ,  
lT,N,M, SANG,DANG) 

URLI=ALFl 
VRLI=BETl 
RRLI=RHOl 
URFII=ALF2 
VRFII=ZERO 
RRFII=RHO:! 
IF(URLI.LT.URFII)THEN 
ANGMAX=DMIN~(DASIN(VRLI/URLI),DASIN(VRLI/URFII))*RADEG 
ELSE 
ANGMAX=DASIN(VRLI/URLI)*RADEG 

ENDIF 
GO TO (6901690,660,670,680),IND 
CALL ZOMAT('S ',ANG,AMPF~,PHASF~,ZERO,ZERO) 
CALL SET(T,L,M,ANG,DANG,ANGMAX,FINISH) 
IF(.NOT.FINISH)GO TO 660 
GO TO 1000 
CALL ZOMAT ( ' S ' , ANG , ZERO, ZERO, AMPF~ ,PHASF~ ) 

CALL SET(T,L,M,ANG,DANG,ANGMAX,FINISH) 



IF(.NOT.FINISH)GO TO 670 
GO TO 1000 

680 CALL ZOMAT('S ',ANG,AMPFl,PHASFl,AMPF2,PHASF2) 
CALL SET(T,L,M,ANG,DANG,ANGMAX,FINISH) 
IF(.NOT.FINISH)GO TO 680 

7 

690 GO TO 1000 
L 

C INCIDENT P FLUID / SOLID 
t C 

ENTRY Z1PF2S(ALF1,RH01,ALF2,BET2,RH02,AMP1,PHASE1,T1N,M1S~G,D~G) 
C 

L=O 
M=N 
AMPFl=AMPl 
PHASFl=PHASEl 
AMPF2=ZERO 
PHASF2=ZERO 
ANG=DCMPLX(SANG,ZERO) 
TYPEl=LAYER (2) 
TYPE2=LAYER (1 ) 
IND= 1 

C 
700 URLI=ALFl 

VRLI=ZERO 
RRLI=RHOl 
URFII=ALF2 
VRFII=BET2 
RRFII=RH02 
ANGMAX=NINETY 

750 CALL ZOMAT('P ',ANG,AMPF1,PHASF1,ZERO,ZERO) 
CALL SET(T,L,M,ANG,DANG,ANGMAX,FINISH) 
IF(.NOT.FINISH)GO TO 750 
GO TO 1000 

C 
C INCIDENT P FLUID / FLUID 
C 

ENTRY ZIPF2F(ALF1,RHO1,ALF2,RH02,AMP1,PHASE1,T,N,MlS~G,D~G) 
C 

L=O 
M=N 
AMPFl=AMPl 
PHASFl=PHASEl 
AMPF2=ZERO 
PHASF2=ZERO 
ANG=DCMPLX(SANG,ZERO) 
TYPEl=LAYER (2) 
TYPE2=LAYER ( 3 ) 
IND=l 

C 
900 URLI=ALFl 

VRLI=ZERO 
RRLI=RHOl 
URFII=ZERO 
VRFII=ZERO 
RRFII=ZERO 
ANGMAX=NINETY 

950 CALL ZOMAT('P ',ANGIAMPF1,PHASF1,ZERO,ZERO) 
I CALL SET(T,L,M,ANG,DANG,ANGMAX,FINISH) 

IF(.NOT.FINISH)GO TO 950 
C 
1000 LAYl=TYPEl 

ALF1 =URLI 
BET1 =VRLI 
RHOl=RRLI 
LAY2=TYPE2 



ALF2 =URFI I 
BET2 =VRFI I 
RH02=RRFII 
WAVE ( 1) =LP 
WAVE ( 2 ) =LSV 
WAVE ( 3  ) =LSH 
WAVE ( 4 ) =LRLP 
WAVE ( 5 ) =LRLSV 
WAVE ( 6 ) =LRLSH 
WAVE ( 7 ) =LRFP 
WAVE ( 8 ) =LRFSV 
WAVE ( 9 ) =LRFSH 

RETURN 
END 

SUBROUTINE SET(T,L,M,ANG,DANG,ANGMAX,FINIS) 
DIMENSION T(181,27) 

This subroutine sets up the results matrix T in the form 
1 - 3 Incident P 
4-6 Incident SV 
7 - 9 Incident SH 
10-12 Reflected P 
13-15 Reflected SV 
16-18 Reflected SH 
19-21 Refracted P 
22-24 Refracted SV 
25-27 Refracted SH 

The three items for each of nine blocks are 
1 Angle in degrees. (The modulus of the complex angle 

is given - this is equal to the real angle for angles 
less than 90 degrees. For evanescent waves the real 
part equals 90 degrees but the imaginary part is non- 
zero, so the modulus is greater than 90 degrees. This 
test can thus be used on Angle to determine whether a wave 
is evanescent) 

2 Amplitude (modulus) 
3 Phase in degrees 

This subroutine can be changed to suit any output requirements 
(In particular, in its present form it does not preserve the 
imaginary part of evanescent resulting angles) 

COMMON /ZOCOM/ AP,AAMP,APHASE,ASV,BAMP,BPHASE, 
1 ARLP , CAMP, CPHASE, ARLSV , DAMP , DPHASE , 
2 ARFP , EAMP , EPHASE , ARFSV , FAMP , FPHASE , 
3 ASH,GAMP,GPHASE,ARLSH,HAMP,HPHASE, 
4 ARFSH , IAMP , IPHASE 
COMMON /ZOCMT/ RADEG,ZERO,SMALL,HALF,ONE~TWO,THREE,PI,NINETY,ONE~~ 

COMPLEX*16 AP,ASV,ARLP,ARLSV,ARFP,ARFSV,ASH,ARLSH,ARFSH,ANG 
REALX8 T, AAMP , BAMP, CAMP, DAMP, EAMP, FAMP , GAMP, HAMP, IAMP, 
~APHASE,BPHASE,CPHASE,DPHASE,EPHASE,FPHASE,GPHASE,HPHASE,IPHASE~ 
~DANG,ANGMAX,RADEG,ZERO,SMALL,HALF,ONE,TWO,THREE,PI,NINETY,O~~~ 
INTEGER L,M 
LOGICAL FINIS 



T(L,2) = AAMP 
T(L,3) = APHASE 
T(L,4) = CDABS(ASV) 
T(L,5) = BAMP 
T(L, 6) = BPHASE 
T (L, 7) = CDABS (ASH) 
T(L,8) = GAMP 
T(L,9) = GPHASE 
T (L, 10) = CDABS (ARLP) 
T(L,11) = CAMP 
T(L,12) = CPHASE 
T(L,13) = CDABS(ARLSV1 
T(L,14) = DAMP 
T(L,15) = DPHASE 
T (L, 16) = CDABS (ARLSH) 
T(L,17) = HAMP 
T(L,18) = HPHASE 
T(L,19) = CDABS(ARFP) 
T(L,20) = EAMP 
T(L,21) = EPHASE 
T(L,22) = CDABS(ARFSV) 
T(L,23) = FAMP 
T(L,24) = FPHASE 
T(L,25) = CDABS(ARFSH) 
T(L,26) = IAMP 
T(L, 27) = IPHASE 

C 
IF(DANG.EQ.ZERO)THEN 
M=L 
FINIS=.TRUE. 
RETURN 
ELSE 
ANG=ANG+DCMPLX(DANG,ZERO) 

ENDIF 
C 

IF(DREAL(ANG).GT.NINETY)THEN 
FINIS=.TRUE. 
ELSEIF(DREAL(ANG).GT.ANGMAX)THEN 
M=L 
ANGMAX=NINETY 

END I F 
C 

RETURN 
END 



TABLE l. Summary of cases classified according to wave-speed contrast and media type, showing Report section numbers (and figure numbers in parentheses). 
The wave-speed contrast is given as "high" if the P-wave speed in one medium is less than the S-wave speed in the other. For a solidlfluid interface, it is given as 
"anomalous" if the fluid has the higher P-wave speed; for a solid/solid interface it is given as "anomalous" if the S wave-speed contrast is opposite to that of the 
P-wave speed (this implies an anomalous Poisson's ratio). If none of these conditions applies it is given as "normal", or left blank if there is no option. * denotes 
that the density contrast is opposite to the P wave-speed contrast. See text for explanation of abbreviations. 

Medium ii void 

Medium ii fluid 
Uii>Ui 

Ui i<Q 

Medium ii solid 
Uji>Ui Vii<Uj 

Vii>Ui 

Uii<Ui 

Medium i fluid 

Incident P Real example Wave-speed 
used, if any contrast 

5.6 (49) fluid free surface 

5.4 (44) deep-sea sediment/water 

5.4 (45) deep-sea sedimentrwater 

5.3.2 (27) CMB-JB normal* 
5.3.2 (31) CMB-PREM normal* 
5.3.3 (35) ICB-JB normal 
5.3.3 (39) ICB-PREM normal 

5.3.1 (23) sea bed high 

5.3.4 (43) anomalous 

Vi<Uii 

Vi>Uii 

Vi< Vii 

Vi> Vii 

Vi<Uii Vii<Vi 

Vii>Vi 

Vi>Uii 

Medium i solid 

Incident P Incident S V  Incident SH Real example Wave-speed 
used, if any contrast 

5.5 (46) 5.5 (47) 5.5 (48) solid free surface 

5.3.4 (40) 5.3.4 (41) 5.3.4 (42) anomalous 

5.3.2(24) 5.3.2(25) 5.3.2(26) CMB-JB normal* 
5.3.2 (28) 5.3.2 (29) 5.3.2 (30) CMB-PREM normal* 
5.3.3(32) 5.3.3(33) 5.3.3(34) ICB-JB normal 
5.3.3 (36) 5.3.3 (37) 5.3.3 (38) ICB-PREM normal 

5.3.1 (20) 5.3.1 (21) 5.3.1 (22) seabed high 

5.2.1.2 (2) 5.2.1.3 (3) 5.2.1.4 (4) M O ~ O  normal 

5.2.3 (14) 5.2.3 (15) 5.2.3 (16) anomalous 

5.2.2 (8) 5.2.2 (9) 5.2.2 (10) high 

5.2.1.5 (5) 5.2.1.6 (6) 5.2.1.7 (7) M O ~ O  normal 

5.2.3 (17) 5.2.3 (18) 5.2.3 (19) anomalous 

5.2.2 ( 1  1 )  5.2.2 (12) 5.2.2 (13) high 



Incident S 

View along ray direction 
(incident S )  

X"I 

Reflected S 

layer i W 
Reflected P 

Ui Vi pi hi pi 
c3-3 

coordinate system layer i i  Uii Mi pii hi Pii 

particle motions \ 1- 

@ intopage 

0 out of page 

Refracted S 

Finure 1 Notation used in this report for displacement amplitudes A-I, angles a, b, e and f, wave 
speeds and densities (see text for full description). Inset is a diagram to show the 
notation of S-wave polarisation characteristics. 
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Figure 2. Sdid-solid interface (Moho). Incident P from above. 
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Figure 3. Sdid-solid interface (~oho). Incident SV from above. 
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90'- 
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D Rsf lected N - *H Reflected SH 
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Figure 4. Sdid-solid interface (Moho). Incident SS from above. 
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Figwe 5. Sdid-solid interface (Moho). Incident P from below. 
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Figure 6. Sdid-solid interface (Moho). Incident SV from below. 
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Evanescent waves shown dotted 
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WLlD V = 4.877 knfs 

Densl ty  - 3.203 g/cc 

-I M e d i m 2  U -  6 . m  kny'n 
WLlD v - 3.753 knfs 

Density - 2.- g/cc 

I - w v e  exists  / 
60'4 ; ;;;;::;; 

*G Incident Si 

-lao" , I l I , I 
I I l 

O0 30" 60° 90' 
ANGLE OF NCIDENCE 

Figure 7. Sdid-solid interface (Moho). Incident SH from below. 
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Figure 8. Sdid-solid interface (high contrast). Incident P from dove. 
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Figure 9. Sdid-solid interface (high contrast). Incident SV from hove. 
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Figure 10. Sdid-solid interface (high contrast). Incident SH from above. 
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G Incldent PI 

*C Rsf lected P 
*D Rsf lected N 
H Ratlectsd SH 

*E Refrocted P 
*F Refrocted N 

I Refroctsd 9) 

-180~ 1 I I I I I I I I t 
O 0  30 a 60" 90 a 

ANGLE OF NCIDENCE 

Figure 11. Sdid-solid interface (high contrast). Incident P from below. 



Evanescent waves show dotted I 
Msdlunl U -  8.1W lur/s 
sol10 V - 4.877 

Density - 3.m g/cc 

Msdiun2 U - 4.W mJs 
=ID V -  2.509 lur/s 

Density - 2.900 g/cs i - Vbve exists F 
G Incident S+ 

*C Ref leeted P 
*D Raf IECted N 
H Reflected 91 

*E Refracted P 
*F Refracted N 

I Refracted Sli 

-. 

ANGLE OF NCIDENCE 

Figure 12. Sdid-solid interface (high contrast). Incident SV from below. 



Evanescent waves shown dotted 

M e d i m  l U - 8.100 knfs 
SOLID V 3 4.677 knfs 

Density - 3.m g/cc 

MedlunZ U - 4 . W  knfs 
sal0 v -  2.m9 knf.9 

Densi ty - 2.900 g/cc 

* - M v e  exists  

A Incident P 
B Incident SV 

*G lncident S i  

C Reflactad P 
D Reflected N 

*H Reflected m 
E Refracted P 
F Refracted SV 

* I  Refracted W 

-180' 1 I I I I I I 
0 30' 60' 90' 

ANGLE OF NCDENCE 

Figure 13. Sdid-solid interface (high contrast). Incident SH from below. 
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9O0- 
Evanescent waves shown dotted 

Mediunl  U -  7.W kQ's 
S X l D  V -  5.W kQ's 

Dens1 ty - 2.800 g/cc 

SOLID V - 4.7.W 

r - Wve exists  

60°- *A Incident P 
B lncident N 
G Incident PI 

*C Reflected P 
00 Reflected N - H Reflected M 

*E Refracted P 
*F Refracted SV 

I Refroctsd M - 

Figure 14. Solid-solid interface (anomalous U/V). Incident P from above. 
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90'- 
Evanescent waves shown dotted 

M s d i u n l  U -  7 . W  kn/s 
socl0 v -  5.000 Ws 

Density = 2.900 g/cc 

M d i u n 2  U = 8.100 kn/s 
=ID V -  4.m kn/s 

Dansl ty  - 2.900 g/cc 

- Hbve exists 

A IncidantP 600- 
*B Incident N 

G lncldant PI 
*C Reflected P 
*D Reflected N - H Reflected PI 
*E Refracted P 
*F Refracted N 

I Refracted M - 

30°- 

- 

I 30 I I I I I 
$00 90 

-180' 
O 0  30 60' 90 O 

ANGLE OF NCIDENCE 

Figure 15. Sdid-solid interface (anomalous U/V). Incident SV from above. 



Evanescent woven shorn dotted 

Medlunl  U -  7.m ivr /s  
SOLID v -  5 . m  knfs 

Density - 2 . W  g/cc 

MsdiunZ U - B. 1W W s  
SOLID V =  4 2W 

Density - 2 : W  $ 
I 0 - wve exists  

60'1 1;;::;;; 
*G Incident PI 
C Reflected P 
D Reflected N 

II 
*H Reflected SH 

E Refracted P 1 F Refracted 5V 
I * l  Refracted M 

-180' 1 I I I I I I # I 
0 a 30 60' 90' 

ANGLE OF NCIOENCE 

Figure 16. Sdid-solid interface (anomalous U/V). Incident SH from above. 



90' 1 Evanescent waves shown dotted 

Mediun l U 8.1W Ivr/s 
S a l D  V - 4 m k s  

Density - 21903 
MadiunZ U -  7.WO kn)'s 
SOLID v -  5 . m  w s  

Dmaity - 2.900 g/cc 

B Incident SV 
G Incident P( 

I *C Reflected P / / 

l *D Ref lected N 
H Reflectad SH 

*E Refracted P 
*F Refracted N I I Refracted Si 1 / 

-180° I I l I I I l I I I 
O0 30° 60' 90 

ANGLE OF NCIOENCE 

Figwe 17. Sdid-solid interface (anomalous U/V). Incident P from below. 
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"W 1 Evanescent woues shown dotted I I 
M e d l m l  U -  B.1W ws 1 1 
SOLID V -  4 .2W mJs 

Density r 2.- g/cc 

l I 

j ~ i ? ~  Dansity ::::E - 2.900 g/cc 31 1 / ( r - Wve exists  l /  

*C Reflected P 
.D Reflected N - H Reflected 91 

*E Refracted P 
*F Refracted N 

I Refracted 9( 

m F  n m F  F R R - ,  R C  
C,,.E ......... '"""' ...... 

E.. ................. .: 1 l,,,,)/ 
I W/ 

I I I I I I i 

30° 60 90 O 

ANGLE OF NCIDENCE 

Figure 18. Solid-solid interface (anomalous U/V). Incident SV from below. 

95 



9o0- 
Evanescent waves shorn dotted 

Mediun l U - 8.1W w s  
S X l D  v -  4.233 w s  

Density - 2 . m  g/cc 

Medlun2 U -  7 . m  w s  
S X l D  V -  5 . m  w s  - Density - 2.903 g/cc 

= M V O  ex ists  

A Incident P 600- B Incident 
*C Incldent 01 

C Reflected P 
D Reflected N - *H Reflected M 

E Refracted P 
F Refracted N 

r l  Refracted SH - 

90 

-iao" I I I I , I I 
1 I I 

0 30  60' 90' 
ANGLE OF HCIDENCE 

Figure 1 9. Solid-solid interface (anomalous U/V). Incident SH from below. 



Evanescent waves shown dotted 

Msdiunl  U - 6 . W  knfs 
SOLID V = 3.484 

Density - 2.W 

Madiun2 U =  1.500 knfs 
FLUID V - 0 . W  

Density = 1.W - Wve exists 

G Incident SH 

*C Ref lected P 
*D Ref lected N 
H Reflected W 

*E Refracted P 
F Refrocted N 
I Refracted PI 

-180~ 
0 a 30 a 60' 90 a 

ANGLE OF NCIDENCE 

Figure 20. Sdid-fluid interface (sea bed). Incident P from below. 
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90'- 
Evanescent woves shown dotted 

M e d i u n l  U - 8.020 Ivr/s 
s a l 0  v = 3.464 w s  - Density - 2.8M) g/cc 

M e d i m 2  U -  1 . m  w s  
FLUID V - 0.W km's - 

Density - 1.020 g/cc 

t = Hbve exists  

A Incident P 

*C Reflected P 
*D Reflected SV - H Reflected M 

*E b t r o c t e d  P 
F Refrocted N 
I Refrocted M 

180° 

90' 

0' 

-90' 

-180~  
O0 30° ANGLE OF NCIDENCE 60' 90' 

Figure 2 1. Sdid-fluid interface (sea bed). Incident SV from below. 
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90 O 1 Evanescent waves sbwn dotted 

Madiun2 U -  1.m )m+ 
FLUID V - 0.030 k S 

Densl ty - l.m 

( r - ~ v e  exists 

A lncldent P 
B Incident N 

* G  lncldent Si 

C Reflected P 
D Reflected N 

OH Ref lectsd SH 

E Refracted P 
F Refracted N 
I Refracted Si 

-180' 
0 °  30° 60° 90° 

ANGLE OF NCIDENCE 

Figure 22. Sdid-fluid interface (sea bed). Incident SH from below. 
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$0'- F 

Evanescent wcves shown datted 

Mediunl U - 1.m Infs 

- Ubvs ex sts 

-1800 1 I l I I I I I I I 
O 0  30 O 60' 90' 

ANGLE OF NCDENCE 

0.6- 

Figure 23. Sdid-fluid interface (sea bed). Incident P from above. 
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Evanescent waves shOwn dotted 

M d i u n  l U P 13.640 knfs 
sol10 V - 7 . m  k d s  

Density - 5.680 g/cc 

M d i u n Z  U = 8 . 1 W  knfs 
FLU10 V - 0 . W  

Density - 9.430 g/cc 

r = Hhve exists 

*A Inc ldentP 
B Incident SV 
G lncident 91 

.C Reflected P 
*D Reflected N 
H Reflected Si 

*E Refracted P 
F Rsfracted N 
I Refracted W 

-iao" 1 , I I l , l 
I I I 

0 30 60' 90' 
ANGLE OF NMDENCE 

Figure 24. Solid-fluid interface (cMB-JB). lncident P from above. 



au 1 Evanescent waves shown dotted I 
& d i m  l U - 13.640 knfs 
SOLID V - 7 3 W k s  

Density - 5 : ~ ) ( 1  g z c  

M a d i m  2 U - B. 1W knfs 
FLUID V -  D.WO knfs 

Density = 9.450 g/cc I 
I - ~ b v e  exists  I 1 

A incident P 
*B lncident SV 
G lncident 91 

1 *C Ref lccted P 
*D Reflected N 
H Ref lected Sn / 

I *E Refracted P / / 
F Rcfroctad W 
I Refracted Sn 

iaoa 

90' . . . .. . .....c ... . . . . . . . . ... . . . . . 
oo 

-90' 

-180' 
O" 30° 60' 90 a 

ANGLE OF NCIDENCE 

Figure 25. Sdid-fluid interface (CMB-JB). Incident SV from above. 



Msdiunl  U - 1 5 . 6 4 0  Lrr/s 
S l D  V =  7.W kmfs 

Density = 5.WO g/cc 

MsdiunP U -  8.100 knfs 
FLUID V - 0 . W  ws 

Density - 9.450 g/cc 

r - 'Mve exists  

A incident P 
B Incident N 

SO Incident 91 

C Raf lected P 
D Reflected N 
*H Reflected M 

E Refracted P 
F Refracted N 
I Refracted M 

-180' 
O 0  30 O 60' 90 ' 

ANGLE OF NUOENCE 

Figure 26. Sdid-fluid interface (CMB-JB). hcident SH from above. 
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-laoO I I l l I I 1 I l 1 
0 a 30 a 60' 90 

ANGLE OF NCIDENCE 

Figure 27. Sdid-fluid interface (CMB-JB). Incident P from below. 



Evanescent woves show dotted 

Mediunl  U = 1 3 . 7 2 0  
sol10 V - 7.260 knJ. 

Density - 5 . W  g/cc 

MedlunZ U -  8.080 knfa 
FLU10 V -  0.mO Ws 

Oensi ty P 9.900 g/cc 

- Wvs exists  

*A Incident P 
B lncident N 
G Incident Si 

*C Reflected P 
*D Reflected N 

H Reflected PI 

*E Refrocted P 
F Refracted N 
I Refracted SH 

-180' 1 I I I I I I I I i 

0 30 60a 90 
ANGLE OF NCIDENCE 

Figure 28. Sdid-fluid interface (CMB-PREM). lncident P from above. 
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J W  1 Evanescent waves shown dotted I 
M d l u n  1 U * 15.720 kn/s 
=ID V - 7.260 kn/s 

Density - 5 . W  g/cc b 
MadlunZ U - 8.OBO kn/s 
FWlD V - 0 . m  knJ. 

Density = 9.920 g/cc I I 0 - ~ v e  exists  I 
A lncldent P 'o'{ *B incident SV 
G lncldent 9.1 

r0 Reflected SV - H R e f l e c t e d S i  

+E Refracted P 
F Refracted N 
I Retracted Si 

I 

30 a $00 
I I 

90° 

Figure 29. Sdid-fluid interface (CMB-PREM). Incident SV from above. 
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90'- 
Evanescent waves shorn dotted 

Mediun l U = 13.720 kn/s 
=ID V -  7.260 - 

Density = 5 . W  

Mediunz U 8.060 kn/s 
FLU10 V - 0 . W  - 

Density = 9.900 $ 
PWVC exists 

60°- A Incident P 
B lncident N 
.G Incident Si 

C Reflected P 
D Reflected SV - *H Rsf lected SH 

E Refracted P 
F Refracted SV 
I Refracted SH - 

30°- 

-180° 1 I I I I I I I I I 

0° 30" 60' 90' 
ANGLE OF NCIDENCE 

Figure 30. Sdid-fluid interface (CMB-PREM). Incident SH from above. 



9O0- 
Evanescent woves shown dotted 

M d i u n l  U = 8.OBO kq's 
FLUID V - 0.030 w s  - Density - 8.903  cc 

8 - Wve exists 

600- *A Incident P 
B Incident N 
C Incident Si 

.C Rmf leeted P 
D Reflected N - H Reflected SH 

*E Refracted P 
*F Refracted N 

I Refracted M 

-180° 1 I I I I I 
I I I l 

0 30° 60 90' 
ANGLE OF NCIOENCE 

Figure 3 1. Sdid-fluid interface (CMB-PREM). Incident P from below. 
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Evanescent waves SMwn dotted 

Medium1 U - 1 1 . 1 6 0  W s  
SNID v = 8.433 ws 

Density - 1 6 . W  g/cc 

Mediunz U = 9 . 4 W  W s  
FLUID V 0 . W  knfs 

Density r 14.203 g/cc 

r - Wve exists 60a1 *A lncident P 
B lncident N 
G Incident 9.1 

I *C Ref lectad P / c, 

1 *D Reflected N 
H Reflected SH 

*E Refracted P 
F Refracted N 

I I Refracted M / d 

-laoa I l I I I I l I I I 
a o 30 60' 90 O 

ANGLE OF NCIDENCE 

Figure 32. Sdid-fluid interface (CB-JB). lncident P from bebw. 



Evanescent waves shown dotted 

Mediunl U=11.160 W s  I I 
SOLID V -  6.433 k& 

Density = 16.800 q/cc 

Medium2 U -  9.400 knfs 
FLUID V - 0 . m  knfs 

Density - 14.230 g/cc 

r - Wlve exists 

A lncident P 
*B lncident SV 

G lncident S i  

*C Reflected P 
*D Reflected N 
H Reflected SH 

*E Refracted P 
F Refracted SV 
I Refracted W 

m a n  ' a n  r n  a n  R D  

-180' I , I 

0 30 a 60' 90 a 
ANGLE OF NCIDENCE 

Figure 33. Sdid-fluid interface (ICB-JB). lncident SV from below. 



9O0- 
Evanescent waves shown dotted 

Medlunl U-11.160 knfs 
S X l D  V - 6.453 knfs 

Densi ty - 16.800 g/cc 

MediunZ U - 9.403 knfs 
FLUID V - 0 . W  knfs - 

Densi ty - 14.200 g/cc 

= wave exlsts 

so0- A Incident P 
B Incident N 

*C Incldent Si 

C Reflnctsd P 
D Reflected N - *H Reflected 91 

P E Refracted P 
F Refracted N 
I Refracted 91 

il (L 

3o0- 

-1800 I I I I I I I l I 
O0 30 O 60 O 90 

ANGLE OF NCIDENCE 

Figure 34. Sdid-fluid interface (ICE-JE). Incident SH from below. 



90'- 
Evanescent waves shorn, dotted 

Madiun l U - 9.4W kn)'s 
FLUID V - 0.020 W s  - Density = 14.230 g/cc 

MadiunZ U - 1 1 . 1 6 0  
SOLID V - 6.433 - Density - 1 e . m  $ 
8 - Hbve exists 

60°- .A Incident P 
B Incident N 
G lncldent 9.1 

*C Reflected P 
D Reflected SV - H Reflected 9.1 

*E Refroctsd P 
OF Refracted N 

I Refracted 91 - 

-iao" i I I l I I , , 1 
O0 30 60' 90' 

ANGLE OF NClDENCE 

Figure 35. Sdid-fluid interface (ICB-JB). Incident P from above. 
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i Medlunl  U - 1 1 . 0 2 0  Ivr/s 
SOLID V -  3.m knfs 

Density - 12.833 g/cc 

. - . -- - . -. 
Density - 1 2 . 2 ~  

t - Wpve exists  1 
60° *A lncident P J B Incident N 

G Incident PI 
*C Ref lected P 
*D Reflected SV 
H Reflected M 

F Refracted SV 
I Refracted PI 

30° 

-180' 0' 
O 0  30 60' 90' 

ANGLE OF NCWENCE 

Figure 36. Sdid-fluid interface (ICB-PREM). Incident P from below. 



go0  1 Evanescent waves s m dotted IC  P 
I ::'/p " 

Density - l BW g/cc 

4 R:;F2 :: #= 22 
Density = .ZOO g/cc 

ANGLE 0  

Figure 37. Sdid-fluid interface (ICB-PREM). Incident SV from below. 

114 



Evanescent waves shorn dotted / 
Mediunl  U - 1 1 . 0 2 0  
m 1 0  V -  5.m y o  

Oensity - 1 2 . m  q/cc 

= Wve exists  

A Incident P 
B Incident N 
*G lncident 91 

C Reflected P 
D Reflected SV 

*H Rsflected SH 

E Refracted P 
F Rsfroctad N 
I Refroctad S1 

-18o0 I I I I I I I I I I 
0° 30 60 90 O 

ANGLE OF NCIDENCE 

Figure 38. Sdid-fluid interface ([CB-PREM). Incident SH from below. 



9O0- 
Evanescent waves shown dotted 

M e d i m  l U - 10.260 kq's 
FLUID V - 0 . m  kny's - 

Density - 12.ZW g/cc 

M e d i m 2  U-11.MO kq's 
SOLID V -  3.500 - 

Densl ty - 12.8M) 

t P Wve exists  

60'- *A Incident P 
B Incident N 
G Incident W 

*C Reflected P 
D Reflected N - H Reflected SH 

*E Refracted P 
*F Refracted N 

I Rafracted M 
- 

-180" I l l I l l I I I I 
O0 30° 60° 90' 

ANGLE OF NCIOENCE 

Figure 39. Sdid-fluid interfcce (ICE-PREM). Incident P from above. 
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-180° 1 I l l I I l I l 1 
0 O 30' 60'  90 '  

ANGLE OF NCIOENCE 

Figure 40. Sdid-fluid interface (high U fluid). Incident P in the solid. 



180° 

90" 

0" 

-90 a 

-180' 
0 a 30 a 60" 90" 

ANGLE OF NCIDENCE 

Figure 41. Sdid-fluid interface (high U fluid). Incident SV in the solid. 
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Evanescent waves shown dotted 

Mediun l U = 4.aW knJ. 
S X l D  V - 2.309 koJs 

Density - 2 . m  g/cc 

M e d i m 2  U - 6 . m  k o J ~  
FLUID V - D.mO 

* - M v e  exists 

A lncldent P 
B lncident N 

*G lncldent PI 

C Ref lected P 
D Reflected N 

*H Reflected m 
E Refracted P 
F Refracted N 
I Refracted SH 

-180° 1 I I I l I I I I I 
0° 30 60° 90' 

ANGLE OF NCIOENCE 

Figure 42. Sdid-fluid interface (high U fluid). Incident SH in the solid. 



Evanescent waves shown dotted 

Mediunl  U - 6 . m  knfs 
FUllD V = 0 . m  

Density n 3 . W  

MOdiun2 U = 4 . m  knfs 
sol lD v -  2 . m  knfs 

Density = 2 . m  g/cc 

* = M v e  exists  j *A Incident P 
B lncident N 
C lncldent S i  

*C Reflected P 
D Reflected N 
H Reflected M 

*E Refroctad P 
*F Refracted SV 

I Refractad Pt 

-180' 1 I I I I I I I I I 
0 O 30' 60' 90 

ANGLE OF NCDENCE 

Figure 43. Sdid-fluid interfcce (high U fluid). Incident P in the fluid. 
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Evanescent waves shown dotted 

W d i u n l  U =  1.490 lurJs 
FLU10 V = 0 . W  knJD 

Density = 1 . a  g/cc 

MediunZ U = 1.m w s  
FLUID V = 0 . W  lurJs 

Density = 1.020 g/cc 

* = Wve exists  

*A Incident P 
B lncldent SV 
G lncldent S+ 

*C Reflected P 
D Reflected N 
H Reflected Si 

*E Refracted P 
F Refracted N 
I Refracted Si 

-180° 
0 30 60' 90' 

ANGLE OF NCIOENCE 

Figure 44. Fluid-fluid interface (seawater/sedirnent). Incident P from below. 
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Evanescent woves shown dotted 

Medium1 U =  1.533 Iq 's  
FLU10 V = 0 . W  knfs 

Densi ty - 1.020 g/cc 

Medium2 U - 1.490 kq's 
FLUID V - 0.W kn)'s 

Density - 1.400 g/cc 

* = Wve exists 

*A lncident P 
B lncident N 
G lncldent 94 

*C Reflected P 
D Ref lected N 
H Reflected M 

*E Refracted P 
F Refracted N 
I Refrocted M 

0 30 60' 90 

-180' I I I I I I I I I I 
O 0  30 60' 90 

ANGLE OF NCIDENCE 

Figure 45. Fluid-fluid interface (seawater/sedirnent). Incident P from above. 
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90' 1 Evanescent waves shmm dotted 

Medim l U - 6.033 W s  
SOLID V e 3.484 W s  

Density - 2.9W g/cc 

M e d i m 2  U - 0 . m  kp's 
W10 v - 0 . m  W¶ 

Density - 0 . m  g/cc 

r - Wave exists 

*A Incident P 
B lncident N 
G Incident 9( 

.C Reflected P 
*D Reflected N 

H Ref lccted 9.1 

E Refracted P 
F Refracted N 
I Refrocted 9.1 

r P f 
-180~ I l I I I I l 1 t 

0 30 ' 60' 90 ' 
ANGLE OF NCIDENCE 

Figure 46. Sdid free surface (Earth's surface). Incident P. 
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- - 
ANGLE OF NCIDENCE 

Figure 47. Sdid free surface (Earth's surface). Incident SV. 
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90' 1 Evanescent woves stwm dotted 
Mdiunl U - 6 . 0  Lrr/s 
SOLID V -  3.464 Lrr/s 

Density = 2.9M) g/cc 

M d i u n Z  U L 0 . W  kq's 
W 1 0  V -  0 . W  krr/s 

Density - 0 . W  g/cc 

r P Hbve exists 

A Incident P 
B Incident SV 
*G lncident M 
C Reflected P 
D Reflected N 

*H Reflected 9.1 

E Refracted P 
F Refracted N 
I Refracted 91 

Figure 48. Sdid free surface (~arth's surface). Incident SH. 
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-iao" I I I l I , , 1 
0 30 60' 90' 

ANGLE OF NCIDENCE 

Figure 49. Fluid free surface (SW surface). Incident P. 
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Ratio of surface displacement to incident displacement for incident P 
ampli rude 

radial 
- - - - - - - - - a  

vertical - - - - - 
transverse 

incidcnl angle 

Figure 50 Ratio of displacement amplitude at the free surface to displacement amplitude of the 
incident wave, for an incident P wave, plotted against angle of incidence a. Ratios of the 
companents in the radial, transverse and vertical direction (corresponding to the X , ,  X;! 
and X 3  directions respectively in figure 1) are shown as separate curves. In (a) the 
modulus of the ratio is shown, and in (b) the phase of the ratio. A Poisson solid is 
assumed. 
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Ratio of surface displacement to incident displacement for incident S 
amplitude 

radial 

vertical - - - - -  
transverse 

incident angle 

phase 

250.00 10 radial 

l 
--------- .  
vertical - - - - -  
transverse 

incident angle 

Figure 51 Ratio of displacement amplitude at the free surface to displacement amplitude of the 
incident wave, for an incident S wave, plotted against angle of incidence b. Ratios of the 
components in the radial, transverse and vertical direction (corresponding to the XI, X2 
and X3 directions respectively in figure l )  are shown separately. In (a) the modulus of 
the ratio is shown, and in (b) the phase of the ratio. A Poisson solid is assumed. 
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