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SUMMARY

Most studies of the processing of recordings from seismometer arrays
to extract seismic body waves from noise have used data recorded by
conventional narrow band systems. The aim in this type of processing has always
been to achieve maximum signal-to-noise ratio. This report describes studies of
the processing of broad band recordings (from a system with displacement
response flat from around 0.1 to 10 Hz) for the estimation of signal shape rather
than the maximisation of signal-to-noise ratio; processing of both single
seismograph and array (multichannel) recordings is discussed. The data used come
from a 4 element array of broad band seismometers in southern England. The
predominant noise on the broad band recordings is oceanic microseisms with
periods of around 6 s and the main purpose of any array processing is usually to

suppress this type of noise.

By definition Wiener filtering gives the best estimate of signal shape
in the sense that filters are designed to minimise the mean square of the
difference between the true signal (desired output) and the estimated signal
(actual output) consequently most of this report describes studies of the
application of this type of filter. In the general (multichannel) case Wiener filters
apply both spatial and frequency filtering to extract the signal. However, if the
required noise reduction can be obtained by spatial filtering alone, then no
frequency filtering is applied and so the signal is passed undistorted. From the
data studied in this report it is possible to get noise reductions due to spatial

filtering of up to 6 with the & element array.

Studies are also described of the use of filters designed to minimise
the noise power at the output of the filters subject to the constraint that the
desired signal is passed undistorted. It is shown that this method of processing
(usually referred to as the maximum likelihood method) can be considered as a

special case of Wiener filtering.




1. INTRODUCTION

Because of the large peak in the seismic noise spectrum of ground
displacement at around 6 to 8 s period - the oceanic microseism peak - the body
wave signals from all but large magnituyde sources can only be ;seen above the
background noise if the oceanic microseisms are attenuated by fil{ering; the bulk
of this filtering is usually applied as frequency filtering by thie seismograph.
With this recording method signals with amplitudes that are above the noise over

a wider band of frequencies than the limited pass band of the s}eismograph are

filtered unnecessarily. Yet Berckhemer (1) has pointed to the beed to record

signals over as wide a band as possible, particularly for sourfce studies, and
Marshall, Burch and Douglas (2) illustrate the value of broad band seismograms
for such studies by using large magnitude sources for which the isignal is larger
than the noise. 1

Recording with narrow band seismographs is only n}1ecessary when
visual seismograms alone are recorded. Given magnetic tape recording, a better
way of displaying seismograms for analysis would seem to be to ;use a recording
system from which a widé range of frequencies can be recovered and to apply to
these wide band seismograms just sufficient frequency filteringf to extract the
best estimate of signal shape. When array records are available, 'Ahen differences
in the spatial properties of the signal and noise can be exploitea to reduce the
noise and pass the signal unchanged - which is the object of usiing an array for
noise suppression. It would seem then that any noise reducti&im that can be
obtained from array processing should be applied before (or simu‘taneously with)
the frequency filtering. In this way frequency filtering will not b;s applied where

the required noise reduction can be obtained by spatial filtering.

Most studies of the use of seismometer arrays to extra}ct seismic body
waves from noise have used data recorded on conventional narrov\j,v band systems.
For such arrays at sites where the signal does not vary greatly over the aperture
of the array it has been found that satistactory improvements m signal-to-noise
ratio can be obtained by using simple delay and sum (DS) processing; the signals
recorded at each seismometer are time shifted so that their onsets coincide, the
channels are summed and this sum divided by the number of sei%mometers. The

signal at the output of DS processing is thus the average over all.channels. Often




the predominant frequency of the signal is obviously different from that of the
noise and further improvements in signal-to-noise ratio can then be obtained by
band pass filtering of the DS signal using a filter that passes the signal

frequencies but attenuates the predominant noise frequencies.

If the noise has the same variance at each seismometer and is
uncorrelated between pairs of seismometers, then DS processing of data from an
]

n seismometer. array gives on average n*

improvement in signal-to-noise ratio,
which is the greatest improvement that can be obtained (ignoring frequency
filtering) for such noise. If the noise consists of propagating wave trains,
sometimes described as spatially organised noise so that the outputs of pairs of
seismometers are not all uncorrelated, DS processing does not in general give the
best possible signal-to-noise improvement and ?ther processing methods can be

used which give improvements of greater than n?.

However, no method of array processing that is capable of suppres-
sing organised noise appears to have been widely used. The main reason for this
seems to be that the value of any processing is usually assessed on the signal-to-
noise improvement and it is commonly found that the same signal-to-noise
improvements can be obtained using DS processing with additional band pass
filtering, as with processing methods that attempt to exploit the spatial
organisation of the noise. As DS processing is much simpler and quicker to carry
out than other methods there is little incentive to use anything else. If signal-to-
noise improvement is the only criterion used to measure the effectiveness of a
processing method, then DS processing of narrow band recordings, with added
band pass filtering if necessary, will probably always give the best results. The
main result of this type of array processing is that the detection threshold is
lowered below that of a single seismograph but only over the narrow band of
frequencies where the noise is low anyway. There will usually only be an
advantage in carrying out such processing for signals with amplitudes at or near
the detection threshold of a single channel. Processing of narrowband signals that
have amplitudes well above that of the noise simply to improve signal-to-noise

ratio will usually be pointless.

In this report we investigate the application of processing methods
for the estimation of signal shape rather than the maximisation of signal-to-noise

ratio; processing of both array and single seismograph recordings are considered.




Now Wiener filtering by definition gives the best estimate of signal shape in the
sense that the filters are designed to minimise the mean square of the difference
between the true signal (desired output) and the estimated signal (actual output),
consequently most of this report is concerned with the application of this type of
filter for the extraction of signals from noise. The application of Wiener
processing to narrow band recordings of array data has been investigated to Burg
(3), Backus, Burg, Baldwin and Bryan (4) and Backus (5). We also investigate the
processing method designed to minimise the noise pbwer at the output subject to
the constraint that the desired signal is passed undistorted. This method of
processing has been studied in detail in several papers (see, for example, Capon,
Greenfield and Kolker (6)) and is usually described as the maximum likelihood
method but in this report we refer to it as the minimum power (MP) method. We

consider the relationship between MP and Wiener filtering.

The simplest method of extracting high speed body wave signals from
low speed oceanic microseisms is to install two seismometers half the
microseismic wavelength apart and sum the outputs; the microseisms should then
tend to cancel out and the signals to sum. This method of suppressing oceanic
microseisms is suggested by Baker (7) and has been studied by Henger (8) using a
3 element triangular array in Germany (9,10). The spacing in the array was
varied and the noise reduction as a function of seismometer spacing measured.
Maximum noise reduction was obtained at spacings of ~ 12.5 km but, in general,
this noise reduction was little better than 3%. The relationship of this simple
approach to the suppression of microseisms and more complex processing

schemes is considered later.

We are not concerned here with the detection of small signals from
sources with unknown epicentre and origin times. We assume that any signal to
be processed has been detected by narrow band systems and that the apparent
velocity and rough onset time of the signal is known. At array sites the signal
will differ from channel to channel (ideally these differences will be small) and
we take the best representation of the signal to be the average of the outputs of

all the channels.




2. THE ARRAY AND RECORDING SYSTEM

The data used in this study comes from an array of four seismometers
situated in southern England near our laboratory at Blacknest about 20 km west
of Reading, Berkshire (see inset figure 1); some initial results from the study of
data from this Blacknest array (BNA) are given by Burton (11). The choice of
suitable sites for seismometers is limited because the area is well populated so
the four sites used (figure 1) were chosen mainly because they are the most

convenient available.

The seismometers used in the array are Geotech S1! instruments with
a natural frequency of 0.05 Hz (20 s period). Originally the output of these
instruments was shaped electronically to produce the required flat displacement
response between 0.1 and 10 Hz (the displacement broadband response: DBB) to
simulate the Kirnos SKM system widely used in the USSR (2,11). Recording
directly on to magnetic tape with such a response however does not make the
best use of the available dynamic range of the tape; the DBB system was
therefore altered so that the response as written on to tape is flat to ground
velocity between 0.1 to 10 Hz (the velocity broad band response: VBB). The flat
response to ground displacement is derived from the VBB recording on playback
by integrating the output from the tape before writing the seismogram. Initially
the magnetic tape recording was analogue only; now both analogue and digital
recordings are made. As the digital recording is made at a sampling rate of 12.5
samples/s (for each seismometer channel) the analogue signal has to be low pass
filtered to cut out power at frequencies above 6.25 Hz (the Nyquist frequency) to
avoid aliasing on conversion from analogue to digital form. All broad band
recordings shown in this report are either as recorded on the DBB response or are
VBB recordings int:egrated (IVBB). When played back from tape using a recorder
with a sensitivity of | V/cm the magnification at 1 Hz of the DBB system is 6600
and for the IVBB output is 5300. Figure 2 shows the response of the broad band

systems.

Although the BNA is designed primarily to record broad band data it
is possible to extract short period information by simply multiplying the
spectrum of the BB recordings by afw)/a){w) and transforming back into time;
a)(w) is the response of an SP seismograph at frequency w and ax(w) that of the BB
seismograph. In this report all SP seismograms displayed are as they would have

been recorded by a WWSS SP seismograph with response as shown in figure 2.
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The BNA is sited in a region where about 1 km of Mesozoic and
Tertiary sediments lie unconformably on a Palaeozoic basement which is part of
the London Platform. Superficial deposits of sands and gravels cover much of the
region. The basement is cut by a fault zone striking roughly east-west across the
array in the vicinity of the most southerly seismometer and the sediments
increase rapidly in thickness from north to south in this region. The most
southerly seismometer is emplaced in the Chalk (Cretaceous) whereas the other
three seismometers are emplaced in the superficial sands and gravels. A seismic
reflection survey has been carried out in the area in an attempt to obtain more
detail about the geology beneath the array and a report on this is being prepared
(12).

3. SEISMIC SIGNALS AND NOISE AT THE BLACKNEST ARRAY

In this section we demonstrate using a few samples some of the
properties of seismic signals and noise as seen at the BNA. In particular we look
at noise levels, at the coherence of signals and noise and at the value of SP as

compared to BB signals.

The oceanic microseisms recorded at the BNA can be very large when
there are storms in the North Atlantic. Such storms are commonest during the
winter and so the noise level recorded during the winter is usually much higher
than during the summer. Table | lists the average rms amplitude of the BB noise
for a sample of noise taken on one day of each of the {first six months of 1976;
the average rms amplitude is

o 1
( 1 o2/)?,
i=1

where o‘z.1 is the mean square amplitude of the noise on channel i and n (= 4) is the
number of seismometers. Note that the BB noise level on 20 January is about 10
times that on 20 May. Table | gives the noise reduction obtained for each BB
noise sample by DS processing; the quantity listed in table 1 is QDS which is
given by

n
- 2 3
g = {(izloi)/(nogs)} , ()

11




TABLE 1

Blacknest Array Noise Amplitudes and the Noise Reductions
Obtained by Delay and Sum Processing

Z1

Broad Band Short Period
. Avera.xge Noise Reduction Aver:ftge Noise Reduction
Noise Sample RMS Amplitude, on Summing (&_.) RMS Amplitude, on Summing (&)
nm DS nm DS
20 January 1976 2069 ' 1.56 43.1 1.95
21 February 1976 1447 1.72 24.1 2.03
20 March 1976 589 2.04 36.5 1.93
20 April 1976 453 2.31 21.8 1.91
20 May 1976 209 2.17 29.7 1.98
20 June 1976 260 1.77 27.6 1.88




where UZDS is the mean square amplitude on the DS output and n and ozi are as

DS is 2. Table |
lists ¢g for DS processing of the six BB noise samples for zero delays, that is

defined above. For uncorrelated noise the expected value of ¢

for straight summing.

Measurements of the properties of the SP noise have been made from
SP seismograms derived from the BB; table 1 shows the average rms amplitude of
the SP noise (for magnification of unity at | Hz) computed for the same time
window as for the BB noise. From the values given in table 1 it is clear that the
BNA is on a site with high SP noise. The SP noise is apparently uncorrelated
between channels and summing the 4 channels of the BNA without delays gives

(for SP noise) noise reductions (table 1) of close to 2.

Figure 3(a) shows the power spectra of the 6 samples of BB noise (the
spectra are averages over the power spectra of the 4 channels of the array).
From these spectra it can be seen that, when the noise amplitude is large
(20 January and 21 February), the spectra are sharply peaked at 6 to 8 s period,
whereas when the noise'is of lower amplitude (20 May and 20 June), there is only
a weak maximum in the power spectrum and this lies at periods shorter than 6 s.
Note also that, whereas the 6 to 8 s noise power varies by a factor of more than
a 1000 over the 6 noise samples, at around 2 s period the power varies by only

about a factor of 3.

In order to measure the coherency of the 6 to 8 s noise the normalised
cross-correlation function for pairs of channels has been computed for the
20 January noise sample. The peak value of the cross-correlation function is
about 0.7 for the two most widely spaced seismometers and is greater than 0.75
for the other pairs of seismometers in the array. These results show that the 6 to
8 s seismic microseisms were highly coherent for this noise sample. That the
oceanic microseisms in the noise sample were highly correlated between
seismometers can be seen from the seismograms and by measuring arrival times
of peaks and troughs in the wave train the phase velocity of the large amplitude
microseisms is estimated to be about 3 km/s in a direction N139°E so on that day
the source of the microseisms lay to the north-west of the array. Figure 3(b)
shows a sample of the BB noise recorded on 20 January by the 4 elements of the
BNA; the individual channels have been time shifted using the estimated velocity
to bring the peaks and troughs into phase across the array. Also displayed in
figure 3(b) is the DS output - the sum of the time shifted channels.

13
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FIGURE 3(b) EXAMPLES OF BB(IVBB) NOISE RECORDED AT THE BNA.
SAMPLE OF BB NOISE RECORDED ON 20 JANUARY 1976 FROM
THE 4 SEISMOMETERS OF THE BNA; THE INDIVIDUAL CHANNELS
HAVE BEEN TIME SHIFTED USING THE ESTIMATED VELOCITY OF
THE OCEANIC MICROSEISMS TO BRING THE PEAKS AND TROUGHS
INTO PHASE ACROSS THE ARRAY. ALSO DISPLAYED IS THE DS
OUTPUT




When the amplitude of the 6 to 8 s period oceanic incroseisms is low
there is usually no significant correlation between the noise on‘pairs of channels.
This may indicate that this low amplitude noise is not spati‘ilally organised or,
what is more likely, that the noise field is more isotropic. At deriods away from
the 6 to 8 s period the coherence between pairs of channels is also low but again
this may be because the noise field at these periods is isotropid} rather than that
the noise is not spatially organised. A detailed study of the noise is required to
decide which is the most likely interpretation of these coherenc!e measurements.

In order to measure the coherence of signals we use in this report
% 88 defined in equation (1) where now c"; and O'f)s are ?the mean square
amplitudes of the signal on channel i and on the DS output rezspectively. For a
signal that is identical in all channels (in-phase and of equall amplitude), QDS
should be 1.0; if the signal is uncorrelated between channels, the expectation of
<I>DS is 2. Treating the section of BB noise shown in figure B(H)) as a signal and
forming the DS output (as shown in figure 3(b)) using the estimated velocity of
the noise, then &= 1.06; this value of q’DS so close to 1.0 confir%s yet again that

these microseisms are highly correlated.

We now look at hody \);/ave signals recorded at theilBNA to see how
well they are correlated across the array. Figure 4 shows BB Plsignals from two
earthquakes and an explosion (see table 2 for details) as recordecﬂ by each channel
of the array. Consider first the Kodiak Island earthquake (figurei#(a)); clearly the
main arrivals in the signal have similar shapes on all channels. 1The DS output for
the Kodiak Island signals shown in figure #(a) has been formed dsing the value of
the apparent surface velocity computed using the estimated %hypocentre. The
value of ‘DDS computed using the mean square of the DS ouqiput is 1.04. This
shows that any signal loss due to DS processing is negligible so that the
effectiveness of DS processing for such highly coherent signals i;can be measured

simply by computing the noise reduction.

The signal shown in figure 4(b) has too small a signalii-to—noise ratio at
the onset to give any indication of coherence. The signal doe#, however, show
large amplitude low frequency arrivals 40 s after onset and ifrom these it is
possible to get an idea of the coherence of body wave signijals at these low
frequencies (~ 0.125 Hz); O for these low ireqdency arrivalsi is 1.02, showing

again that any signal loss on DS processing can be neglected.

16
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TABLE 2

Earthquakes and Explosion Used in Coherence Studies

. Obs SP | SP Ground SP .
. . . . Depth, | Distance, . . A Max |[BB Period
Date Region Origin Time km degrees Amp, Motion, Period m, (N:YS) BB Amp T, s
nm nm T, s
22 August 1973 Kodiak Island 18:14:37.2 38 69.3 305 305 1.0 6.4 5.9 1420 2.7
20 December 1976 | Vancouver Island 20:33:7.8 10 70.5 105 538.3 1.7 6.4 5.9 3150 8.0
21 October 1975 | Novaya Zemlya 11:59:57.3 0 32.3 1115 1115 - 1.0 6.7 6.5 2106 1.6
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FIGURE 4(a) P-WAVE SEISMOGRAMS RECORDED AT THE BNA FOR THE KODIAK
ISLAND EARTHQUAKE OF 22 AUGUST 1973. THE BB (DBB) SINGLE

CHANNEL AND DELAY AND SUM OUTPUTS ARE SHOWN TOGETHER
WITH THE SP DELAY AND SUM OUTPUT
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FIGURE 4(b) P-WAVE SEISMOGRAMS RECORDED AT THE BNA FOR THE VANCOUVER
ISLAND EARTHQUAKE OF 20 DECEMBER 1976. THE BB (1VBB)
SINGLE CHANNEL AND DELAY AND SUM OUTPUTS ARE SHOWN
TOGETHER WITH THE SP DELAY AND SUM OUTPUT
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FIGURE 4(c) P-WAVE SEISMOGRAMS RECORDED AT THE BNA FOR THE NOVAYA
ZEMLYA EXPLOSION OF 21 OCTOBER 1975. THE BB (DBB)
SINGLE CHANNEL AND DELAY AND SUM OUTPUTS ARE SHOWN
TOGETHER WI'TH THE SP DELAY AND SUM OUTPUT
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The high coherence shown by the two earthquake signals (figures 4(a)
and 4(b)) seems to be typical of signals recorded at the BNA. However, one group
of P signals, those from explosions in Novaya Zemlya (NZ), seem to be less

coherent than the earthquake signals.

An example of such a P signal is given in figure 4(c) and other details
of the explosion in table 2, Inspection shows that the signal differs in shape
across the array even in the first 2 or 3 s after onset; for the first 20 s of the
signal QDS: 1.27 and for the 20s of the signal starting 10 s after onset
q’DS = 1.53. These values of QDS show that the explosion signal is not as coherent
as the two earthquake signals and we show later that the departure from perfect
coherence shown by the NZ signal can lead to difficulties when using Wiener

filtering to suppress the noise.

In order to measure the coherence of P signals at frequencies around
| Hz s has been computed for the SP signals for the two eaﬁthqua‘kes and the
explosion discussed above. These values are listed in table 3, together with those
computed for the BB signals. Note that for the earthquake and the first 20 s of
the explosion signal the values of ¢y computed for the SP records are little
different from those computed for the BB records. For the 20 s of the explosion
signal starting 10 s after onset the value of (DDS is much larger on the SP than on

the BB seismogram and is close to the value of 2 expected for uncorrelated noise.

Apart from the NZ explosion, however, the signals recorded at the
BNA seem to be sufficiently coherent so that little signal loss is to be expected
on DS processing and, as we see later, there is no difficulty in applying Wiener or

MP filtering.

The reason for the low coherence of the NZ explosion is not clear.
Explosion signals recorded from NZ are always more complex at the BNA than is
usual for explosion signals. Some of this loss of coherence can presumably be
attributed to §cattering somewhere close to the array; the existence of such
arrivals at other arrays has been demonstrated by Key (13). There is also
evidence of structural complexity on the NZ-BNA path (14) and this may also

contribute to the lack of coherence of the NZ explosion signals.

21
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TABLE 3

Coherence Measurements for P Signals

Signal Source

Duration of

Start Time of

Coherence Measure (&_ )

Signal, s Signal Broad Band | Short Period
Kodiak Island Earthquake 20 Signal Onset 1.04 1.08
(20 Signal Onset - 1.09
Vancouver Island Earthquake Ezo 40 s after onset 1.02 _
(20 Signal Onset 1.27 1.34
Novaya Zemlya Explosion EZO 10 s after onset 1.53 2.12




The seismograms shown in figure 4 illustrate some of the advantages
of broad band seismograms compared to SP. For BB explosion signals the first
motion may be the largest amplitude on the record whereas on the SP the first
motion is usually only a third or less of the maximum amplitude, as is illustrated
by figure #4(c). For the Kodiak Island earthquake (figure 4(a)) the broad band
seismogram shows two clear arrivals of opposite polarity; the first (P) has
negative polarity whereas the second (presumably pP) has positive polarity. Both
these pulses appear to have leading edges that show no discontinuity in gradient
at the onset of the pulse. This absence of any discontinuity in the gradient shows
up on the SP seismogram as a very small first motion (for both P and pP) so that,
although two pulses are visible on the SP, their polarities are difficult to
distinguish unambiguously. The BB shows something of the shape of the P and pP
pulses; the leading edge of the pulses shows a smooth increase of amplitude with

time whereas the trailing edge is marked by an abrupt drop in amplitude.

Turning now to the Vancouver Island earthquake, this shows that,
whereas the SP seismogram displays only a small range of frequencies as is
expected for such a narrow band system, on the BB seismogram the signal shows

arrivals with frequencies ranging from around 0.125 to | Hz.

Table 2 lists the observed amplitude of the BB and SP signals; this
amplitude is half the maximum peak-to-peak amplitude assuming each
seismogram was recorded on a system with magnification unity at 1 Hz; this
seems to be the most satisfactory way of specifying the signal amplitude to allow
comparison of BB and SP amplitudes. In order to get the ground motion the
observed amplitude must be divided by the relative magnification at the period
of the signal. The observed SP and BB amplitudes given in table 2 show what is
almost always found that the BB amplitude is greater than or equal to the SP

amplitude (see also table 5, section 6).

Two magnitudes are given in table 2 for each earthquake and for the
explosion; one is the body wave magnitude (mb) taken from the National
Earthquake Information Service (NEIS) bulletin, the other is the body wave
magnitude (m@) computed from the short period DS records shown in figure 4. If
the data shown in table 2 are combined with that given in table 5 (section 5), it is
clear that usually m}; is significantly greater than my, that is the BNA ampli-

tudes are on average larger than would be expected given the NEIS m.

23




The few examples given of signal and noise at the BNA are typical.
Thus, although the pass band of the BB seismograph contains the large noise peak
at 6 to 8 s period, when the noise in this period band has large amplitude it is
usually highly coherent and of low speed so that it should be possible to extract
high speed body wave signals from such noise using an array. Further, the BB
signals are often of larger amplitude than the SP so that, although noise may be
large on BB seismograms, the signal may also be large so that the problem of
extracting BB signals from noise is made easier. If BB signals can be extracted
from the noise, then this will usually be worthwhile, because, as demonstrated

here, these signals may show important features that cannot be seen on the SP.

4, PROCESSING METHODS

In this section we outline the theory of DS, Wiener and MP processing
methods and compare their properties. The theory of these processing methods
has been discussed in many papers (for DS processing see, for example, reference
(15); for Wiener filtering see, for example, references (3) and (16); for MP
filtering see, for example, references (6) and (17); all these papers give
comprehensive lists of references). Here we do not attempt to give a full
description of the theory; most of the discussion is based on the processing of a
two channe!l array; the purpose of this is to illustrate some of the properties of

the processing methods, particularly their similarities and differences.

All linear array processing methods for the extraction of signals from
noise are examples of the general process of multichannel filtering; each data
channel is passed through a filter (in the general case each channel has a
different filter) and the filter outputs are summed. Multichannel filters can be
constructed either in the time domain or in the frequency domain. Burg (3)
states that, in practice, time domain methods of estimating Wiener filters give
better results than those derived in the frequency domain. Capon et al. (6) find
that there are some advantages in using the frequency domain rather than the
time domain method for the estimation of MP filters, the main advantage being
that estimating the filters in the frequency domain takes less computer time
than the time domain method. In this report all filters are estimated in the time

domain.
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For simplicity we discuss multichanne! processing as applied to
sampled data although the process can be applied to continuous data (see, for
example, reference (3)). We assume that the sampling interval is unity which

simplifies the discussion without any loss of generality. Let the output of channel

j be

vesy st = 1) + xj(t - 1); s(t) + xj(t); s(t + 1) + xj(t + 1)

s(t + 2) + xj(t +2); ooy st +m - 1) + xj(t +m=-1)...,

where xj(k) is the noise on channel j and s(k) the signal (assumed to be the same
on all channels) at time k; the signal is assumed to have been aligned on all
channels before processing and this assumption is made throughout the report.
Consider a two seismometer array and assume that the filter response for any
channel can be represented by three points; thus for channel 1 the impulse
response is wl(- 1), wi(0), wi(1) and is zero elsewhere and for channel 2 the
response is wa(- 1), wa(0) and ws(l) (extension to the general case of n
seismmometers and p filter points per channel is not difficult but it is

cumbersome).

The output of the two channel filter process z(t) can be written as a

convolution:-

z(t)

x (t + Dw (- 1) +x (Dw (0) + x (£t - 1w (1)
1 1 1 1 1 1

+x (t+ Dw (-1)+x (thw (0) + x (£ - Dw (1)

2 2 2 2 2 2
+ s(t + 1) {wl(- 1) + wz(- 1)} + s(t) {WI(O) + wz(O)}
+

s(t = 1) {w (1) + w (D},
1 2 eeea(2)

Note that here the output at time t makes use, not only of data from time t and
earlier, but also from later time, that is time t + 1. Clearly this is impossible if
the multichannel filtering is operating in real time, for then the filters must be
causal, that is the impulse response of the filters must be zero for time t < 0. In
practice, however, multichannel filtering is usually carried out on recorded data
so there is no difficulty in using non-causal filters. In this simple example the

length of the non-causal filters before and after time zero are equal but this
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need not be so. However, there are usually advantages, as illustrated later, in
using such equal-sided filters and, when non-causal filters are used in this report,
they are always of this type; we refer to these filters as two-sided filters and to
causal filters as one-sided filters.

Signal-to-noise improvement by multichannel filtering is only possible
if there are differences in the properties of the signal and noise; these
differences in the signal and noise may be either in their frequency spectra or in
their spatial properties. If the signal and noise at an array are made up of plane
waves, then multichannel filtering can be viewed as multi-dimensional filtering
(3). Plane waves at an array can be represented in three-dimensional frequency-
wave number space; axes Ko Ky and w where Ky and Ky are two wave number
axes at right angles and wis the frequency axis; if the signals are aligned on all
channels, then for the signal eifectively || = 0. The signal can be enhanced
relative to any noise at zero wave number by applying a frequency filter that
passes those frequencies where the signal amplitude is large relative to noise and
attenuating frequencies where the noise is relatively large. If at any frequency
the noise and signals have different wave numbers, then a wave number {filter can
be used to attenuate the noise and pass the signal. As the vector wave number
Kk = w/c, where c is the apparent surface velocity, wave number filtering at

frequency w is essentially separating signal and noise on differences in velocity.

Wave number filtering is a form of spatial filtering. This is not the
only form of spatial filtering that is possible for, as shown by Capon et al. (17),
signal-to-noise improvements can be obtained without using frequency filtering
even when the signal and noise have the same wave number. For example,
consider a two channel array where the noise is in-phase and perfectly correlated
between the two channels (with correlation coefficient unity) but differs slightly
in amplitude between the two channels. Thus, the signals and noise both have
zero wave numbers (|c| is infinite) yet, as shown by Capon et al.(17),it is possible
for such noise to find multichannel filters that reduce the noise to zero and pass

the signal undistorted (the filters are in fact those given in equation (18) below).
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In general, multichannel filtering applies both frequency and spatial
filtering where spatial filtering is taken here to include both true wave number
filtering and noise reduction that arises because of differences between channels

in the amplitude of the noise.

4,1 Delay and sum processing

Putting w1(0) = w0) = 1/2 and wy(k) = wo(k) = 0 for k # 0 in equation
(2) gives

z(t) = s(t) + {x,(t) + x,(£)}/2; eeee(3)

thus, the output z(t) is the mean of the channels at time t and is equivalent to DS
processing for zero delay. The process of inserting delays can also be looked on

as filtering so DS processing is a particular case of multichannel filtering.

For noise of equal variance on all channels and uncorrelated between
channels (usually referred to simply as random noise), then DS processing gives a
noise reduction of n% and this is the best that can be done. If the noise is
uncorrelated but has variance czi on channel i, then the best signal-to-noise
improvernent is obtained by weighting channel i by a factor proportional to (ozi)"1
and summing (15); for the two channel array this is equivalent to applying

multichannel filters with:-

037 {6202/(02 + oD},

WI(O) =
_ coeo(4)
v, (0) = (o)™} {o0a/a? + o)}
and wl(k) = wz(k) = 0 for k # 03

this process is usually referred to as weighted DS.

The effect in frequency-wave number space of DS processing is to
apply a wave number filter with response that is the same at all frequencies.
The response passes the signal (at | k| = 0) unattenuated and suppresses noise
(which includes unwanted signals) at wave numbers away from zero. The wave
number response for the BNA for DS processing is shown in figure 15. For random
noise the noise at any frequency is uniformly distributed with wave number and
the effect of DS processing can be thought of as applying to the noise at each

frequency, wave number filters of the type shown in figure 15.
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If the noise is concentrated at a wave number (|k|# 0)where the wave
" number response for the array is zero, then the noise will be reduced by much
more than a factor of n%; a two seismometer array with seismometers separated
by half the wavelength of the predominant noise is an example of an array with
such a response. In general, however, DS processing because it applies a fixed

wave number filter will not give optimum noise reduction.

4.2 Wiener filtering

Wiener filters for application to sampled data can be derived as
follows. Consider a section of array observations extending from time t to time
t+m - 1, that is m observations of signal plus noise from each channel; the noise

and signal are assumed to have stationary properties. For the two channel case

we put
- 1
x(t + 1), x, (t) 0
xl(t + 2), xl(t + 1)’ xl(t)
X =| . . . ,

. . .

xn(t+m-1), (¢ +m - 2), x,(t + m - 3)

0 xl(t+m-l),xl(t+m-2)/

1=
I

and define X2 and W, in a similar way for channel 2, then if Z = col(z(t), z(t + 1),

wee Z(t + M - l)] is the output after multichannel filtering and

s(t + 1), s(t) 0
s(t + 2), s(t + 1), s(t)
§= : : . ’
s(t +m~-1), s(t +m - 2), s(t +m - 3) .
0 , s(t +m~-1), s(t +m - 2)
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multichannel filtering can be written for the two channel case

()-(1 + _s_)H1 + (52 + g)wz = Z. eeeo(5)

Suppose now we require z(k) to be as close to s(k) as possible; the
tilters required are such as to convert signal plus noise into the best estimate of

the signal. 1f the difference between z(k) and s(k) is
e(k) = s(x) - z(k),

putting
e =col (e(t), et +1) ..oy elt +m - )

z(k) will be the best least square estimate of s(k) if _e;T»-; is a minimum provided
the expectation of ¢ is zero, but if ng is a minimum, then _s_Tf;_/m, the mean
square error is also a minimum so that the best least squares estimate of the
signal can also be obtained by minimising this mean square error. The advantage
of using the mean square error is that as t tends to - ® and m increases without

as shown below.

Writing W = col (wy(~ 1), wy(0), wy(1), wy(- 1), wy(0), wy(1)) the normal
equations (assuming the expectation of the noise is zero and the noise and signal

are uncorrelated) are

s
(5 + ES)H - [Es], ’ c---(6)
where
(v r Dr (-2r (r (-1 (-2)
11 11 11 12 12 12
r (D)r (0) r (-DDr (Dr (0 r (-1)
11 11 11 12 12 12
r (2)r (1) r (O) r (Dr (1) r (O
: 11 11 11 12 12 12
Rx|lr (0)r (-1)r (-2)r (O)r (-1)r (~2)
- 21 21 21 22 22 22
r (Dr 0 r (-1)r (Dr O r (-1)
21 21 21 22 22 22
r (> (1) r (0 r (r (1) = (0)
| 21 21 21 22 22 22 |
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and rij(l) is the cross-correlation of the noise on channels i and j at lag 1. As m

increases the elements of R approximate more and more closely to rij(l)'

1>
K]

s ’

E =
G,

| >

where A = §T_S_

2(0), £2(- 1), %(- 2)
sTs = (1), £20), -1
2(2), %), 1£%(0)

and (1) is the autocorrelation of the signal at lag 1. The sub-matrix C is the .
cross-correlation of the signals between two channels, but as we have assu‘med
that the signal has been time shifted so that the onset time is the same on all
elements C = A. The vector r° = col (r%(1), r3(0), r*(- 1)). Wiener filters can then

be found by solving equation (6) provided that R and Bs are known.

We now re-write W as W(2|3) where

W(2[3) = col (wi(2] - 1), w(2]0), wmi(2]1), wal2| - 1), w2(2|0), wa(2|1)).

Defined in this way W(2|3)is to be understood as specifying a multichannel filter
with 3 points per channel and with the filter coefficient for time t = 0 lying at

position 2 in each filter. Then we can define two other 3 point filters:-

W(1[3) = col (w1(1]0), w1 (1|1), wi(1]2), w2(1]0), wa(1]1), wa(1]2))
and
W(3]3) = col (w1(3]2), wmi(3|1), w1(3]0), wa(3]|2), w2(3|1), wa(3]0)).

For W(1|3) the filter coefficients for time t = 0 lies at position 1 in each filter
and the filters for each channel are causal filters, ie, the filter coefficients are
zero for t < 0; similarly W(3|3) defines a filter for each channel that is zero for
all t > 0. We can now re-write equation (6) to include all three filters, W(1]|3),
W(2|3) and W(3]3), as follows:-

® + &%) (W(1]3), W(2|3), W(3|3) = [%1. vn.(62)
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In this simple case where there are 3 filter points per channe!l there
are three possible sets of multichannel Wiener filters. In the general case of p

filter points per channel there will be p possible sets of filters.

For an array of infinite extent and noise and signals that are plane
waves the effect of Wiener filtering in frequency-wave number space as the

spacing between seismometers tends to zero can be written (3)

Hlw,k) = Ps(w,g)/{P(w,g) + P%(w,k)}, ceee(7)

where P3(u, k) is the signal power (assuming the signal is continuous) and P(w, ¥ )
the noise power at frequency w and wave number K. As the required signal has a
power spectrum that is strongly peaked atlgl: 0 and ideally zero elsewhere, then
the effect of the filter is to suppress noise in the whole of frequency-wave
number space, except at zero wave number. For I_K_l'—' 0 where the signal is large
compared to noise the response tends to unity; where the signal is small, the

response tends to P>(w, 0)/P(w, 0).

1f the noise is all at wave numbers well away from zero, the noise can
be suppressed completely and the signal left untouched. Usually, however, some
of the noise will have zero wave number and then frequency filtering has to be
applied to extract signals from noise. For practical arrays where the recordings
are made at only a number of discrete points the effect of Wiener filtering is to

apply filters that are smoothed versions of equation (7).

As the signal-to-noise ratio decreases, then at frequencies where the
noise is large the response forlg!: 0 tends to P3(u, 0)/P(w, 0) and, if PS(w, 0) is
constant with ), then the filter response is proportional to P(w, g)—l. As short
period narrow band seismographs have a response that is roughly the inverse of
the noise spectrum, then in the frequency range where the noise is large, the
amplitude response of the Wiener filters tends to that of conventional short
period seismographs (provided that the signal amplitude is assumed to be

constant with frequency).
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4.3 Minimum power filtering

The method used in this section to derive MP filters is the direct
method. An alternative method of derivation is to regard MP filters as a type of
prediction error filter. Instead of computing MP filters which attempt to
suppress the noise at the output, multichannel filters are computed which, acting
on the noise in some time interval, predicts the noise on the DS output at some
time t within the interval, with the constraint that any signals are suppressed.
Signals should then be enhanced relative to noise on the prediction error output
derived by subtracting the predicted noise from the DS output. The equivalence
of this type of prediction error filtering and MP filtering is demonstrated in

appendix A.

The expression for the minimum power filters is usually found by the
method of maximum likelihood but it can be shown that the method of least
squares yields the same result (6) and this latter method is used here. The basic

equations of condition for the two channel case are

XU +XU =0, eee.(8)
—-1—1 —-2=2 - ‘

where

U, = col (ul(— 1), u1(0), ul(l)]

and

Uz = col [uz(- 1), u2(0), uz (1))

are the MP filters; that is filters are required that reduce the noise at the output
to zero plus an "error". In order to ensure any signal present is passed
unattenuated the filters are estimated by solving equation (8) with the
constraints that uy(0) + ul0) = 1 and u(k) + ux(k) = 0 for k £0. In order to apply
these constraints to the two channel case with 3 point two-sided filters the

following equations must also be satisfied:-

T, _ eeee(9)
Qu=V,
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where QT is the transpose of Q and is given by

1 0 0o 1 0 O 0
T i
Q=0 1 0 1 0],V =|l|and U= !
o o |1 0 1 0 g

Using the method of Lagrangian multipliers it can be shown that the

required filters are given by the solution of the normal equations

R Q

§
(=]
[e]

, = «ess(10a)
Q" o ’

1>
i<

where A is a vector of Lagrangian multipliers, 0 is a 3 x 3 matrix of zeros and o
is a 6 element vector of zeros. Provided that R has an inverse then U can be
found by eliminating A\ from equation (10a) which gives

v =R QRO . «e..(10b)

N - \

The MP method can be thought of as multichannel filtering with a

restricted set of filters, all filters derived by the method being purely spatial

filters. To estimate the filters requires that R be specified.

Now let V, = col (1,0,0) and V3 = col (0,0,1) and define three sets of
MP filters U(1 |3), U(2|3) and U(3| 3)in the same way as the three sets of Wiener
tilters W(1|3), W(2]3) and W(3]3) are defined. Then we can re-write equation
(10b) to include the three sets of MP filters:-

(u(113),u(2|3),u(3|3))

it

R T (v, ,v,,v,),

- - vees(10e)
= R IQ(QTR IQ) 1’

as (V1,V2,V3) is the identity matrix.

If equation (10c) is used to estimate the MP f{ilters, then the
Lagrangian multipliers need not be computed. However, as shown in appendix B,
it may be useful to obtain at least some of these multipliers as they provide a
convenient way of estimating the mean square noise at the output after MP

filtering.
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4.4 Comparison of delay and sum, Wiener and minimum

power processing

Consider first the case where the matrix R (equation (10a)) has a zero
eigenvalue (the inverse of R cannot then be defined) and so there is an eigen-
vector Usay such that Ry = 0. Then if yalso satisfies the equation

T

Q

E=(},¥, oooo(ll)

where a is a scalar constant and V is either W1, V2 or V3, then o 'y defines a set of
MP filters which reduce the noise to zero but pass the signal undistorted.
Substituting for o 'y in equation (6),7 however, shows that the Wiener filters will
also satisfy this equation and so when R has a zero eigenvalue and the equivalent
-eigenvector satisfies equation (11), then MP and Wiener filters are identical; for
this case Wiener filters are thus pure spatial filters. Kelly (18) has compared
Wiener and MP filters for the more general case where all the eigenvalues of R
are non-zero (they are then all positive) and thus R has an inverse and it can be

shown that the solution of equation (6) can be written
W=R QQR QF

where

[
.
~~

10
=3
1=
!
—
10
'
1
—
+
>
ege?

F

Thus, using equation (10c),

W = (0(1]3),0(2]3),003)F 'z, eera(12a)

and from equation (6a)

[H(1l3)’w(2‘3)’ﬂ(313)] = (E(1|3),l_](2|3),§_(3| 3)]F'lé, er.(12b)

For simplicity we now confine the discussion to the relationship
between the Wiener filter __\Y(Z!B) = W and the MP filters. First, we consider how
W varies as the amplitude of the signal increases assuming that R and the signal
shapes are kept fixed. Writing the signal as Bs(t) where B is a simple multiplier,

then E‘x r is replaced in equation 12(a) by

(@R + B2 '8%r,
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which can be written

-2, -1 0
BT QRTYT (1.
0
Thus, as B increases, that is as the signal-to-noise ratio increases, the term F

tends to col (0,1,0).and so W(2|3) > U(2|3), that is the Wiener filters tend to MP
filters.

Now consider the case where the noise is not small relative to the
signal. Then it turns out that E-IES can be regarded as the frequency filter
applied to the signal (and to any component of noise that lies at|k|= 0 and has
equal amplitude on all channels). For the effect of the Wiener filters on the

signal is given by

s(t + 1) s(t) s(e - D} _,
F

s(t +2) st +1) s(t) |E Zs --(13)

(s, s)w =

. .

which is simply the convolution of a frequency filter _E—lgs and the signal. _F__IES
can be thought of as the response of the multichannel filters to an impulse
applied to all channels at time t = 0. Note that as (S,5) W can be written SW,

1

where y: W, + W,, then from equation (13) E-lgs = W5 that is summing the

Wiener filters across channels gives _\_X/_l the impulse response of the frequency

filter: which is a convenient way of obtaining this impulse response. We refer to

W! as the frequency component of the multichannel Wiener filters.

The effect of the Wiener filters on the noise can be written

r . . . ]

b

X (1|3,t + 1), xb(2|3,t), xb(3|3, t - 1) -1

b b b F oI
X (1'3,t +2), x (2'3,!: + 1), X (3'3,t)

. .
-

where xb(i 3,t) is the noise at the output after applying the MP filters U(i|3). In
general, E"IES cannot be thought of simply as applying a frequency {filter to the

noise at the output of an MP filter unless, for all t,
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x°(1]3,8) = x°(2|3,0) = x>(3[3,0). ceee(14)

The conditions given by expression (14) will be fulfilled exactly for some special
cases. For example, if the noise is uncorrelated between channels and
r{0) = o2 and r,{0) = o3, then the MP filters are given by

(1 + orf/oz)'1 0 0
2

0 (1 + of/o:)'l 0

-1

(u1]3), u(2]3), v(3|3) = o 0 (1 +a}/a3)

(1 + of/cz) 0 0
0 (1 + g2/g®) 7! 0

voe 2,,2y7!

] 0 0 (1 + 01/02) J

that is the MP filters reduced to weighted DS or when of = 022 to DS filters and
the Wiener filters W ( = y(2|3)) are given by

ul(2]3)

i =
1

~ 5!

T
u,(2]3)

that is the Wiener filters are equivalent to frequency filtering of the MP (or
weighted DS) output. In addition, for all cases where the only non-zero filter
coefficients in the MP filters are at t = 0 the relationship between Wiener and

MP filters will have the form shown in equation (15).

Note that f_'l always turns out to be a matrix with elements
1 _ -1

1ot . and £
ij = Tity, j+1 ij
is symmetric about its mid-point W!is symmetric and the frequency component

= fj"i} that is F ' is a symmetric Toeplitz matrix. Thus, as ry

of the Wiener filter K(Z[B) is phaseless. In general, if the Wiener filters used are
non-causal, and have an impulse response that is of equal length before and after

time zero, then the frequency components of the filters are phaseless.

Capon et al. (17) have used the simple case of two channel 1 point
filters to illustrate some of the properties of MP filters; here we follow their
example and use the same simple model as a further illustration of the
similarities and differences of Wiener and MP {filters. For this model the R

matrix reduces to
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2
oy eg,0,

2
2

’

pO’l(‘Iz, o)

where 0% and 0} are the mean square values of the noise on channels 1 and 2
respectively and p is the correlation coefficient for the noise on the two
channels.

For Wiener filters the normal equations for the two channel one point
case can be written

2 2 2 2
o] +8°, POT, +s wl(O) s
N vee(16)

L2 2, 42 2
po. 0, + 8%, g + s w,(0)| |s

where s? is the mean square value of the signal and w,(0) and w,(0) are the filter
coefficients. Note that as only one point filters are used no frequency filtering
can be applied other than sirnple attenuation of all frequencies by a constant
factor.

For MP filtering the normal equations are, from reterence (17)

of, o g,, 1 u; (0) 0
00,0, c;, 1 u (0| = [0}, eees(17)
1 1 of | x| 1J

A is a Lagrangian multiplier which has to be introduced when the constraint

uy(0) + uy0) = 1 is applied.

If p= 1, that is the noise is perfectly correlated, or p = - 1, that is
the noise is exactly out of phase, then R has a zero eigenvalue and for both cases
pn=1 and p =-1 the corresponding eigenvector satisfies the equation
1 (0) + uf0) = o where a is a constant. Thus, from the above discussion the
Wiener and MP filters should be identical and this is in fact so; the solutions of
(16) and (17) when p = 1 are

w (0) = u (0) = - 02/(0l -a,); wz(O) =u (0) = 01/(01 =0,); ....(18)

’
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and when p = - ] the solutions are

wl(O) = u1(0) = orz/(c1 + oz); wz(o) = uz(o) = ol/(c1 +0,). ceea(19)

2

When o7 = 0}, then for p=1 there is no solution; when p = - 1,
uy(0) = uz{0) = w,(0) = wx(0) = 0.5 and the solution reduces to DS processing.

If p=0, that is the noise is uncorrelated, the solutions for the two

types of filter differ thus; from equation (17) the MP filters are given by

u (0) = (1 + 02/2)7,
— co-c(20)
uz(0) = (1 + g2/0%)™"
and froin equation (16) the Wiener filters by
w, (0) = w(0)F 'r ,
- -s
- +eve(21)
WZ(O) =u2(0)F r_,
- =s

where _If_-lgs is now
. ]
{0%02/(02 + g2) + g2} 142
12 2 :

MP filtering for p = 0 is thus equivalent to weighted DS processing (equation (4))
and for of ZO: MP filtering reduces to DS prdcessing in agreement with results
derived earlier. Note that if s2>>0? and o3, then f_'l_r_s-r 1 and again as

expected from earlier discussion w,(0)+u)(0) and wx0)+ uy(0).

The above discussion shows that whatever the optimum multichannel
filters required to extract the signal from noise either spatial filters (ie, MP
filters which include filters equivalent to DS and weighted DS processing) or
combined spatial and frequency f{filters it is only necessary to estimate the
Wiener filters because the MP filters can be thought of as a special case of the
Wiener filters which is chosen when spatial filters are adequate to extract the
signal from noise. Also if for a given signal and noise spatial filters rather than
combined spatial and frequency filters are desired, then it is only necessary to

impose the condition that the signal is much larger than the noise to ensure the
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estimated Wiener filters tend to pure spatial (MP) filters. Assuming that for any
given signal there are some frequencies where the signal-to-noise ratio is greater
than unity, Wiener filters should always give an output which shows the signal
above the noise and so the detection threshold on broad band recordings should be
about the same as for narrow band recording; for pure spatial filtering the

threshold will usually be above this.

As, in general, Wiener filters apply some frequency tiltering to the
desired signal it will usually be useful to have some way of measuring the extent
to which frequency filtering contributes to the noise reduction. Now Kelly (18)
states that the expected mean square signal error UE, say, at the output of a

multi-channel Wiener filter is given by

U;-"-‘r (0) - w'r .
% 8 - -8

When W! is an all pass filter, that is no frequency filtering is applied to the
signal, c% = 0. As the effect of frequency {filtering increases yis tends to zero
and thus 0125 > rs(O). Thus, as the frequency filter varies from an all pass filter to

a filter with all coefficients zero, then
=1 - o2
y =1 OE/rS(O) e (22)

ranges from one to zero; this suggests that y might be used as a measure of the
performance of the Wiener filters; if y= 1, then little frequency filtering is
applied, ie, the performance is high; if v is significantly less than unity, this
indicates that the desired signal can only be extracted from the noise by

substantial frequency filtering, ie, the performance of the filters is low.

As the absolute detection threshold of Wiener filters as applied to
broad band recordings should be about the same as for narrow band recordings
some way is required of describing the ability of Wiener filters to extract signals
from noise, which depends not only on whether the signal is seen above the noise
or not, but also measures how much frequency filtering has to be applied to
extract the signal; the variation in the performance figure y with magnitude is a

way of doing this.

39




4.5 Signal coherence

So far in discussing multichannel filters we have assumed that the
signal is identical on all channels. In general, this is not so; the effects of the
topography and other lateral variations in structure at an array result in
variations . in the signal between channels. The result of this may be that,
although the noise is reduced on applying multichannel filtering, the signal may
also be reduced or distorted or both. This can be illustrated using the simple case
of two channel one point filters discussed above where the noise is in-phase and
perfectly correlated (p = 1) and the variance of the noise on channel | is o2 and
on channel 2 is ¢%; assuming o? # g2 then for this model the multichannel filters
(given in equation (18)) reduce the noise to zero but pass the signal unchanged
provided that the signal is identical on each channel. We now assume that the
signals are not the same on the two channels but that on channel 1 the signal is
s,(t) = s(t) + e,(t) and on channel 2 the signal is s)(t) = s(t) + e,(t) where s(t) is the
true signal and ey(t) and e,(t) are deviations from the true signals due to the
effects of the array site. If e,(t) and eft) are uncorrelated, the estimated signal

when the noise is reduced to zero is

s(t) + {o e (£) - o,e ()} (o -0,).
Thus, as g,approachesg,, the error term will tend to be large and so swamp the
signal. Thus, although the noise is reduced to zero the signal is highly distorted.
In the absence of noise the best estimate of the signal given s,(t) and sy(t) is given
by DS processing. For DS processing of an n element array the deviations from
the true signal will tend to be reduced to n%, assuming they are uncorrelated
between channels, just as random noise is reduced. Key (13) has shown that at
least for some SP arrays the coda of some seismograms are reduced in this way.

The above discussion shows that, as well as considering the ability of
spatial filters to suppress noise, it is necessary to consider how they distort
signals that are not perfectly correlated across the array. We return to this

problem in section 5.

40




5. PROCESSING IN PRACTICE

In order to carry out Wiener filtering for the general case requires
the auto-correlation function of the signal and the auto- and cross-correlation
functions of the noise. The R and A matrices (equation (6)) can then be
constructed where these matrices are now re-defined (by analogy with the two-
channel three point filter cases) to cover the general case of n channels and p
filter points per channel. When n=1 the Wiener filter becomes a simple
frequency filter of the form (R + l_\_)_lgs where R is constructed from the
auto-correlation of the noise in the same way as A is constructed from the
auto-correlation of the signal.

For true Wiener filtering R and A should by definition be derived
from stochastic models of the signal and noise processes (16); such models have
been used by Burg (3) and Backus et al. (4) for most of their work on the Wiener
processing of SP data. An alternative way of constructing R is to estimate the
noise properties from a section of observed noise; this can be done in seismology
where the signals are transient and so the noise can be observed free from
signals; in this report we refer to filters derived using observed data as data-
dependent Wiener (DW) filters.

To estimate MP filters requires only that R be specified; as with
Wiener filters R could be derived from a stochastic model of the noise process
but in all the published work on the application of the minimum power method, R
appears to have been estimated from sections of the observed noise. We refer to
filters derived in this way using observed noise as data-dependent minimum
power (DMP) filters.

When stochastic models of noise and signal are used the filters are
not designed to fit any specific section (realization) of the noise or signal so that
one set of filters should be sufficient for all time. Thus, for example, one of the
multichannel filters investigated by Backus et al. (4) specifies the signal as all
plane waves with apparent speeds greater than 8.1 km/s independent of azimuth,
and the noise as 80% plane waves with apparent speeds of 2.5 to 3.5 km/s
independent of azimuth plus 20% of uncorrelated noise. The noise and signal
power spectra are assumed to be constant with frequency. Filters derived from
these general models should thus always be able to extract high speed signals
from low speed noise and, as the filters are not designed on a particular section
of noise, should not on average give better results for any one section of noise

compared to another.
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Use of stochastic models allows an analysis of the stability of the
computed filters to be made and where the normal equations for estimating the
filters turn out to be ill-conditioned the origin of this ill-conditioning can be
identified and steps taken to control it. The most obvious way ill-conditioning
can arise is when the noise on any two channels is assumed to be identical (in-
phase, perfectly correlated, equal in amplitude), then the matrix of coefficients
is singular and there are an infinite number of possible solutions (assuming, as we
do here, that the signal is also identical on all channels). If it is assumed that two
or more channels are identical, all except one of these channels can be dropped
and filters estimated for the remainder. Alternatively, the constraint can be
applied that, say, all filters for channels with identical noise are equal and again
a unique solution can be obtained. Usually observed noise will not be identical on
any two (or more) channels but the noise could be similar and then the stability
of the filters could be low. When the R matrix is constructed from a stochastic
model of the noise, then instabilities can be identified and controlled because the
noise properties are specified exactly; when the R matrix is constructed from
observed noise some way is needed either to measure the stability of the

estimates or to ensure that any ill-conditioning is avoided.

Usually it is impossible by definition to construct A from the
observed signal for, if A is known, then there is little point in estimating it; a
signal model has thus to be used. For the noise, however, despite the advantages
of using stochastic models, it would seem intuitively that better signal-to-noise
improvements could be obtained by constructing R from the observed noise. For
example, the noise at any time might be highly directional but the direction
might vary from day-to-day. So filters designed to suppress noise in all azimuths
might not achieve the noise suppression that would be obtained by using filters
designed to suppress noise from a specific azimuth. As the object of the present
study is to extract chosen signals from noise, rather than to process all data to
extract all possible signals, it seems sensible to use the noise just ahead of the

signal in constructing R and this we always do.

In constructing R from observed data it is necessary to decide on the
length of data to be used to estimate the auto- and cross-correlation functions of
the noise; this length is referred to by Capon et al. (6,17) as the fitting interval.

The longer the fitting interval, the greater the amount of computation, and if the
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noise properties are changing with time, the more the measured properties may
differ from the noise properties just before the onset of the signal. If the fitting
_interval is short, on the other hand, spectacular noise reductions may be obtained
in the fitting interval but little reduction (and possibly amplification) outside this
interval; this effect is referred to by Capon et al. (6) as "supergain". The reason
for "supergain" is as follows. Suppose the true filters would reduce the variance
of the noise to og, the filters computed using a sample of the observed noise in
some fitting interval are only estimates of the true filters so when applied to
noise data outside the fitting interval they are unlikely to achieve a noise
reduction at the output tO‘Uf) . Inside the fitting interval the best estimate 92 of

020 given m values of the output €(k) is

m
2 ez(k)/Qy
k=1

where q is the degrees of freedom; for DMP filtering and DW f{iltering at large
signal-to-noise q = m -(n - 1)p where p is the number of points in each single
channel filter and n the number of channels. The apparent variance 0;‘ of the

residual noise in the fitting interval, however, is

m
Y €2(k)/m
k=1

and this is less than 02 Thus, in general, data-dependent filters give an
apparently better noise reduction within the fitting interval than outside it. In
order to keep the effects of differences between the apparent variance within

the fitting interval and outside it to a minimum, m must be much larger than np.

In most of the examples of multichannel filtering in this report we
use 2048 points from each channel which at 12.5 samples/s is a fitting interval of
about 164 s. With this length of fitting interval the estimated filters appear to be
stable (the maximum filter length used for array processing is 39 points) and the
noise reduction in the fitting interval is not noticeably different from the noise
reduction outside the interval. Usually it is computationally convenient to
estimate the mean square noise on the filter output in the fitting interval; when
this' is done 62 is used and not o%. For the array studies described in this report
instabilities in the estimates due to similarities in the noise on two channels do
not appear to arise but for arrays with closer spaced seismometers than used

here this problem could become more serious.
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We now consider the choice of signal model for the construction of
‘the A matrix. For the application of Wiener filtering to the extraction of signals
that (at least ideally) arrive at the same time (after time shifting) and are of
equal amplitude on all channels, the auto- and cross-correlation functions are
identical. Where a unique solution exists that reduces the noise exactly to zero
using only spatial filtering, then the solution is independent of the shape assumed
for the signal (and hence on the assumed signal power spectrum). Also it can be
seen from equation (7) that, as the noise power becomes small compared to the
signal power, the filter response tends to unity whatever the assumed signal

power spectrum.

When the noise cannot be adequately suppressed by spatial filtering
the assumed signal auto-correlation is more important. However, some of the
general properties of the body wave spectra to be expected at teleseismic
distances are known. For example, P signals contain little energy above
frequencies of 3 Hz. Also the spectrum of source pulses radiated by earthquakes
is roughly flat from zero frequency to some high frequency limit (corner
frequency) above which the amplitude spectrum falls off rapidly. For processing
broad band signals that are recorded on a seismograph with flat response from
0.1 to 6.25 Hz a signal spectrum that is flat from 0.l to, say, 3 Hz could be used
in the absence of more detailed knowledge of the signal.

For particular seismic sources it may be that it is possible to guess at
the rough form of the spectrum. Thus, if a signal is from an explosion, then the
spectrum of a model explosion signal can be used. If the signal is an earthquake
that looks like an explosion so that my measured on SP seismograms is much
greater than Ms’ which is measured on LP seismograms, then this suggests that
the body waves contain a large proportion of their energy at frequencies around
1 Hz, If Ms > my, then the high frequency energy in the body wave pulses is
likely to be small. The ratio of m, to Ms could thus be used as a guide to the
signal model to use. Figure 5 shows the signals used in this report in constructing
A. Signal A is a theoretical earthquake signal and signal B a theoretical explosion
signal. These two signals were computed using the method of Hudson (19,20) and
Douglas et al. (21); the details of the computation are not important. Signal C is
the impulse response of the earth, assuming that the only effect of the earth is
anelastic attenuation, convolved with the impulse response of the BB seismo-
graph. The anelastic attenuation is allowed for using the method of Carpenter
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Signal B

Signal C

—— 16 § ——

FIGURE 5. MODEL SIGNALS USED IN DESIGNING DATA-DEPENDENT WIENER FILTERS:

(A) EARTHQUAKE (B) EXPLOSION (C) ATTENUATION - SEISMOGRAPH
IMPULSE RESPONSE
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(22); the amplitude spectrum of the pulse is assumed to have the form
exp (- |w|t*/2) where wis angular frequency, t* = T/Qav’ T is the total travel
time and Qav the average Q on the path; t* = 0.4 s has been used to compute

signal C. We refer to signal C as the attenuation - seismograph impulse response.

The theoretical development of Wiener filtering given earlier assumes
that the signal is a stationary process.extending from - ©to + ®» Observed
seismic signals are transients so some way is required of modelling a travnsient by
a continuous signal. One way of doing this is to choose a model transient to
represent the observed signal and then to assume that this model is replaced by a

continuous signal that has an auto-correlation function.
S = w2 S s
r (k) Ucro(k)/ro(o),

where ré(k) is the auto-correlation of the mode! transient signal with arbitrary
amplitude and oé is the mean square value of the continuous signal. A suitable
value can be assigned to Gé by setting 0= b/a where b is an estimate of the
maximum amplitude of the signal to be extracted from the noise and a is some
chosen constant, for example, a might be set equal to 3; this is equivalent to
replacing the model transient by a continuous stationary signal that has an
auto-correlation function that is the same shape as that of the transient and has
an rms amplitude that is a third of the maximum amplitude of the transient. If
the signal is visible above the noise, then b can be set to the observed signal
amplitude, If the signal is not visible on the broad band records, then an estimate
of b can be made from a knowledge of the magnitude of the earthquake (or
explosion). In practice it seems that the best value for b can most easily be found
by trial and error; two runs of the program are usually sufficient to determine a
suitable value for b, It is easy to check if too small a value has been chosen for b
for then the frequency component of the DW filters attenuates all frequencies;
this happens because the assumed signal-to-noise ratio is not greater than unity
at any frequency so the only way the noise can be reduced is by lowering the
magnification of the filter. When this happens b must be increased so that for at
least one frequency the amplitude response of the filter is unity. In order to
apply DW filters that are purely spatial filters (equivalent to MP filters) the true
signal amplitude is simply ignored and b set to some large value, say, ten times

the maximum noise amplitude.
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In order to assess the effectiveness of DW filtering three measures of
noise reduction are used: (l)(I)DW, the total noise reduction obtained by DW
filtering, (2) &g (defined in equation (1)), the noise reduction obtained by DS
processing, and (3)% the maximum noise reduction that can be obtained by
spatial filtering; that is, the noise reductlon that would be obtained using MP
filters. We define @y, as (Zaz/naz)’ where §2 is the mean square amplitude of
the noise after DW filtering and &g as (chz/naz)2 where 82 is the mean square
amplitude of the noise after spatial filtering only; a convement way of obtaining
625 is given in appendix B. If QDW and QS are roughly equal, then this indicates
that the noise reduction due to Wiener filtering is essentially spatial filtering; if
o
Wiener filtering is mainly frequency filtering. Similarly, comparing ¢

DW is much greater than (I)S, then this indicates that the noise reduction due to
DS and <DS
shows the additional noise reduction that can be obtained by spatial filtering
compared to simple DS processing. Table 4 gives the noise reduction factors,
o
filtering was carried with the assumption that the S/N ratio was large (= 64) so

DW and ‘DDS for each of the six BB noise samples described in section 3; the DW

that the filters obtained are purely spatial filters and, thus, @S = ¢DW and the
performance factor y= 1. Note that in general the larger the noise amplitude,
the greater Sy

We now demonstrate some of the properties of DW (and DMP)
filtering using a known signal in observed noise; this known signal is an artificial
earthquake seismogram signal A (figure 5) and is chosen because a range of
frequencies are visible so that the effects of any frequency filtering should be
obvious to the eye. Signal A has been scaled and added to four channels of noise
to simulate a set of array recordings with signal-to-noise ratio varying from 4:1
to 0.0625:1 in binary steps (here a signal-to-noise ratio of h:l means that the
peak amplitude of the signal is h times larger than the peak amplitude of the
noise). The noise used is that shown in figure 3(b) and is highly coherent. The
result of DS processing for this artificial earthquake seismogram in noise is

shown in figure 6; the noise reduction obtained is 1.5.
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TABLE 4

Comparison of Noise Reduction Obtained by Delay and Sum Processing

and Data-Dependent Wiener (Spatial) Filtering for Six Noise Samples

BB RMS Amplitude, nm

Noise Sample Average over Single | After DW (Spatial) ¢DS QDW
Channels Filtering

20 January 1976 2069 387 1.56 5.4
21 February 1976 1447 346 1.72 | 4.1
20 March 1976 589 192 2.04 3.0
20 April 1976 453 114 2.31 | 4.0
20 May 1976 209 92 2.17 2.3
20 June 1976 260 118 1.77 2.2
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0.25:1

0.125:1

//, ‘ 0.0625:1

FIGURE 6. DELAY AND SUM PROCESSING OF AN ARTIFICIAL EARTHQUAKE SIGNAL
(SIGNAL A, FIGURE 5) FOR SIGNAL-TO-NOISE RATIOS RANGING FROM
4:1 TO 0.0625:1. NOISE AMPLITUDES ARE REDUCED BY L.5 RELATIVE
TO THE AVERAGE NOISE AMPLITUDE ON A SINGLE CHANNEL
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Figure 7 shows the results of DW filtering using a 164 s fitting
interval (2048 points/channel), 39 point filters and the artificial signal itself
(signal A) as the mode! signal used to construct the filters. Now @S = 6.1 for this
sample of noise so it can be seen from the values of @DW shown on figure 7 that,
for signal-to-noise ratios of 0.5:1 or greater, there is little frequency filtering
(@DW = 4>S). At lower signal-to-noise ratios the effect of frequency filtering is
more important.

In practice, the true signal will not be available to use as the signal
model. Figure 8 is an example of how the estimated signal is distorted if an
incorrect model is used; these results were obtained using signal B (figure 5), the
high frequency explosion signal, as the signal model in designing the DW filters.
As the model signal has little energy at the periods of the microseisms the
computed filters attenuate the microseisms by frequency filtering. Only at large
signal-to-noise ratios is the effect of DW filtering to apply mainly spatial
filtering. At low signal-to-noise ratios most of the gain comes from frequency
filtering. Figure 9 shows the results of DW filtering with a more sensible choice
of signal model: signal C, the attenuation-seismograph impulse response. The
results for signal C are similar to those with signal A, except that at low signal-
to-noise ratios the proportion of frequency filtering is larger than when using
signal A. However, it appears that signal C gives satisfactory results and we have
used this for all the examples shown in this report. It is obvious from inspection
of figures 7 to 9 that the etfect of spatial filtering is to reduce the amplitude of

the coherent oceanic microseisms.

Figure 10 shows the amplitude response of the frequency filter
applied in DW filtering of the artificial signal in noise when the filters are
designed using signal C (figure 5) as the signal model; the amplitude response to
ground displacement of the WWSS SP seismograph is also shown for comparison.
Note that at large signal-to-noise ratios the effect of the frequency component
of the DW filters is negligible but as the signal-to-noise ratio decreases the noise
at periods below 1| Hz is progressively attenuated and the frequency response
tends to the SP response. This is to be expected as the largest noise amplitudes
are at periods of greater than | s and the DW f{ilters should tend to the inverse of
the power spectrum of the noise at low signal-to-noise ratio (from equation (7));
the SP response is also designed to suppress the long period noise. Hence, the
tendency of the amplitude response of the Wiener filters to coincide with the SP

response.
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0.0625:1

FIGURE 7. DATA-DEPENDENT WIENER PROCESSING OF AN ARTTFICIAL EARTHQUAKE

SIGNAL (SIGNAL A, FIGURE 5) FOR SIGNAL-TO-NOISE RATIOS

RANGING FROM 4:1 TO 0.0625:1. THE SIGNAL USED TO DESIGN

THE FILTERS IS THE ARTIFICIAL SIGNAL ITSELF. AGAINST EACH
PROCESSED RECORD 15 SHOWN ®_ . THE FACTORS BY WHICH DW
FILTERING HAS REDUCED THE NBYSE. FOR THIS NOISE SAMPLE & _ = 6.1

51




W

=~
.
—

0.125:1

I 0.0625:1

FIGURE 8. DATA-DEPENDENT WIENER PROCESSING OF AN ARTIFICIAL EARTHQUAKE
SIGNAL (SIGNAL A, FIGURE 5) FOR SIGNAL-TO-NOISE RATI0S
RANGING FROM 4:1 TO 0.0625:1. THE SIGNAL USED TO DESIGN THE
FILTERS IS THE EXPLOSION SIGNAL (SIGNAL B, FIGURE 5). AGAINST
EACH PROCESSED RECORD 15 SHOWN THE FACTOR BY WHICH DW FILTERING
HAS REDUCED THE NOISE. FOR THIS NOISE SAMPLE 0, = 6.1
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QDW = 11.4

FIGURE 9.

0.25:1

0.0625:1

DATA-DEPENDENT WIENER PROCESSING OF AN ARTIFICTAL SIGNAL

(SIGNAL A, FIGURE 5) FOR SIGNAL-TO-NOISE RAT10S RANGING FROM
4:1 TO 0.0625:1. SIGNAL USED TO DESLGN THE WIENER

FILTERS IS THE ATTENUATION — SEISMOGRAPH IMPULSE RESPONSE
(SIGNAL C, FIGURE 5). AGAINST EACH PROCESSED RECORD 1S SHOWN

THE_FACTOR BY WHICH DW FILTERING HAS REDUCED THE NOLSE.
‘Bﬁ THIS NOISE SAMPLE . = 6.1
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FREQUENCY, Hz
FIGURE 10. AMPLITUDE RESPONSE OF FREQUENCY FILTERING COMPONENT OF THE

DATA-DEPENDENT WIENER FILTERS USED TO EXTRACT THE ARTIFICIAL
EARTHQUAKE SIGNAL FROM NOISE USING SIGNAL C (FIGURE 5) AS
THE SIGNAJ. MODEL FOR THE FILTER DESIGN. RESPONSES SHOWN FOR
SIGNAL-TO-NOISE RATIOS OF 4:1, 1:1, 0.25:1 AND 0.0625:1. THE
AMPLITUDE RESPONSE OF THE WWSS SP SEISMOGRAPH IS SHOWN FOR
COMPARISON
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Figure 11 shows two examples of the standard output that we use for
routine DW filtering. Again the data are the artificial earthquake signal in noise;
the DW filters were designed using signal C (figure 5) as the signal model. For
each example figure 11 shows the WWSS SP seismogram, the DW filtered output,
the DS output after filtering with W), the frequency component only of the DW
filters (FDS), the DS output, and the output of one seismometer of the array.
This display provides a guide to the effect of each component of the processing
of the BB records and allows the BB output to be compared with the SP. Thus,
from figure 11(a) it can be seen that the DS and FDS outputs are about the same
so that the frequency {filtering applied by the DW filters is small; from figure
11(b), on the other hand, it is obvious that the frequency filtering is significant.
Note that the signal-to-noise ratio on the BB after DW filtering is about the
same or better than on the SP seismogram. The WWSS SP seismogram was
derived from the broad band DS output in the way described in section 2 and is
the SP DS output. |

Figure 12 shows the standard output after DW filtering applied to the
artificial earthquake signal in noise (signal-to-noise ratio 0.5:1) using a fitting
interval of only 160 points. The effect of "supergain" is clearly seen; the
apparent noise reduction in the fitting interval (see figure 12) is 6.3. However,
using 0, the best estimate of the rms noise in the fitting interval, the noise

reduction is insignificant which is obviously a more sensible figure.

Figure 13 demonstrates that DW for large signal-to-noisé ratios
(where the DW filtering is mainly spatial filtering) and DMP filtering give nearly
identical results; to obtain the DW output the actual signal-to-noise ratio was
ignored and a ratio of 64:1 was used. Figure 13 shows the outputs after DW and
DMP filtering for the artificial earthquake signal in noise, together with the
outputs of each channel after DW and DMP filtering. Note the striking similarity
between the outputs from the two methods, particularly on the outputs of
individual channels. This shows that the DW and DMP filters are very similar, as

is expected from the discussion given in section 4.
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WWSS SP Seismogram

DW output

Frequency filtered delay and sum (FDS)

Delay and sum

Single channel

MODEL EARTHQUAKE IN REAL BROAD BAND NOISE - SIGNAL/NOISE 0.500/1

l_ |

16 § —>

FIGURE 11(a) EXAMPLE OF THE STANDARD OUTPUT OF THE DATA~DEPENDENT
WIENER (DW) FILTERING PROGRAM. DATA IS THE ARTIFICIAL
EARTHQUAKE SIGNAL IN NOISE FOR SIGNAL-TO-NOISE RATIO
0.5:1. THE FILTERS WERE DESIGNED USING SIGNAL C
(FIGURE 5) AS THE SIGNAL MODEL. THE FOLLOWING SEISMO-
GRAMS ARE SHOWN: WWSS SP SEISMOGRAM; DW OUTPUT; DELAY
AND SUM OUTPUT AFTER FILTERING WITH THE FREQUENCY
COMPONENT OF THE DW FILTERS; THE DELAY AND SUM OUTPUT;
AND THE OUTPUT FROM A TYPICAL SEISMOMETER OF THE ARRAY
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WWSS

WW5S SP Seismogram

ol s

DW output

W

Frequency filtered delay and sum (FDS)

Delay and sup

N

/

Single Channel

MODEL EARTHQUAKE IN REAL BROAD BAND NOISE - SIGNAL/NOISE 0.063/1

FIGURE 11(b) EXAMPLE OF THE STANDARD OUTPUT OF THE DATA-DEPENDENT
WIENER (DW) FILTERING PROGRAM. DATA IS THE ARTIFICIAL
EARTHQUAKE SIGNAL IN NOISE FOR SIGNAL-TO-NOISE RATIO
0.0625:1, THE FILTERS WERE DESIGNED USING SIGNAL C
(FIGURE 5) AS THE SIGNAL MODEL. THE FOLLOWING SEISMO-
GRAMS ARE SHOWN: WWSS SP SEISMOGRAM; DW OUTPUT; DELAY
AND SUM OUTPUT AFTER FILTERING WITH THE FREQUENCY
COMPONENT OF THE DW FILTERS; THE DELAY AND SUM OUTPUT;
AND THE OUTPUT FROM A TYPICAL SEISMOMETER OF THE ARRAY
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WWSS SP Seismogram

DW output

<Fitting Interval,

Frequency filtered delay
and sum (FDS)

Delay and sum

Single channel

MODEL EARTHQUAKE IN REAL BROAD BAND NOISE - SIGMAL/NOISE 0.500/1

-

~n 16 § >

FIGURE 12. STANDARD OUTPUT OF DW FILTERING PROGRAM TO ILLUSTRATE "SUPERGAIN".
DATA IS THE ARTIFICIAL EARTHQUAKE SIGNAL IN NOISE FOR SIGNAL-TO~
NOISE RATIO 0.5:1. THE FILTERS WERE DESIGNED USING SIGNAL C
(FIGURE 5) AS THE SIGNAL MODEL. NOTE THAT IN THE FITTING INTERVAL
WHICH HERE IS ONLY 160 POINTS THE NOISE REDUCTION IS APPARENTLY
VERY GREAT; OUTSIDE THE INTERVAL HOWEVER VERY LITTLE NOISE
REDUCTION IS OBTAINED
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FIGURE 13. COMPARISON OF DATA-DEPENDENT WIENER (DW) FILTERING AND DATA~
DEPENDENT MINIMUM POWER (DMP) FILTERING. THE OUTPUTS OF THE
FILTERS FOR EACH INDIVIDUAL CHANNEL (b, c, d and e) ARE SHOWN
TOGETHER WITH THE SUMMED OUTPUT (a). THE TOP TRACE OF EACH
PAIR IS THE RESULT OF DMP FILTERING, THE LOWER THE RESULT OF
DW FILTERING. DATA IS THE ARTIFICIAL EARTHQUAKE SIGNAL IN
NOISE FOR SIGNAL-TO-NOISE RATIO 0.5:1 BUT A SIGNAL-TO-NOISE
RATIO OF 64:1 HAS BEEN ASSUMED IN DESIGNING THE DW FILTERS
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All the examples of processing shown above were made with filters of
39 points per channel. This length was chosen because it is the longest filter that
can conveniently be fitted into the computer we use. Figure 14 shows how the
noise reduction varies with filter length for DW filtering using purely spatial
filters. Figure 14 shows that, although the noise is reduced to lower and lower
amplitudes as the filter length increases, there is little to be gained from using
much longer filters. Note that for the sample of noise used to derive this graph
the noise reduction for one point filters is about the same as for DS processing,
showing that the noise reduction does not come from weighted DS rather than

wave-number filtering.

Figure 15(a) shows the relative power response of the BNA as a
function of wave number for straight summing of the four channels of the array;
the wave number of the coherent component in the noise sample of
20 January 1976 is shown. This response predicts a noise power reduction of
about 2.0 will be obtained by straight summing of the array channels. This noise
reduction is about 1.4 in amplitude which is close to 1.5, the value actually
obtained. Figure 15(b) shows the BNA power response as a function of wave
number for 0.13 Hz (7.6 s period) after applying the DW filters estimated for the
noise sample of 20 January 1976. Note that now the response shows a null at the
wave number of the coherent noise, yet the response to signals at zero wave

number is unity.

The examples of DW (and DMP) processing shown above are idealised
because the artificial signal is identical on all channels whereas observed signals
will always show some differences between channels and we point out in section
4 that it is important to consider the effects of departures of the signal from

perfect coherence.

Consider the Novaya Zemlya explosion signal discussed in section 3
and shown to depart significantly from perfect coherence. Figure 16 shows the
result of applying DW filtering and, although significant noise reduction (due to
spatial filtering) is obtained, the signal is distorted; the DW filtered signal (figure
16(b)) shows precursors to the signal onset and large amplitude high frequency
arrivals in the coda which are not shown by the DS output (figure 16(d)); the DW

filtered output does not look like the DS with the noise removed. The distortion
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FIGURE 14. VARIATION OF NOISE REDUCTION WITH FILTER LENGTH FOR DATA-
DEPENDENT WIENER FILTERS APPLIED TO NOISE SAMPLE RECORDED
ON 20 JANUARY 1976. NOISE REDUCTION IS ALL DUE TO SPATIAL
FILTERING
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FIGURE 15(a) POWER RESPONSE OF THE BLACKNEST ARRAY AS A FUNCTION OF
WAVE NUMBER FOR STRAIGHT SUMMING OF THE FOUR CHANNELS
OF THE ARRAY; THE WAVE NUMBER OF THE COHERENT COMPONENT
IN THE NOISE SAMPLE OF 20 JANUARY 1976 IS MARKED
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FIGURE 15(b) POWER RESPONSE OF THE BLACKNEST ARRAY AS A FUNCTION OF

WAVE NUMBER AT 0.13 Hz (7.6 PERIOD) AFTER APPLYING DW
FILTERS ESTIMATED FOR THE NOISE SAMPLE OF 20 JANUARY 1976.

THESE FILTERS ARE DESIGNED TO SUPPRESS THE MAIN SOURCE
AND PASS SIGNALS AT ZERO WAVE NUMBER
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FIGURE 16. DATA-DEPENDENT WIENER (DW) FILTERING OF SIGNALS FROM THE NOVAYA
ZEMLYA EXPLOSION ON 21 OCTOBER 1975 TO SHOW SIGNAL DISTORTION
DUE TO SIGNAL INCOHERENCE AND SUPPRESSION OF DISTORTION BY
ADDITION OF WHITE NOISE
(a) DW OUTPUT WITH ADDITION OF WHITE NOISE
(b) DW OUTPUT WITHOUT WHITE NOISE
(c) DELAY AND SUM OUTPUT FILTERED WITH FREQUENCY COMPONENT
OF DW FILTERS USED IN (b)
(d) DELAY AND SUM OUTPUT
(e) OUTPUT FROM A SINGLE CHANNEL OF THE BNA
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of the signal appears to arise from the spatial component of the DW’ filters
because, when the DS is filtered with the frequency component of the DW filters,
no distortion is seen (figure 16(c)). Capon et al. (6) found similar effects when
applying DMP f{iltering to the Large Aperture Seismic Array (LASA) data and
demonstrated that the precursors arise because of differences in the amplitude
of the signal between channels. The large amplitude high frequency arrivals on
the DW output appear to arise because effectively the noise properties are
different before and after the signal onset; before onset the noise is
predominantly low frequency oceanic microseisms; after onset the noise is a
mixture of this low frequency noise plus high frequency noise generated by the
scattering of the signal and which is shown in section 3 to have low coherence.
Consequently, when filters designed on one type of noise, that before the onset,
are applied to noise with different properties after onset it is perhaps not
surprising that the additional noise that is present after the onset of the signal is
amplified rather than reduced.

As the noise generated by scattering appears to be incoherent
between channels one possible way to suppress it when using DW f{filtering is to
add a component of incoherent noise to the observed noise; filters are then
designed to suppress not only the observed noise but also any incoherent
components. To include the effects of a component of incoherent white noise
with mean square amplitude 0 in the filter estimation process it is only
necessary to add o2 to the first element of the auto-correlation function of the
noise on each channel. Figure 16(a) shows the results of DW filtering using filters
estimated with a. component of incoherent white noise with mean square
amplitude 0.1 times the mean square amplitude of the noise on channel 1. Now

the estimated signal is effectively the DS minus the low frequency noise.

The way the addition of the small component of uncorrelated white
noise works to suppress the precursors to the signal and the high frequencies in
the coda and yet still allows reduction of the oceanic microseisms appears to be
as follows. The amplitude of the low frequency components of the noise (0.125 to
0.15 Hz) are so large relative to the high frequencies that the addition of a small
proportion of white noise has little influence on the low frequency response of
the computed filters. The high frequency components of the observed noise which

have very low amplitude relative to the low frequency components are coherent
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between channels at some frequencies, probably because some of this noise is
instrumental. If a component of white noise uncorrelated between channels is not
added, then the designed filter attempts to reduce the coherent components of
the instrumental noise by spatial filtering. When the computed filters are now
applied to a signal that contains a large proportion of scattered high frequency
seismic energy with properties very different from the instrumental noise, the
effect of the filters is to amplify the scattered signal. The addition of the
uncorrelated white noise swamps the coherent components in the observed noise
and weights the high frequency components of the filters to be DS filters. Note
that the signal shown in figure 16 was recorded on the DBB system (see section 2)
for which the system noise at frequencies above about 2 Hz tends to be larger than
the seismic noise. Signal distortion on DW f{iltering appears to be less serious
using IVBB recordings probably because for such recordings the system noise at

high frequencies lies well below the seismic noise.

The procedure of adding a component of uncorrelated white noise
may also have other advantages to that described above. For if the noise on two
channels is identical, so that normally there would be no unique solution, then
adding white noise stabilises the solution. For a two channe!l array the solution
would be DS filters. The addition of uncorrelated noise might also result in
estimated filters that give a much smaller reduction in the noise than obtained
by filters estimated from the observed noise only. Thus, for the two channel
example discussed in section #, where the noise is perfectly correlated but
differs slightly in amplitude, it is possible to find filters (specified in equation
(18)) that reduce the noise exactly to zero. Addition of a component of white
noise would attempt to weight the solution to DS filters for which noise
reduction could be almost nil. This would appear to be a disadvantage of adding
white noise but, as pointed out in section 4, filters that make use of small
amplitude differences between two channels of correlated noise will usually be
undesirable because, unless the signals are identical on both channels, such filters
may distort the signal and the expected signal-to-noise improvement will not be
obtained. The effect of adding a component of uncorrelated white noise to
weight the solution towards DS filters will in such circumstances be an

advantage.
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The distortion of the signal in the absence of white noise can be
looked upon as an example of the effect of ill-conditioning of the normal
equations for simply changing the diagonal elements of R by small amounts to
simulate the presence of a small amount of uncorrelated white noise results in a
large change in the filters. This is illustrated in figure 17(a) which shows filters
estimated with no uncorrelated white noise added and those with noise with mean
square amplitude 0.0l of the mean square amplitude of the observed noise. Note
the large change in the filter coefficients that results from this small change in

the R matrix.

For single channel Wiener there also appears to be an advantage in
adding a small proportion of white noise because, at frequencies above, say,
4 Hz, the signal and noise amplitudes are very small relative to the amplitudes at
low frequencies (say, around the frequencies of the oceanic microseisms) so that
the response of the Wiener filter will only be well defined at the low frequencies;
at high frequencies, provided that the signal and noise is not greatly amplified,
the effect on the mean square amplitude at the output would be negligible. As
shown in figure 17(b) the addition of a small component of white noise ensures
that at high frequencies the response is well controlled and falls off

systematically towards the high frequencies.

From the experiments described above with adding white noise it
would appear that the best way of constructing R is from a mixture of observed
data and a stochastic (white) noise model. In all the examples that follow this
way of setting up R is used. Experiments have been carried out using different
proportions of white noise but it appears that, apart from rather special cases
such as that shown in figure 16, a mean square amplitude of the white noise of
about 0.01 of the mean square of the observed noise is adequate to stabilise the
filters. All the examples shown here of the effects of the addition of white noise

are for DW filtering but similar effects are obtained for DMP filtering.

The DW and DMP filtering described above was done using two-sided
filters although almost the same noise reduction is obtained using one-sided
filters for DMP filtering or for DW filtering with predominantly spatial filters (as
is expected, see appendix B). For DW filtering where there is a significant
component of frequency filtering there are advantages in using two-sided rather

than one-sided filters. The advantage is illustrated in figure 18 which shows the
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FIGURE 17(a) DATA-DEPENDENT WIENER FILTERS FOR THE 4 CHANNELS OF THE
BLACKNEST ARRAY ESTIMATED FOR THE SEA OF OKHOTSK EARTHQUAKE
(FIGURE 20) SHOWING THY EFFECT OF ADDING A COMPONENT OF
WHITE NOISE TO THE OBSERVED NOISE
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FIGURE 17(b) AMPLITUDE RESPONSES OF SINGLE CHANNEL DATA-DEPENDENT WIENER
FILTERS ESTIMATED FOR THE DELAY AND SUM OUTPUT OF THE EAST
KAZAKHSTAN EXPLOSION (FIGURE 25) SHOWING THE EFFECT OF ADDING
A COMPONENT OF WHITE NOISE TO THE OBSERVED NOISE :
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FIGURE 18. COMPARISON OF AMPLITUDE RESPONSE OF ONE~SIDED AND TWO-
SIDED DATA-DEPENDENT WIENER FILTERS. FILTERS ESTIMATED
WITH IDENTICAL NOISE AND SIGNAL DATA
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amplitude response at zero wave number of two-sided and one-sided filters
derived from the same data; figure 19 shows the DW output after applying these
filters. Note that one-sided filters give a noise reduction over all frequencies
(amplitude response everywhere less than unity) whereas the two-sided filter
does approach unity at around 0.8 Hz. Clearly the one-sided filter is
unsatisfactory because an apparent noise reduction is obtained by lowering the
magnification of the filters. The reason why this occurs for the one-sided filter
appears to be as follows. The signal-to-noise ratio requires a certain noise
reduction which cannot be obtained by spatial filtering. To obtain the noise
reduction by frequency filtering without lowering the magnification requires a
frequency filter with an amplitude spectrum similar to that of the impulse
response of the two-sided filter which has steeper gradients than that of the one-
sided filters. To avoid signal distortion due to phase shifts when using a one-sided
filter requires that the phase shifts be small. However, the phase and amplitude
response of one-sided filters cannot be set independently; given the amplitude
response the minimum phase is set. Thus, it would appear that there is no one-
sided filter with the required amplitude and phase spectrum - the only remaining
option for reducing the noise is to reduce the magnification of the filters below
unity. Two-sided filters should thus be used wherever possible and this is done in

what follows.

Two-sided filters do have a disadvantage if the frequency filtering
component is large because they then usually generate precursors (see figure 8
for examples) which may make measurements of the onset time or first motion
difficult. In practice, however, we find that making allowance for the precursors
is not difficult and, as the narrow band SP seismogram is also available, this can

be used to assist in picking the arrival time.

Figures 20 to 25 show examples of DW filtering applied to the BB
signals from the 5 earthquakes and one explosion listed in table 5; the array

magnitude m,' and the observed SP and BB amplitudes listed were measured as

described in ls)ection 3. All the examples shown use a 2048 point fitting interval,
except the earthquake of 7 January 1976 (figure 24) where 1024 points had to be
used because the presence of tape faults made use of a longer fitting interval
impossible. Most of the signals were recorded during the winter when the oceanic
microseisms were of large amplitude and so it was expected significant noise
reduction due to spatial filtering might be possible. The model signal used in the
filter design is the attenuation - seismograph impulse response (signal C, figure
5). We now consider each of the examples briefly, noting some of the most

important features.
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FIGURE 19. COMPARISON OF DATA-DEPENDENT WIENER (DW) FILTERING USING ONE-

SIDED AND TWO-SIDED FILTERS. OBSERVED SIGNAL IS FROM AN

EXPLOSION IN EAST KAZAKHSTAN ON 7 AUGUST 1975

(a) WWSS SP SEISMOGRAM

(b) DW OUTPUT: TWO-SIDED FILTER

(c) DW OUTPUT: ONE-SIDED FILTER

(d) DELAY AND SUM OUTPUT FILTERED WITH FREQUENCY COMPONENT OF
DW FILTERS: TWO-SIDED FILTERS

(e) DELAY AND SUM OUTPUT FILTERED WITH FREQUENCY COMPONENT OF
DW FILTERS: ONE-SIDED FILTERS

(£f) DELAY AND SUM OUTPUT

(g) SINGLE CHANNEL FROM THE BNA ARRAY

72




Earthquakes and Explosions Used for Studies of

TABLE 5

Data-Dependent Wiener Filtering

134

Origin Depth Distance Obs SP A Maximum

. , , .

Date Region Time km degrees SP Amp, Ground Motion, | T, g o | omy BB Amp,

nm nm nm

21 December 1975 Sea of Okhotsk 10:54:17.7 554.0 69.3 1170 1170 1 7.1 6.0 7684

9 January 1976 New Hebrides 23:54:35.6 168.0 143.3 100 1064 2.3 6.7 6.1 2000

20 January 1976 Tonga 19:16:12.0 33 150.0 129 129 1 5.6 5.4 850

6 January 1976 Off EFast Coast 22:17:47.9 33 75.6 382 272 0.75 6.5 5.6 595
of Kamchatka

7 January 1976 Off East Coast 04:32:46.8 33 75.5 56 40 0.75 5.6 5.0 53
of Kamchatka

7 August 1975 East Kazakhstan 03:56:57.5 0 48.0 52.5 42.3 0.5 5.8 5.2 48




21 December 1975 - Earthquake: Sea of Okhotsk

This earthquake has a large amplitude on both the SP (1170 nm) and
BB seismogram (7684 nm) and can clearly be seen above the noise on the single
channel of the BNA (figure 20(e)). The DW filter output (figure 20(b)) gives a
noise reduction due to DS processing of 2.0; the total! noise reduction due to
spatial filtering is 5.9. The effects of frequency filtering are negligible as can be
seen by comparing the DS and FDS outputs (figure 20(c) and (d)). Note that the
BB seismograms show two distinct pulses (A, and Az) separated by about & s
suggesting a double earthquake. On the SP seismogram, on the other hand, the
signal is complex and cannot be interpreted. The onset is as clear on the BB as on
the SP and the first motion on the BB seismogram is almost as large as the
maximum amplitude on the revcord, whereas on the SP the first motion is only

about 0.125 of the maximum amplitude.
9 January 1976 - Earthquake: New Hebrides

The P arrival shown in figure 21 (which is PKP) contains little high
frequency energy so that on the SP seismogram the predominant period of the
signal is not around 1 s but is about 2.3 s. Consequently the amplitude as seen on
the SP is much smaller (100 nm) than on the BB seismograms (2000 nm). After
DW filtering, which applies negligible frequency filtering, the signal-to-noise
ratio on the BB seismograms is almost three times that on the SP, Note that the
onset is more difficult to pick on the SP than on the BB; the first motion on the
BB is clearly downwards, whereas on the SP it is not clear which is first motion.
.The DW f{filtered channel appears to have revealed a low frequency arrival (As)
about a minute after onset which is not shown up clearly by any of the other
channels.

20 January 1976 - Earthquake: Tonga

The PKP signal shown is virtually invisible on the single channel
(figure 22(e)) although it can be picked out on the DS output (figure 22(d)) by
comparison with channels (a), (b) and (c). It is clear from a comparison of the DS
channel (figure 22(d)) with the FDS channel (figure 22(c)) that a significant
component of frequency filtering is applied by the DW filters. Nevertheless the
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FIGURE 20. DATA-DEPENDENT WIENER (DW) FILTERING OF SEA OF OKHOTSK

EARTHQUAKE RECORDED AT THE BNA: 21 DECEMBER 1975

(a)

WWSS SP SEISMOGRAM

(b)

DW FILTERED OUTPUT

(c)

DELAY AND SUM OUTPUT FILTERED WITH FREQUENCY COMPONENT

(d)

OF DW FILTERS
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(e)
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FIGURE 21. DATA-DEPENDENT WIENER (DW) FILTERING OF NEW HEBRIDES EARTHQUAKE

RECORDED AT THE BNA: 9 JANUARY 1976

(a) WWSS SP SEISMOGRAM

(b) DW FILTERED OUTPUT

(c) DELAY AND SUM OUTPUT FILTERED WITH FREQUENCY COMPONENT
OF DW FILTERS

(d) DELAY AND SUM OUTPUT

(e) OUTPUT FROM SINGLE CHANNEL OF THE ARRAY
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FIGURE 22. DATA-DEPENDENT WIENER (DW) FILTERING OF TONGA EARTHQUAKE
RECORDED AT THE BNA: 20 JANUARY 1976
(a) WWSS SP SEISMOGRAM
(b) DW FILTERED OUTPUT
(c) DELAY AND SUM OUTPUT FILTERED WITH FREQUENCY COMPONENT
OF DW FILTERS
(d) DELAY AND SUM OUTPUT
(e) OUTPUT FROM A SINGLE CHANNEL OF THE ARRAY




spatial component of the DW filters also contributes significantly to the noise
reduction; this is particularly clear after signal onset where the low frequency
noise seen on channel (c) is much reduced in amplitude on channel (d). the signal-
to-noise ratio is slightly poorer on the DW output than on the SP but first motion
on the DW output is the largest amplitude on the record. Note that the second
arrival on the SP about 8 s after onset has a similar amplitude to the first SP
arrival whereas on the DW output the second arrival is much smaller than the
first showing that the second arrival has relatively more high frequency energy

than the first arrival,
6 January 1976 - Earthquake: Off East Coast of Kamchatka

The P signal shown is visible on the single channel (figure 23(e)) even
though its amplitude is less than the maximum amplitude of the noise because
the signal has a higher predominant frequency than that of the noise.
Considerable signal-to-noise improvement with little distortion of the signal
would be possible by frequency filtering only. Some noise reduction can be
obtained by spatial filtering however and the DW filtering takes advantage of
this, Note that as the signal is predominantly high frequency the amplitude seen
on the SP and the DW filtered BB are similar.

7 January 1976 - Earthquake: Off East Coast of Kamchatka

This earthquake is included here because it has been given a rather
low magnitude (mb 5.0) by the NEIS; the amplitude of the SP signal shown (figure
24(a)) gives mt 5.6. Whatever the true magnitude it is clear that the signal is
close to the detection threshold of the BNA. Despite the poor signal-to-noise
ratio seen on the DW output there do seem to be advantages in having this BB
seismogram in addition to the SP, for the BB seismogram indicates that the pulse
A, (figure 24(b)) has a smooth leading edge similar to that shown by the Kodiak
Island earthquake (figure #(a)) which results in a low amplitude first motion on
the SP seismogram. It is also possible that the large amplitude low frequency
arrival As on the DW output is part of the P signal and not low frequency noise
but without further data it is impossible to check this.
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FIGURE 23. DATA-DEPENDENT WIENER (DW) FILTERING OF AN EARTHQUAKE OFF THE
EAST COAST OF KAMCHATKA RECORDED AT THE BNA: 6 JANUARY 1976
(a) WWSS SP SEISMOGRAM
(b) DW FILTERED OUTPUT
(c) DELAY AND SUM OUTPUT FILTERED WITH THE FREQUENCY COMPONENT

OF THE DW FILTERS

(d) DELAY AND SUM OUTPUT
(e) OUTPUT FROM A SINGLE CHANNEL OF THE ARRAY
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FIGURE 24. DATA-DEPENDENT WIENER (DW) FILTERING OF AN EARTHQUAKE OFF THE

EAST COAST OF KAMCHATKA RECORDED AT THE BNA: 7 JANUARY 1976

(a) WWSS SP SEISMOGRAM

(b) DW FILTERED OUTPUT

(c) DELAY AND SUM OUTPUT FILTERED WITH THE FREQUENCY COMPONENT
OF THE DW FILTERS

(d) DELAY AND SUM OUTPUT

(e) OUTPUT FROM A SINGLE CHANNEL OF THE ARRAY




7 August 1975 - Explosion: East Kazakhstan

The results of DW filtering of the BNA data for this explosion is
shown in figure 19 which shows that little spatial filtering is obtained, the main
noise reduction coming from frequency f{iltering. Thus, similar results might be
obtained simply by applying a single channel DW filter to the DS output, that is,
by applying a single channel DW filter that is purely a frequency filter. The
results of applying such a DW f{filter are shown in figure 25; comparison with the
results obtained using multichanne! filters (figure 19(b)) shows that the results
are very similar.

6. DISCUSSION

In the foregoing section we show that Wiener filtering can be applied
satisfactorily to both array and single seismograph recordings to estimate broad
band signals in noise and that the estimated signals have significant features that
are not shown by the SP signals. Further, att\empting to extract BB signals has no
disadvantage in that SP seismograms can also be obtained from the same basic
recordings.To have both BB and SP seismograms can indeed be instructive as
comparison of the two types of seismogram may, for example, show up variations
with time in the frequency content of the signal (see reference (23) for further

examples of the advantage of having both SP and BB seismograms).

For signals such as those shown in figures 20, 21 and 24, which
contain significant energy at frequencies less than say 0.5 Hz, the advantage of
achieving noise reduction by spatial filtering of the oceanic microseisms is
obvious. For high frequency signals (frequencies around 1 Hz) such as those
shown in figure 23 and 25 the signal can be seen on the output from a single
seismometer, riding on the 6 to 8 s period microseisms and, as the differences in
the predominant frequency of the signal and noise is so great, little would seem
to be lost in using only frequency filtering to suppress the noise; a single channel
DW filter designed using a high frequency model signal extracts such signals
satisfactorily from the DS output. Such processing, however, presupposes that
any low frequency energy in the signal is insignificant and if, for example, the
signals were known to be from an explosion such an assumption would be
justified. However, for signals which are not known to be definitely explosions
and for all earthquakes it will usually be safer to assume that there is low
frequency energy present even when the visible parts of the signal appear to be
predominantly high frequency and to achieve noise reduction over as wide a band

of frequencies as possible by spatial filtering.
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FIGURE 25. DATA-DEPENDENT WIENER (DW) FILTERING OF AN EXPLOSION IN EAST
KAZAKHSTAN: 7 AUGUST 1975
(a) WWSS SP SEISMOGRAM
(b) DW FILTERED OUTPUT
(c) DELAY AND SUM OUTPUT FILTERED WITH THE FREQUENCY
COMPONENT OF THE DW FILTERS
(d) DELAY AND SUM OUTPUT
(e) OUTPUT FROM A SINGLE CHANNEL OF THE ARRAY
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For the four element BNA, noise reductions can be obtained by
spatial filtering that are significantly greater than 2, the value expected from
random noise; most of the noise reduction arises from wave number filtering of
the oceanic microseisms of 6 to 8 s period. It is possible that similar noise
reductions could have been obtained by simple DS processing with an array
specifically designed to have nulls in the array response at the wave number of
the oceanic microseisms. This could have been done using the method of Henger
(8) of varying the design of the array until the noise on the DS output is a
minimum. For such an array design, Wiener filtering coincides with DS
processing. This method of suppressing oceanic microseisms has two main
advantages: the method is easy to apply and the signal is the average of all the
channels and so should be a reliable estimate of the signal. The disadvantage of
the method is that it requires that the noise properties be stable over time. If the
noise properties vary as they always do, then an array design that gives an
optimum noise reduction at one time will not usually be optimum at other times.
The optimum array for suppressing oceanic microseisms would then seem to be
one with an aperture at least equal to the wavelength of the microseisms so that
there are nulls in the vicinity of the wave number of the predominant noise.
Wiener filtering would then be applied to the recording from such an array; this
process can be thought of as trimming the array response to take account of the
particular noise properties and such solutions will, in general, be close to the DS

solutions and the noise reductions will arise from wave number {filtering,.

For the BNA it is obvious that the ability of the array to suppress
oceanic microseisms independently of azimuth would be improved if the aperture
of the array on an east-west axis were increased to about 20 km from the present
aperture of 9 km. Such a modified array would be able to suppress 6 to 8 s period
microseisms from most azimuths. As these oceanic microseisms seem to be
highly coherent across the array, then further improvements in the ability of the
BNA to suppress such microseisms could be obtained by adding further
seismometers with the objective of improving the ability to reject 6 to 8 s period
oceanic microseisms with speeds of around 3 km/s. In addition to considering the
6 to 8 s period microseisms, it is also necessary to find ways of suppressing noise
at around 2 s; such noise, as can be seen from figure 3(a), is always present and

during the summer such noise may predominate. If the 2 s noise is surface waves
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propagating at speeds of around 3 km/s, then it has wavelengths of around 6 km
and it is clear that the spacing of most of the seismometers in the BNA is too
large to resolve such wavelengths. There is no evidence from the studies we have
made so far that the 2 s noise is coherent across the array but this apparent lack
of coherence may arise simply because the 2 s noise is arriving from a wide range
of azimuths and the seismometers are spaced at a wavelength or more. Before
any conclusions can be drawn about the properties of the 2 s noise it is thus
necessary to add further seismometers to the array to reduce the spacing
between seismometers to about 3 km.

To extrapolate from the results presented here for a four element
array to what an array at the same site but with more elements would achieve
cannot be done with any certainty. The best results for spatial filtering obtained
here with data from the BNA is when the noise is large amplitude storm
microseisms; this is because the noise is effectively from a single source and DW
filters can be found that can reduce the array response at the wave number of
these microseisms to reject noise from this one source and still pass the signal at
zero wave number undistorted. The reason that the BNA is not as effective in
reducing noise in the oceanic microseism band during quiet times is probably
because, although the noise has low surface speed, it is arriving at the array from
many azimuths and with only 4 seismometers it is impossible to design filters
that will reduce noise over a wide range of azimuths simultaneously. Increasing
the number of seismometers in the array might therefore improve the ability of
the array to redlece low amplitude oceanic microseisms and give noise reductions

of better than n? on quiet days.

Suppose the number of elements were increased to 16 and the signal
coherence over these 16 elements was not significantly less than over the array
of 4 elements, then it should be possible to achieve at the very least a further
noise reduction of 2 by spatial filtering only, so giving an rms amplitude at the
output of the DW filters of 200 nm or less (from table 4) at all times of the year;
thus, the DW output would have an rms amplitude for broad band noise that is
never greater than the rms amplitude on a single seismometer of the array during

the quietest times (which usually occur in summer). .
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To relate this noise level to a magnitude threshold is impossible
without further study because BB signal amplitudes tend to be larger than SP
amplitudes and body wave magnitudes (mb) computed from BNA SP amplitudes
tend to be greater than the average my published by NEIS anyway. However, it
would be surprising, judging from the processing so far carried out, if all signals
from sources with NEIS m, of, say, 5.5 or greater (and from some with lower mb)
could not be extracted from BB recordings by spatial filtering alone (per-
formance parameter vyz 1). For many of the other earthquakes that might be
detected on the SP seismograms, but cannot be satisfactorily extracted from BB
seismograms by spatial filtering alone, it will be necessary to apply frequency
filtering. It is possible that most of these low magnitude signals have source
dimensions that are so small that the pulses radiated by such sources are only
around a second or less in duration. If this is correct, then most of the energy in
these pulses will be at frequencies higher than those of the oceanic microseisms
and so the fact that frequency filtering has to be applied to extract the signal

from the noise at these low magnitudes may not then be important.

The BNA lies close to an ocean and is consequently very noisy and so
it is probable that other more ideal sites can be found to establish a BB array.
Choosing a site for an array is influenced by many factors some of which are

considered below.

The results obtained from the application of Wiener filtering to data
from small aperture (3 to & km) SP arrays (4,5) shows that SP noise in general
consists of two components: a high speed component (called teleseismic noise or
mantle P wave noise) arriving as body waves from distant sources. Superimposed
on this is low speed noise with sources close to the array. At sites where the
organised low speed noise i|s large, then Wiener filtering gives signal-to-noise
improvements better than n? over some frequency intervals. At sites where th?

noise is high speed teleseismic noise, Wiener filtering gives less than n?

improvement in signal-to-noise ratio with these small aperture arrays.

85




The model of high and low speed noise appears to apply in the
oceanic microseism band; both high and low speed components have been
identified (see, for example, references (2¢4) and (25)) and at low noise mid-
continental sites the bulk of the noise seems to be high speed P waves (26). An
array with an aperture similar to the BNA can only significantly reduce the low
speed noise so that the best that can be hoped for with such an array is to reduce

the oceanic microseisms to the level of the amplitude of the mantle P wave
noise.

Backus (5) considers the design of an SP array to suppress both high
and low speed noise and suggests using small aperture arrays (arrays of 3 to 4 km
aperture; roughly 1 wavelength of low speed 1 Hz noise) as sub-arrays of a large
aperture array, the spacing of the sub-arrays to be about half the wavelength of
the high speed 1 Hz noise. Processing each sub-array should reduce the organised
low speed noise and summing the processed outputs of the sub-array the
teleseismic noise. Two arrays with this general design have been built and
operated: the LASA (Montana) and the NORSAR (Norway). The results of spatial
filtering (DMP rather than DW filtering was used) mainly carried out on LASA
data have been disappointing for the maximum noise reduction obtained for these
SP data was little better than n% compared to a single channel. In addition, there
was some loss of signal amplitude on processing because many SP signals were
not coherent across the array. However, this work focussed on extracting from
the noise the very weak SP signals from low magnitude sources and it may be
that, had the array been used to extract broad band signals from noise for larger

magnitude sources, more satisfactory results would have been obtained.

At sites where the noise in the oceanic microseism band consists of a
mixture of high and low speed noise, then to reduce both components of noise
would seem to require an array design similar to that suggested by Backus (5) of
sub-arrays within a larger array but now the sub-arrays should have apertures of
around 20 km (~ a wavelength of low speed 6s microseisms) and be spaced at

~ 50 km intervals.

Most sites for SP arrays have been selected because the noise level in
the SP band is low. However, Phinney (27) has pointed out that the quietest sites
are not necessarily the best sites for installing arrays. Possible disadvantages of

very quiet sites for arrays are:-
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(a) The quietest sites for SP noise tend to be in orogenic areas
where the signals recorded from simple explosion sources may be
complex and where from the LASA experience the signals are
incoherent.

(b) At many sites where the SP noise is below average the signal

amplitude at | Hz is also below average.

(c) At low noise sites the noise consists of high speed noise so that
a large array is required to separate noise and signal but as the signal
may not be coherent at such sites expected S/N improvements will
not usually be obtained.

In selecting a site for a broad band array the level of the SP noise is
not that important because the predominant noise will always be the oceanic
microseisms with periods of 6 to 8 s. It is essential, however, to choose a site
where the signal is coherent over the aperture of the array at all frequencies of
interest and sites on shields would seem to be the ideal sites. The work of
Kulhanek (28) suggests that there are sites at least on the Baltic Shield where the
signal is coherent over distances of 100 km. Note, however, that broad band
signals will usually have a predominant frequency less than | Hz and these lower
frequencies are likely to be more coherent than those recorded on standard short
period seismographs. Shield sites also have the advantage that the signal
amplitude at least around 1 Hz tends to be greater than in orogenic regions. It is
possible to find sites on shields where at least for part of the year the SP noise is
very low; at Yellowknife, Canada (YKA) for instance the SP noise amplitude is
around 1 nm during the winter, although during summer the noise amplitude may
be ten times this. The summer noise is uncorrelated, however, and is reduced by

1
n? by DS processing.

At sites in the middle of shields the main noise in the oceanic
microseism band is probably high speed noise and so an array at such a site would
have to have a large aperture to obtain significant reductions in the amplitude of
this noise. If sites in the centre of shields are available, they will usually be
preferable to coastal sites even if a large array is not installed because the

amplitude of the low speed component of the oceanic microseisms will be of
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much lower amplitude than at coastal stations. If the only sites available are
- coastal sites (which is true of all sites in the UK), then any convenient site where
the signal is coherent would probably suffice. In addition, it is preferable to
choose a site where the SP signal amplitude is above rather than below average if
such sites can be found. For such sites, however, significant noise reduction
should be obtained by spatial filtering using arrays of the dimensions of the BNA
(10 to 20 km) particularly during periods of large microseisms. The value of such
arrays is that they allow use to be made of signals from large magnitude
earthquakes and explosions which would otherwise be completely obscured by
noise. During periods when the amplitude of the low speed noise is low such
arrays can be expected to produce at best n% improvement in S/N. On quiet sites
it is possible that low speed noise is absent and if this is so, then arrays of 10 to
20 km aperture will usually have little value for noise reduction in the oceanic
microseism band.

Given a recording system that allows broad band recordings to be
recovered on playback from tape, we propose the following general scheme for
obtaining the best estimates of signal shape. For sites where low speed surface
waves are the predominant form of noise in the oceanic microseism band, then
arrays with apertures of 20 km or so can be used to suppress this noise by spatial
filtering. At low noise sites, where the noise in the oceanic microseism band is
likely to be mantle P wave noise, then the only way to suppress such noise by
spatial filtering is to have a large array (aperture 100 km at least) and such an
array will only be worth installing if sites can be found where the signal is
coherent over such a large aperture. Smaller arrays on low noise sites are
unlikely to have the resolution to allow high speed oceanic microseisms to be
suppressed by spatial filtering and the most efficient method of processing would
then seem to be simply DW filtering of the DS output. The DS processing will
reduce any random noise and DW processing will apply the required frequency
filtering to extract the best estimate of signal shape. This scheme is similar to
that currently applied to much SP array data where band pass filtering of the DS
output is used to remove frequencies which by eye are seen to be different from
the predominant frequencies in the signal. Such filtering, however, is only
applied to signals with low signal-to-noise ratio on the SP system. The advantage
of starting with broad band records and applying DW filtering is that just
sufficient filtering is applied to produce the minimum distortion of the signal. At

high signal-to-noise ratio then ideally the whole signal spectrum within the wide
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recording band of the instruments will be passed by the DW f{ilter; at low signal-
to-noise ratio the output will tend to that seen on a conventional narrow band
seismograph. The detection threshold should then, theoretically at least, be the
same for both SP and Wiener filtered broad band recordings. Note, however, that
the broad band seismograph has a phase response which in the pass band gives a
much smaller phase shift than standard SP systems (figure 2). If a two-sided DW
filter is used to extract signals from broad band recordings, the estimated signal
will be as recorded by a near phaseless seismograph; the same recording on an SP

seismograph would be distorted by the large phase shifts introduced by the
seismograph.

To record broad band ground displacement directly is inefficient
because most of the dynamic range of the system is taken up in recording the
oceanic microseisms (1). The ideal recording system for an array station would
appear to be one in which the response is the inverse of the spectrum of the
incoherent components of seismic noise; the incoherent seismic noise as recorded
by such a system would then be white. (Berckhemer (1) discusses the design of a
seismograph which has a response which is the inverse of the noise spectrum.)
The amplitude of the system noise must then be significantly smaller than the
amplitude of the smallest signal that can be extracted from the incoherent noise
by DS processing. At stations that are not arrays the ideal recording system
should have a response that is the inverse of the noise spectrum for the quietest
time and the system noise should be such that the amplitude of the seismic noise
as recorded is just larger than the system noise. With such a recording system all
signals that can possibly be extracted by Wiener processing from the noise will be
recorded with sufficient signal to system noise ratio to allow processing to be

carried out satisfactorily.

Now the response of an SP seismograph from around 1 Hz down to the
frequency of the oceanic microseism peak is roughly the inverse of the seismic
noise spectrum (which is not surprising as the attraction of such a response for
visual recording is that it flattens the noise spectrum), So it should be possible to
pass narrow band SP signals through a filter to compensate for the effects of the
recording system and obtain broad band signals down to the frequency of the
microseism peak. There is a limit to the band width that can be recovered in this
way because at some frequency the signal level on the SP system falls below the

level of the instrumental noise. However, Douglas et al. (29) show that
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seismograms that display ground displacement at constant magnification in the
range 0.3 to 10 Hz can be derived from SP seismograms using spike filtering.
Good estimates of broad band signals can also be derived from SP seismograms
by just reversing the process described in section 2 for obtaining SP seismograms
for BB; the spectrum of the SP seismogram is simply multiplied by a)(w)/a;(w) and
transformed back into time. Examples of BB seismograms derived from SP are
shown by Douglas et al. (23).

The SP data used by Douglas et al. (23) come from a system which
was not specifically designed to be used for deriving broad band signals and the
recordings were made on analogue tape recorders for which the dynamic range is
less and the system noise greater than modern digital recorders. Key (30) has
shown that with modern digital recording systems it is possible to recover broad
band seismograms from the short period with little interference from system
noise, at least out to the period of the oceanic microseisms, so it appears that in
future at stations where digital systems are installed there will be no need to
make special provision for broad band recording, simply recording narrow band
SP signals should be sufficient.

Douglas et al. (23) derive the broad band seismogram from the narrow
band in two steps: the first step is to convert from the response as recorded to
the desired broad band displacement response, the second step is to estimate and
apply Wiener filters to extract the signals from noise. An alternative method of
processing is to combine the two steps so that filters are computed that give the
best estimate of the broad band displacement signal given the data as recorded,
the response of the recording system and the system noise level; Franklin (31) has
extended the Wiener filter theory to cover this case but this theory does not

appear to have been applied yet to the extraction of seismic signals from noise.

8. CONCLUSIONS

The main conclusions of this study are as follows:-
(a) The most flexible processing method appears to be Wiener

filtering. In the general (multichannel) case the estimated filters

apply both spatial and frequency filtering to extract the signal, but if
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the required noise reduction can be obtained by spatial filtering
alone, then frequency filtering is not applied. This is a desirable
property of multichannel filters because ideally spatial filtering
passes the signal undistorted. From the data studied in this report it
is possible to get noise reductions due to spatial filtering of up to 6
with a 4 element array.

(b) There seems to be no advantage in using minimum power (MP)
filtering as opposed to Wiener filtering. In the MP method multi-
channel filters are designed to minimise the noise power at the output
subject to the constraint that the desired signal is passed undistorted;
the noise reduction can be thought of as arising purely from spatial
filtering. If spatial filtering alone is sufficient to allow the signal to
be extracted from the noise, then the Wiener and MP methods give
the same results (which is to be expected, as is shown by theoretical
considerations). On the other hand, if the signal can only be extracted
from the noise by frequency filtering, the MP method fails, whereas
the Wiener method (ideally) always shows signal above noise provided
the signal amplitude is greater than the noise amplitude in some
frequency band. The detection threshold for Wiener filtering (in the
ideal case) should never be worse (and could be better) than for
narrow band SP recordings.

(¢) To construct Wiener filters the auto- and cross-correlation
functions of the signal and noise are required. The most satisfactory
way of constructing the noise correlations appears to be to use a
section of observed noise ahead of the signal to which it is assumed a
small proportion of white noise (uncorrelated between channels) has
been added. If the white noise is not added, the effect of the filters is
sometimes to distort the estimated signal shape as compared to the
shape as seen on the delay and sum (or single channel). This
distortion arises because the signal is not perfectly coherent across
the array.

To construct the signal correlations the power spectrum of the
signal must be roughly known. Power spectra based on simple model
signals seem to be adequate for this purpose. When the noise
reduction arises from spatial filtering the assumed form of the power

spectrum has no effect on the estimated signal.
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(d The most widely used method of processing SP array data is
delay and sum combined at low magnitude with band pass filtering to
cut out those frequencies where the noise amplitudes are large
relative to the signal amplitude. This process can be thought of as
applying a crude one channel Wiener filter to the delay and sum
output, the filter being designed on a general knowledge of signal and
noise properties. Usually a Wiener filter estimated from the observed
noise properties and a signal model will give a better estimate of

signal shape than routine application of a fixed band pass filter.

(e) If oceanic microseisms have well defined wave numbers, then it
is possible to suppress them by applying delay and sum processing to
data from an array which has a null in its wave number response at
the wave number of the noise. In this case Wiener filtering, MP
filtering and delay and sum processing (and common sense) all
coincide. Such arrays require apertures of the order of a wavelength
of the noise or greater. It may be possible to suppress noise using
smaller arrays by exploiting small differences in amplitude between
the noise on different channels but filters estimated from such arrays
are likely to be unstable and, unless the signal is highly coherent,

could result in distortion and suppression of the signal.

It will usually not be possible to design an array so that the
array response always has a null at the required point to suppress the
noise. An array should thus be designed to have nulls in the vicinity of
the wave number of the principal noise sources. Wiener filtering can
then be used to trim the array response and obtain the optimum noise
suppression for the particular noise sample. Such Wiener filters will,
it is hoped, usually not depart markedly from the delay and sum
solution and so the estimated signal should be close to the average of

the signal over all channels.
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(f) There is some evidence that, as with SP noise, oceanic
microseisms consist of two components: a low speed component
(~ 3 km/s) propagating horizontally as surface waves and a high speed
component (> 8.0 km/s) which is propagating as body waves and is
travelling steeply upwards from the mantle. The very large amplitude
oceanic microseisms seem to be mainly the low speed component;
arrays of 10 to 20 km aperture are required to suppress them. The
high speed component usually has low amplitude and is then only seen
when the low speed component is small or absent; to suppress high
speed oceanic microseisms requires an array of around 100 km

aperture at least.

At sites where both components of the oceanic microseisms are
to be suppressed an array design such as that used at the Large
Aperture Seismometer Array in Montana with sub-arrays within a
larger array could be used, the sub-arrays being 10 to 20 km aperture

and the total array aperture 100 km or more.
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APPENDIX A

COMPARISON OF MINIMUM POWER AND UNBIASED PREDICTION ERROR
FILTERING USING A TWO CHANNEL ARRAY

wP = col (uP(- 1), wP(O), WP(D))

and

P _ P p p
_[_]_2 = col (uz( 1), uz(O), uz(l)]

be filters that predict the noise on the delay and sum output but do not pass the

signal of interest. If the filters are to suppress the signals, we must have

uP(ic) + uf(k) = 0 for all k.

If Qp is the predicted output given by such filters, we can write

P

xuf +xvf =b

-1l —2-2

If b is the delay and sum output, then the best least-squares estimates of _l_J_l and
_L_li can be found by minimising the sum of the squares of the differences between

b and QP; these estimates are given by the solution of

ot o] 2] [
2(-‘ ?-(-] ! .).(.] 2(..2 ’ gl --lll ')El h
T T Pl _|¢T
2(_2.).(.2’ 2{_2.).(..2 ’ Ql 22 - 52}?_ . o--(Al)
T T
% &, 0| L_A_"‘ o s
where
1 o 0
Q =10 1 ofand)P
0 O 1
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is a three element column vector of Lagrangian multipliers. If d = col (0, 0.5, 0),
then we can write

X,d + X,d = E

. N . P
The unbiased prediction error output isb -b , so

b-bF=x (d

- -

- B« x (@ - vH.
- ST =,
. P p .
Suppose now we wish to choose U, and U, in such a way that

minimum power and unbiased prediction error are equal, then we must have

Uy=d- _l:\E: and Up=d - l_J_lZ. Substituting in equation (10) for Ui and U, we have:-

_ . .
T T P|
d-U 0
2(-1—}21’ 2(-1—2’ 91 - -1 -
T T P
d-Uu |=|0
T
_Q:f’ 9_1 ’ 9 & _V-z
... A . . L .
or
(xfx +x'x)a| |x%x,xx,q| || |o
—-1=1  m1=2"= -1=17 =12’ -1 -
T T T T ' P
()—(251 v ALK | - 20 X Y | =(2 |
T T T T
(Ql + Ql)d (_21, g17 0 - A 'YZ
L~ - . g -4 L 7 L ©
or
L o e m -
X'b x'x , X°X ,Q o 0
1- -1-1° —1=2’ =1 -1 -
x% | _|x"x , x°x , | =lo |,
-2 21 272" "1 -2 -
T T
Q, Q,0 - A v
- — 1 — — —
- 2—. . l = L— -~ L 2J
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or

i T T ? I p 1 [or]
Xb
51&1’ &1).(_2’ gl gl —~1 =
T
XX , XX y Q o | =|xb]|. ... (A2)
—2=1  —2=2" =1| |-2 -2~
T T
LQ » Qs 0] |-2A 0
1 1 L

However, equation (A2) is identical to equation (Al) putting )_\P = - \. Thus, the
filtered output obtained by applying minimum power filters estimated using
equation (10) is identical to that obtained by applying the prediction filters

estimated using equation (Al) and subtracting this predicted output from the
delay and sum output.
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APPENDIX B

THE SIGNIFICANCE OF THE LAGRANGIAN MULTIPLIERS
IN MINIMUM POWER FILTER ESTIMATION

Writing the Lagrangian multipliers obtained estimating U(1|3), U(2|3)
and U(33) (equation 10c) as:-

1 B T

A(1|o) r>\(2|— 1) A(3]-2)
AQ1]3) = [x(1[1) [, A(2]3) = [A(2]0) [and A(3]|3) = [A(3[- 1)

A(1]2) A(2{D) Lx(slo)

respectively then it is easy to show that

(A1]3), A2]3), A(3]3)) = - (@R'Q)7".

Now the Lagrangian multiplier X (i [o) gives the expected mean square noise at the
output after applying the MP filters U(i|3X18). However, (QTf{lQ)'l is a
symmetric Toeplitz matrix so that A(ijo) for i= 1, 2, 3 is constant so that the
noise reduction due to MP filtering is the same for all three sets of filters U(i|3)
i=1,23.

Writing (from expression (14)) the noise at the output after applying
the MP filters U(i[3), i = 1, 2, 3as x>([3,1), i = 1, 2, 3 respectively, then it can be
shown that the expected value of the covariance between xb(i|3,t) and xb(j|3,t) is

A(k]i-j). This result can be generalised to p filter points and n channels.

If the expected mean square noise after applying MP filters is og,
then given m data points 'c‘rg the best estimate of cg is {X(i]o)m }/q where q is the
number of degrees of freedom.
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m = 3,2808 ft

ft = 0.3048 m

kg = 2.2046 1b

1b = 0.45359237 kg
ton = 1016.05 kg

N = 0.2248 1bf

1bf = 4.44822 N

J = 0,737562 ft 1bf

J = 9.47817 x 10~% RBtu
J = 2,38846 x 107Y keal
ft 1bf = 1.35582 J

Btu = 1055.06 J

kcal = 4186.8 J

W = 0,238846 cal/s
cal/s = 4.1868 W

rad/s = 0.159155 rev/s
rev/s = £,.28319 rad/s
m/82 = 3,28084 ft/s?
ft/82 = 0.3048 m/n?

N/m?2 = 145.038 x 1076 1bf/1Q?
1b€/1n2 = £.89476 x 107 N/m?

in. Hg = 3386.39 N/m’

Nm= 0.737562 1bf ft

1bf ft = 1.35582 N m

N/m = 0.0685 1bf/ft

1bf/ft = 14.5939 N/m

N s/m2 = 0,0208854 1bf g/ft’
1bf s/ft2 = 47.8803 N s/m?
m2/s =~ 10.7639 ft2/s

tt2/s = 0.0929 m?/s

Bq = 2.7027 x 1011 ¢4
Ci = 3,700 x 100 Bq
Gy = 100 rad

rad = 0,01 Gy

Sv « 100 rem

rem = 0.0] Sv

C/kg = 3876 R

R = 2,58 x 10™% C/kg
mb = 0,750062 torr
torr = 1.33322 mb

*These rterms are recognised terms within the metric system,





