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SUMMARY 

Conventional seismic magnitude estimates are frequently biased 
because o:€ the absence of station readings resulting from poor 
signal-to-noise ratio on the seismograms. Several magnitude estimation 
techniques, designed to overcome this threshold bias problem, have been 
published and in this report some of their properties are described using 
simulation experiments. All these alternative estimators successfully 
eliminate this bias, except at magnitudes below the detection thresholds 
of the more sensitive stations where deficiencies are apparent either in 
terms of bias or large variance. The presence of bias in the joint least 
squares analysis method (LSMF), where both magnitudes and station terms 
for several sources are computed simultaneously, is also investigated. A 
marginal reduction in magnitude bias is found but bias is present in the 
estimated station terms. A suggested joint ffmaximum likelihoodff approach 
provides an attractive alternative. 

INTRODUCTION 
--p- 

Although the magnitude of a seismic disturbance can be estimated 
using observations from a single station, the presence of scatter in the 
0bservat:ions makes it desirable to use data from many stations. ~t is 
well known however that simple averaging of the results from a network of 
stations, as used by the International Seismological Centre (ISC) and in 
the United States Geological Survey earthquake data reports often results 
in biased estimates. An important cause of bias is data censoring, 
arising at higher magnitudes from saturated or clipped recordings, but 
more frequently at lower magnitudes because of detection or amplitude 
reporting thresholds. The magnitude at which the latter becomes 
significant can be reduced by using a network of stations all with low 
detection t:hresholds, but with the existing world network, alternative 
analysis; techniques need to be employed, even at moderate magnitudes. 
Several statistical procedures, usually referred to as "maximum likelihood 
methodsff, have been published and recently applied to data in 
internat.ion'a1 bulletins (Ringdal (l), Lilwall (2) ) . Anticipating more 
routine use of these methods, especially to the existing world network, it 
is desirabl~; to make a comparative study to find the merits of each. Here 
a simple simulation study is described assuming the type of data at 
present available through international agencies. Another technique used 
for magnitude estimation is the ff joint methodff where magnitudes and other 
parameters such as station or distance corrections are computed for a 
group of sources. This is particularly useful for the estiy.ation of 
relative ma~gnitudes of nuclear explosions within a test site but the 
extent of any bias resulting from censoring in either the estimated 
magnitudes or other parameters is not obvious. In the second part of this 
report a simulation experiment is described which investigates the problem 
of bias when applying an existing joint least squares and a possible 
alternative joint maximum likelihood technique to groups of underground 
nuclear explosions. 



2. - SINGLE MAGNITUDE ESTIMATORS 

2.1 - Theoretical outlines 

Suppose a seismic disturbance with "trueM magnitude mt occurs 
within a network of stations. Furthermore let Ns stations be at distances 
suitable fclr the estimation of mt. If the ground amplitude (in terms of 
LOCJ~/T) at the ith station is ai then the station magnitude can be defined 
as: 

mi = ai + Bi(Alh) . .. (l) 
where Bi is the distance (A)-depth(h) correction. If Si is the station 
amplitude tlerm then the true magnitude is given by: 

where ~i is a random variable which, following Freedman (3) is usually 
assumed to be normally distributed with variance ai2. The probability 
density func=tion for mi is therefore 

The convent:ional magnitude estimator is the mean of the observed mi. 

where ND is the number of observed m- and D is the corresponding set of 
indices. Clearly P should be unbiasea if the mi is sampled randomly from 
the normal population (equation 3) but it has been appreciated for some 
time (Herrin and Tucker (4), Evernden and Kohler ( 5 ) )  Ringdal (6)) 
Christoffersson et a1 (7)) that loss or censoring of lower values of mi 
resulting from the presence of station reporting thresholds give ., rise to 
a positive bias in P. Alternative estimators have been published however 
which are designed to allow for this data loss (Christoffersson et a1 ( 7 ) ,  
Ringdal (6) ). These methods modify the density function (equation 3) and 
can also use the information implicit in the stations not able to measure 
mi. What follows summarises the theory. 

Suppose for the ith station we have the following additional 
information concerning the thresholds for measuring ai and hence mi. Let 

gi = mean (50%) threshold for measuring an amplitude (ai) 



Gi, = Bi(A,h)+gi be the corresponding threshold in terms 
of magnitude for a given source. . .. (5) 

Yf = variance of actual threshold, assumed to be a 
random normally distributed variable with 
mean gi (or Gi). 

The threshold gi need not be the detection threshold and will generally be 
higher since the station analyst will frequently only measure amplitudes 
when there is a good signal to noise ratio. 

The data from the Ns stations are split into two sets of 
observations; "mi not measured, i D" and "mi measured, i E D". The 
conditional probabilities of each observation as given by Christoffersson 
et a1 (7) are: 

where 8 is the normal density function given by equation 3 and @ the 
cumulati.ve normal distribution given by: 

The likelihood function for the set of observations depends on whether we 
wish to include "m- not measuredM observations. If not, then the 
likelihood is the pro$uct of (No) terms such as equation (6A). 

The bottom line is required to make the probabilities conditional to each 
station measuring mi. (See Christoffersson et a1 ( 7 ) ,  Christoffersson and 
Ringdal (8)). A point estimate fi of mt can be found by maximising this 
function for the set of observed mi and assumed values for Gi, Si, ai and 
yi. This estimator appears little used, but since it requlres the 
observed mc?asurements only, it is more strictly comparable to the 
conventional mean estimator given by equation 4 than the following 
alternatives. 



If the information present in the I'mi not measured11 observations . 
is to be used then the likelihood function is the product of terms as in 
6A and 6B where appropriate. The probability must in this case be made 
conditional that there is at least one observed mi. The probability of at 
least one observation is: 

Hence the likelihood function for the full set of Ns observations is: 

When maximising this function with respect to mt clearly the first term 
@ ((mi-Gi)/:ui) can be omitted. 

The last estimator to be considered here is that described by 
Ringdal (6),   is likelihood function is essentially 

This is essentially the same as equation (10) but omitting the factor l/P1 
conditioninq the probability to at least one measured mi being prosent. 

The likelihood equations 8, 10 and 11 represent alternative 
estimation procedures to using the simple mean (equation 4). The use of 
the extra information contained in the "non observed mill would appear to 
give 1ikeli.hood equations 10 and 11 an advantage provided that such 
negative observations are definitely the result of the station thresholds 
(Gi). There are many other reasons for such a result however such as 
station "down timen, lost/spoilt recordings, or clipping with larger 
magnitudes. Unless detailed station operation records are available these 
extra causes of non observation must be allowed for in the likelihood 



equations. For bulletin data such modifications are important and can be 
attempted as in Ringdal (1) and Lilwall (2). Equation (8) is clearly free 
from this problem and appears to be an attractive alternative especially 
for routine determinations using bulletin data. The optimum choice also 
depends on the relative performance of the estimators and it is hoped to 
clarify this here using the following comparative study using simulated 
data. 

Data simulation study 

The object is to compare the four magnitude estimators described 
in the previous section. The method used is to generate simulated sets of 
observa.tio:ns which obey the underlying statistical model and apply each of 
the fou,r estimators to the resulting data. 

Two hypothetica:l networks of stations were used in the 
investigat:ion. Network 1 is identical to that used in an original study 
by Ringdal (6) using the likelihood formulation in equation 11. This 
network. co:nsists of 10 stations each with thresholds (Gi) in steps of 0.1 
units from 4.1 to 5.0 inclusive (see figure 1). Ringdal showed that his 
method was effective in removing the bias present when using the standard 
mean estimator for simulated true magnitudes down to 4.0. He did not 
investigate lower magnitudes but no problem resulting from the omission of 
the factor l.O/P1 present in equation 10 was encountered. Network 2 is 
intended to model a typical network of stations submitting data to the 
Internatiollal Seismological Centre (ISC) during the period 1978-81. 
Values of (>i for this period are computed from the thresholds gi published 
in a prevlous report (2) using equation (5) and B(a,h) corrections 
published by Marshall, Bingham and Young (9) for a surface focus source in 
the ~uriles. The distribution of Gi is also given in figure 1. 

Station magnitude data mi were generated as follows for a 
simulated true magnitude mt: 

(I) Generate a set of Ns station magnitudes mi by adding 
normally distributed random numbers with zero mean, variance U: 
to Mt. 

( 2 : )  Generate a set of N station reporting thresholds by adding 
normally distributed ranlom numbers with zero mean, variance y: 
to the mean thresholds Gi. 

( 3 , )  For each station, signal a measured station magnitude mi if 
it is above the threshold, otherwise signal a Won observation". 

( 4 , )  Using the four estimation procedures under examination 
compute the magnitude using the observed mi and non obc;ervations 
where appropriate. 

( 5 )  Repeat a large number of times to obtain t h e  distribution of 
the estimates for each mt. 

Values of y and oi were fixed at 0.2 and 0.35 respectively, values 
typical of tfiose found by several workers using Bulletin data and widely 
distributecl seismic sources (eg, North (10), Ringdal (l), Lilwall (2)). 
Station terms were set to zero. The normal distributions were truncated 
at k4 standard deviations, partly for computational convenience, but also 
because there is no evidence that the true distributions are unbounded. 



For each true magnitude the simulations were repeated until 500 sets of 
estimates were obtained. For lower magnitudes several times this number 
were necessary because of the large number which had no detections. 

Discussion of the simulation results 

Figure 2 shows a summary of the results for network 1. They are 
presented in terms of the bias as a function of simulated true magnitude. 
Bias here is the difference of the mean estimated value, using each set of 
the 500 observations, from the "truevt value. It is also given in terms of 
the mediaq value. The standard deviation of the estimates about the mean 
is used as a measure of the variance. 

Figure 2A illustrates the usual bias present when the straight 
mean is used. This bias increases monotonically with reducing magnitude 
and is significant (0.1 units) even at magnitudes corresponding to the 
least sensitive station. Figure 2B shows the results of applying the 
maximum likelihood equation (8) again using only the observed values of 
mi. Clearly this estimator is relatively free from bias over the whole 
magnitude range but also has the highest variance. For magnitudes at or 
below the average station threshold the variance rapidly becomes large, 
and exceeds the value which would be obtained from single observations 
sampled randomly from the underlying normal population (equation 3 with 
o = 0.35). Figures 2C and 2D illustrate the results obtained using 
equations 10 and 11 which include the information from the 
"non-observations1!. In figure 2C the results obtained by Ringdal (6) are 
essenti.ally repeated for magnitudes down to 4 -0. Below this level, which 
corresponds approximately to the threshold of the most sensitive station, 
the estimates become progressively positively biased. This is the result 
of the approximation in equation 11 compared with 10 and accounts for the 
apparent reduction in the difference between magnitudes determined by the 
maximum 1i:kelihood and mean estimators observed by ~ingdal (1). When all 
the terms are included (equation 10) the positive bias at low magnitudes 
is removed. It is replaced by a much smaller negative value resulting 
partly frorn the truncation of the simulated data to i4 standard deviations 
but also apparently to an inherent property of this estimator as 
implemented. When measured in terms of the median this negative bias is 
reduced. 

An interesting observation is that although the estimates in 
figures 2A and 2C become positively biased at low magnitudes the variance 
does not increase but may actually decrease. This is a direct consequence 
of the reduction in the variance of the observed station magnitudes given 
by equation 8 compared with the underlying distribution, equation 3. This 
is illustrated in figure 3 which shows that even for magnitudes at the 50% 
detection 1,evel the standard deviation of the observed mi falls to 0.75 of 
the true va~lue. 

Results for the larger Network 2 (figure 4) are similar except 
that the addition of a large number of less sensitive stations increases 
the bias present using the mean estimator and extends it to much higher 
magnitudes. The reduction in the standard errors at high magnitudes 
merely reflects the larger amount of data contributing, but little 
difference is apparent at the lower end where few of the stations 
contribute. 



3. JOINT MAGNITUDE ESTIMATION 

Magnitude determination for several seismic disturbances together 
permits the estimation of additional parameter values such as station 
terms and amplitude distance terms. In techniques such as used by North 
(10) the problem is dealt with piecewise in that the magnitudes are first 
determined individually and then station terms estimated from the 
resulting station magnitude residuals. Methods involving the simultaneous 
estimation of all the unknowns as described in Douglas (11) are more 
rigorous anti do not require iteration. This least squares technique has 
been used in several studies (Carpenter et a1 (12)) Booth et a1 (13)) 
Marshal1 et a1 (9)) and is routinely used in the determination of the 
magnitudes of explosions in nuclear test sites (Marshal1 et a1 (14,15)). 
These methods do not address the problem of bias resulting from data 
censoring and it is inevitable that bias is present in the resulting 
estimates. It is not obvious however how the bias is partitioned between 
the magniti~des and other estimated parameters. This problem is 
investigated here by again simulating data and applying both the joint 
least squares and joint maximum likelihood algorithms. 

3.2 Theoretical outline of joint methods 

Consider Ne seismic disturbances and an observational network of 
Ns stations. Let mt be the magnitude of the jth event and mij be 
the station magnitudd (as defined by equation 2) of the jth event at the 
ith station. Equation (2) can be generalised: 

From the set: of observed mi*, least squares can be used to estimate the Si 
and mt j provided an additiodal constraint 

is used. This is essentially the "Least Squares by Matrix Factorisationll 
technique (LSMF) described by Douglas (11) and has been generalised 
further to i'include the estimation of amplitude-distance terms. The form 
given above however is the most appropriate for closely spaced sources 
where perturbations from the assumed amplitude-distance curve can be 
described by a single term Si for each station. 

The LSMF method takes no account of data censoring and 
essential.1~ is similar to use of the straight mean in conventional 
magnitude estimates. All three of the maximum likelihood equations 8, 10 
or 11 can be generalised to the joint estimation of magnitudes and station 
terms. To compare directly with LSMF it is necessary to use the observed 
station magnitudes only and hence generalise equation 8. The likelihood 
is therefore 



Where the products are made only for the combinations ij corresponding to 
the observed mij set D. Point estimates of mtj, Si and oi can be found by 
maximising this function using known values for Gi and yi. Again the 
additional constraint given by equation 13 is required. The maximisation 
subject to variation of all the ai gives rise to numerical problems so 
they are all assumed to be a single variable a. In practice the value of 
U and approximate values form mtq and Si can be found using a piecewise 
iterative scheme maximising the l?.kelihood for the magnitudes and then the 
stations separately and examining the overall variation with a. Starting 
with the values of mtj and Si so obtained a final maximisation can be made 
by Newton-Raphson iteration. The constraint equation 13 can be applied 
using the method of Lagrange Multipliers (eg, Edwards ( 16 ) , Aitchison and 
Silvey (17)). The stable determination of a is possible because the data 
from a large number of observations are pooled when using joint 
techniques. This is a distinct advantage over single determinations where 
it is usually assumed (eg, 0.3 to 0.4 for earthquakes). Error in the 
assumed value results in bias even when using the maximum likelihood 
estimators. 

Confidence limits on the point estimates for LSMF can be obtained 
from the inverted normal equation using the standard least squares theory 
as described by Douglas (11). For the maximum likelihood method they can 
be obtained by exploring the variation of the likelihood around its 
maximum. Approximate confidence limits can be found easily however from 
the  result,^ of the Newton-Rapkson method which requires the inverted 
matrix of second derivatives of the likelihood function. This matrix 
approximates the variance matrix for the distributions of the estimates 
(eg, Edwards (16)). 

3 . 3  - Data simulation study of joint methods 

The simulations described here are not intended to be a 
comprehensive study on the effect of station thresholds on all the various 
possibilities for joint estimation schemes. Results will be dependent not 
only on the relative distribution of magnitudes and station thresholds 
within the group but also on the nature and spatial distribution of the 
sources which influences the value of the variance a2. Instead this study 
concentrates on the use of such methods as applied to groups of sources 
from underground nuclear explosion test sites. 

The relatively uniform source radiation and close spacing of the 
epicentres within a test site make LSMF a powerful technique for 
determining the magnitudes. The application of the least squares method 
to real data (Marshal1 et a1 (14,15)) indicates that the station magnitude 
variance a2 is smaller than found for widely distributed earthquake data. 



Typically o is found to be between 0.1 to 0.2 for bulletin data but in the 
presence of threshold effects, these will be underestimated, a value of 
0.2 appeaics appropriate. This relatively small value for o should 
minimise the effect of station thresholds on LSMF but since the accurate 
determination of magnitudes is crucial to yield estimation it is 
interesting to base the simulation study on this problem. 

Figure 5 shows the distribution of magnitudes of presumed 
explosions in the two adjacent Soviet test sites at Degelen Mt (Site A) 
and Shagan River (Site B) as determined using LSMF by Marshal1 et a1 (14). 
The distri:butions differ in that the Shagan magnitudes tend to be larger. 
Also shown is the distribution of station thresholds Gi for a hypothetical 
network of stations. This network is based on the real world network 
submitting amplitude data to the ISC during 1978-81 for which amplitude 
(LO~~/T) t:hresholds gi have been computed by ~ilwall (2). Only stations 
in the distance range A = 30 to 90' are included and Soviet stations 
deleted as; they do not report amplitude data for these sources. The 
magnitude ,thresholds in figure 5 are obtained by adding distance factors 
Bi as published by Marshal1 et a1 (9). Simulated data sets were produced 
in a similar way to that described in section 2 assuming a distribution of 
true magni,tudes and hypothetical network as shown in figure 5. Both ai 
and yi were set to 0.2. Station terms derived from a normal distribution 
with zero rnean and SD = 0.2, were included in the generation of the data. 

The least squares (LSMF) and joint maximum likelihood (JML) 
techniques described in the previous section were applied to the two sets 
of data. In addition the magnitudes were determined singly using the 
means. Figure 6 presents the results for the magnitudes in terms of the 
average difference between the estimated and "truett value as a function of 
the true value. Clearly even with a relatively low value for a the bias 
problem using the mean is still substantial especially for site A (Degelen 
sim~lation)~. Use of LSMF gives only moderate reductions in the bias 
(triangles) whilst as expected the JML results (dots) are unbiased. The 
effect of bias on the validity of the confidence limits is striking. For 
LSMF the standard limits include the true value in 3% and 29% of cases for 
sites A and B respectively whilst these percentages rise to 62% and 68% 
for JML. It is evident that the use of JML if possible may provide a 
useful improvement in routine analysis of real data. 

Figure 7 illustrates the deviation of the estimated station terms 
for site A from the simulated values as a function of the station 
threshold (3i. Again the JML results are as expected with zero bias and 
increasing variance with increasing threshold. A clear trend is present 
in the LSM:F results with a negative bias at low thresholds changing to a 
positive value at high thresholds. The total range of the bias is 
considerab1.e (0.2 to 0.3 units). This trend is clearly the result of the 
threshold censoring of low readings at the less sensitive stations but 
affects all the estimations through the constraint that the tc-a1 sum of 
station terms is zero. 

The results for site B are shown in figure 8. Again the LSMF 
values have a clear but much reduced trend. It is however surprisingly 
large considering that 80% of the magnitudes are 5.5 and above. The 
validity of confidence bounds for the station terms for both sites 
parallels those for magnitudes, for LSMF the percentages for inclusion of 
the true v'alue are 3% and 34% whilst for JML they are 68% and 58% for A 
and B respectively. 



4 .  CONCLUS IONS 

This report examines the performance of several statistical 
procedures for magnitude estimation in the presence of data censorship 
resulting from station thresholds. For magnitudes estimated singly, all 
three estimators studied show little bias for magnitudes above the 50% 
detection threshold of the most sensitive station in the observing 
network. If the origin of the observations giving no amplitude 
measurement can be correctly identified then the two methods which use 
this information (equation 10 and 11) have a clear advantage in terms of 
reduced variance. For routine magnitude determinations from bulletin data 
however equation 8 gives similarly unbiased results and is clearly 
preferable to the conventional mean. At lower true magnitudes there 
appears to be a trade off between bias and variance. Under an unlimited 
normal law for the station magnitude and noise distributions the large 
variance found for the unbiased estimators shows the information content 
in magnitude observations below the threshold is low. It is worth noting 
that if the performance of each estimator is assessed in terms of the rms 
deviation from the true magnitude Ringdalls formulation (equation 11) 
gives the best results for magnitudes down to 3.2 in spite of the bias. 
Associated, confidence limits, if computed however, will be unrealistically 
low. 

Joint least squares analysis, when applied to world network data 
such as received by the ISC, should give a moderate reduction in the 
magnitude bias present in standard determinations. Significant bias is 
still present however, both in the estimated magnitudes and station terms. 
It is smaller if larger (with respect to station thresholds) magnitudes 
only are included but this reduces the value of the technique when applied 
to many pr:oblems using Bulletin data. Care must therefore be taken when 
interpreting the station terms resulting from least squares analysis since 
bias contribution can be as great at *0.1 units. Joint maximum likelihood 
is an attractive alternative to least squares providing reliable values 
for the th.resholds are available. Finally it is worth restating that the 
effect of station thresholds will be greater for widely spaced earthquake 
sources which result in an increased variance a. For such data use of 
maximum likelihood rather than least squares technique has even more 
advantages than for the analysis of closely spaced explosion sources. 
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FIGURE 3 ( a ) .  PROBABILITY DENSITY FUNCTIONS (GIVEN BY EQUATION 8) FOR 
OBSERVED STATION MAGNITUDES AT A STATION FOR SOURCES OF 
TRUE MAGNITUDE 
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FIGURE 31b). VARIATION IN SD OF 0BSERVED.q FOR VARIOUS TRUE U A$ 
FUNCTION OF TRUE MAGNITUDE Q 
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FIGURE 5(a ) ,  DISTRIBUTION OF 50% REPORTING THRESHOLDS COMPUTED FOR THE 
SOVIET SEMIPALATINSK TEST SITE FOR STATIONS IN THE DISTANCE 
RANGE A = 30 to loo0. 
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FIGURE 5 (b l  . DISTRIBUTION OF SIMULATED MAGNITUDES FOR SITE B BASED ON 
THOSE OBSERVED FOR THE SHAGAN RIVER REGION OF THE TEST SITE. 

SlTE A 
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FIGURE  CL), DISTRIBUTION OF SIMULATED MAGNITUDES FOR SITE A BASED ON 
THOSE OBSERVED FOR DEGELEN MOUNTAIN REGION OF THE TEST SITE. 
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FIGURE 6. MEAN DIFFERENCES FROM THE (SIMULATED) TRUE MAGNITUDES FOR SITES 
A AND B AS A FUNCTION OF THE TRUE MAGNITUDE. 
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FIGURE 7, ERRORS IN COMPUTED STATION TERMS FOR SITE A (SIMULATED DEGELEN 
MOUNTAIN) PLOTTED AS A FUNCTION OF STATION THRESHOLD. 
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FIGURE 8. ERRORS IN COMPUTED STATION TERMS FOR SITE B (SIMULATED SHAGAN 
RIVER) PLOTTED AS A FUNCTION OF STATION THRESHOLD. 
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