UK UNLIMITED

ATOMIC WEAPONS RESEARCH ESTABLISHMENT

AWRE REPORT NO. 030/86

Empirical Amplitude-Distance/Depth Curves for Short-Period P Waves in the Distance Range 20 to 180⁰

R C Lilwall

Recommended for issue by

A Douglas, Superintendent

Approved by

¢

\$

B L Elphick, Head of Division

1 UK UNLIMITED

ISBN 0 85518178 8

CONTENTS

Page

SUMMARY 3 1. INTRODUCTION 3 2. THEORY OF METHOD 4 3. DATA AND ANALYSIS 6 4. DISCUSSION 8 5. ACKNOWLEDGMENTS 9 REFERENCES 10 TABLES 1 - 5 12 FIGURES 1 - 11 24

¢

۰.

S

٢.

c -

SUMMARY

A joint maximum-likelihood estimation technique is used to determine the variation in the amplitude of P waves in the range $\Delta = 20$ to 180° for 5 focal depth intervals. The results which are consistent with those of other workers in the teleseismic distance range 30 to 90° should enable PKP observations to be used in magnitude estimation. A complementary set of station terms are also estimated which should be free from the bias introduced by the use of standard least squares estimators on data censored by the presence of station reporting thresholds.

1. INTRODUCTION

The size of a seismic disturbance is frequently measured in terms of the short-period (SP) body-wave magnitude m_b . This is defined by Gutenberg-Richter (1) by the equation

$$\mathbf{m}_{\mathbf{h}} = \mathrm{Log}_{10}(\mathbf{A}/\mathbf{T}) + \mathrm{B}(\Delta, \mathbf{h}) \qquad \dots \qquad (1)$$

where A is the amplitude in nm of the initial P wave, T its average period and $B(\Delta,h)$ a distance (Δ) depth (h) normalising term. A and T are measured on narrow band (SP) instruments such that T \approx 1.0 seconds.

Magnitudes published by agencies such as the International Seismological Centre (ISC) and the United States Geological Survey (USGS) are essentially the mean of individual station estimates based on equation (1). The above two agencies use the Gutenberg-Richter $B(\Delta,h)$ curve with data in the distance ranges 21 to 100° and 5 to 100° respectively. Clearly the amplitude-distance curves defined by the $B(\Delta,h)$ values have an important bearing on the accuracy and consistency of m_b estimates. In recent years several workers (eg, Booth et al (2), Veith and Clawson (3), Vanek et al (4), Marshall et al (5)) have published alternative curves for shallow focus sources and distances up to 100° . Apart from baseline shifts these curves show considerable similarity over the distance range 30 to 90° . In contrast the Gutenberg-Richter curve deviates by up to 0.3 within this same range.

Data from distances beyond 100° are rarely used in magnitude determination. This is mainly because low amplitudes are observed over much of the core-shadow region and where large amplitudes do occur (near the PKP focus $\Delta = 140$ to 150°) the seismograms exhibit multiple arrivals corresponding to the various core phases. Nevertheless Sweetser and Blandford (6) and Mizoui (7) have emphasised the potential value of PKP data in terms of both consistency of the amplitude readings and its use with stations situated near the focus for low magnitude sources. Both these publications give shallow focus amplitude-distance curves for the PKP distance range. As part of a study on Soviet amplitude observations, Marshall et al (5) also include a figure indicating the general form of the curve including PKP.

The empirical determinations of amplitude-distance curves mentioned above were made using either a simple averaging or least squares technique to determine the variation of amplitude with distance. Neither estimation technique allows for bias resulting from data censoring arising from station thresholds (eg, Ringdal (8)). In addition few workers have attempted to determine a world average curve by using both widely distributed stations and sources. The Veith-Clawson results differ from the other studies in that they are theoretical amplitude predictions based on an earth velocity-Q model. Amplitude data are used only indirectly to estimate the Q structure. Such theoretical studies are however not easily applicable to the core shadow transition or PKP zones.

This report describes the determination of empirical amplitude distance curves for a range of focal depths and over the distance range 20 to 180°. It is hoped the estimated curves will not have the limitations described above and will make it possible for PKP data to be easily used in the determination of the magnitude of sources at all depths.

2. THEORY OF METHOD

Consider M seismic sources and a network of N stations. Let the distance range over which amplitudes (=LogA/T) are measured be divided into K intervals. If a_{ijk} is an amplitude reading corresponding to the ith source, jth station and kth distance then let

$$a_{ijk} = b_i + s_j + d_k + \epsilon_{ijk} \qquad \dots (2)$$

where b_i is a measure of the source size, s_j a station term, d_k a distance term and ϵ_{ijk} is a random variable which is approximately normally distributed. The probability density function (PDF) for the a_{ijk} can therefore be written:

$$P(a_{ijk} \mid b_i, s_j, d_k, \sigma) = \frac{1}{\sqrt{(2\pi\sigma)}} e^{-0.5} \left[\frac{a_{ijk} b_i s_j d_k}{\sigma} \right]^2 \qquad \dots (3)$$

where σ^2 is the variance of ϵ_{ijk} . Given enough observations a_{ijk} then values of b_i, s_j and d_k can be estimated by least squares as described by Carpenter et al (9) using the equations of condition (2) and the constraints:

$$\sum_{i=1}^{k=K} s_{j} = \sum_{k=1}^{k=K} d_{k} = 0.0 \qquad \dots (4)$$

A similar result can also be obtained by maximising the likelihood function for the $N_{\rm obs}$ a_{ijk} observations:

$$L(b_{i},s_{j},d_{k},\sigma) = \prod_{n=0}^{N_{obs}} \theta\left[\frac{a_{ijk}-b_{i}-s_{j}-d_{k}}{\sigma}\right] \qquad \dots (5)$$

where θ is the normal PDF equation 3. Unfortunately the presence of the station thresholds, below which a_{ijk} is not measured or reported means that the PDF of the observations may differ from equation (3) and its use result in biased estimates. To take account of station thresholds let G_j be the mean threshold for station j and γ_2^2 be its variance. Assuming the thresholds are normally distributed about G_j then the likelihood for the N_{obs} observed a_{ijk} can be written:

$$L(b_{i},s_{j},d_{k},\sigma) = \prod_{n}^{N_{obs}} \frac{\left(\frac{a_{ijk}-G_{j}}{\gamma_{j}}\right) \theta \left(\frac{a_{ijk}-b_{i}-s_{j}-d_{k}}{\sigma}\right)}{\Phi \left(\frac{b_{i}+s_{j}+d_{k}-G_{j}}{\sqrt{\sigma^{2}+\gamma_{j}^{2}}}\right)} \dots (6)$$

(eg, Christoffersson et al (10), Christofferson and Ringdal (11)), where the expression to the right of the product sign represents the PDF for an observed a_{ijk} in the presence of thresholds with Φ the cumulative form of Θ , ie

$$\Phi(\mathbf{x}) = \int_{-\infty}^{\mathbf{x}} \theta(\mathbf{y}) d\mathbf{y} \qquad \dots \qquad (7)$$

Estimates of b_i, s_j, d_k and σ can be obtained by maximising the likelihood (6) again subject to the constraints (4).

The effect of gross errors in the data can be reduced by modifying the PDF in equation (6) by the addition of a small constant term, essentially employing the method of uniform reduction of Jeffreys (12). A value of 0.01 times the peak value of the distribution has been found to be appropriate and results in the progressive reduction of the contribution of data with residuals (= $a_{ijk}-b_i-s_j-d_k$) greater than two to three standard deviations (σ).

Maximisation of the likelihood function can be achieved by first maximising for the four sets of variables σ , b_i , s_j and d_k numerically in a piecewise interative scheme. Final joint maximisation is then possible using Newton-Raphson iteration. The constraints (4) can be applied by the method of Lagrange multipliers (Edwards (13), Aitchison and Silvey (14)). Final maximisation involves inversion of a matrix for the M+N+K variables (\simeq 700 for the initial analysis described below) and computer storage capacity therefore limits the amount of data which can be used. In practice the joint maximisation has been found to result in only small adjustments (less than 0.02 in the b_i, s_j or d_k) from the values obtained from the piecewise analysis and therefore in principle much larger quantities of data can be analysed.

Confidence limits on the maximum-likelihood point estimates can be obtained by exploring the variation of the likelihood around its maxima for each of the variables. Approximate confidence limits can be found more easily however from the results of the Newton-Raphson method which requires the inverted matrix of the second derivations of the likelihood function (6). This matrix approximates the variance matrix for the distributions of the estimates (eg, Edwards (13)).

3. <u>DATA AND ANALYSIS</u>

The data used are amplitude (A) and period (T) readings available from the ISC Bulletin tapes for the period 1964-81 inclusive. Station threshold parameters (G_j and γ_j) are reproduced in table 1. They are estimated using the method of Kelly and Lacoss (15) and are essentially those published in an earlier report (Lilwall and Neary (16)) with some minor modifications and additions.

Some preliminary analyses using data from 1971-1981 were used to highlight any problems in data selection and methodology. For these analyses seismic sources were selected on the basis of magnitude and were restricted to the interval m_b 5.5 to 6.0. Use of these relatively high magnitudes maximises the number of station observations for each source and also minimises the effect of station thresholds. An upper limit of $m_b 6.0$ is used since above this magnitude, the loss of data resulting from instrument saturation/clipping becomes increasingly important (von Seggern and Rivers (17)), an effect not incorporated in the estimation statistics. Unfortunately, the resulting spatial distribution, even for shallow focus sources, is far from uniform. Nearly 75% come from the western Circum-Pacific belt (Alaska to New Zealand). In contrast the Mid-Oceanic Ridge system is poorly represented. Uniform spatial distribution is both desirable and necessary to average out deviations from the assumed model of random source radiation pattern, simple (non azimuthal) station terms and a single amplitude distance curve, all implicitly assumed by the use of equation (2). The imbalance in the source distribution is preserved even when smaller magnitudes are considered. Many studies involving the determination of station terms take little heed of this problem and use large spatially unselected source datasets (eg, Lilwall and Neary (16), Marshall et al (5), Ringdal (18), North (19)). For deep focus sources the situation further deteriorates since the data becomes dominated by sources in the SW Pacific and in some instances results in only marginal separation of the station (s_i) and distance terms (d_k) . Station terms (s_i) are therefore not estimated in these cases.

Figures 1 and 2 show the distance terms for a range of source depth intervals. For the four shallower intervals there is sufficient data to compute terms with high precision for 1° cells. Even allowing for the amount of scatter expected from the confidence bounds considerable fine structure superimposed on the curves appears to be visible, such as near 50° , over several of the depth intervals. The relatively smaller number of available sources at greater depths result in rather large confidence limits even when 2° cells are used.

In the final analysis the following procedure was used to select the seismic sources so as to achieve a more even spatial distribution. The earth's surface was first divided up into 400 regions of equal area; each region being roughly 10° square. Seismic events with m_b between 5.0 and 6.0 were selected subject to a maximum of three per region. In cases where more than the maximum occurs those with the highest acceptable magnitudes were used. For the period 1964-81 this results in about 500 earthquakes and explosions with assigned depths in the intervals 0 to 50 km. Far fewer were selected in the other depth intervals (50-150, 150-250, 300-500 and 500-700 km) and it was necessary to increase the number per region to 5, 5, 10 and 10 per region respectively in order to get sufficient data.

Figure 3A shows the resulting epicentre distribution in the 0 to 50 km depth range. Although only about 50% of the regions contain one or more epicentres, the main seismic belts are evenly represented. Figures 3B to 3E show the epicentres for the other depth ranges using the above selection criteria. These distributions, judged in terms of spatial uniformity and number, rapidly deteriorate for the deeper depth ranges. In view of the problems encountered in the preliminary analysis described above, station terms were therefore only computed for the shallow focus data. These terms were applied to the input data in the determination of distance terms for deeper focus sources.

For all the depth intervals the distance terms were computed at 2° spacing except near the PKP focus where amplitudes change rapidly and so 1° spacing was used. This provided ample data to estimate each distance term for all the depth ranges considered and also provided some smoothing when compared with the preliminary results in figures 1 and 2.

Table 2 gives some general statistics on data used to produce the five curves. Figures 4A to 4E show the resulting amplitude-distance terms together with their (approximate) 95% confidence limits. The smooth curves are cubic spline fits to data points computed at 0.5° intervals. Over most of the distance range (20 to 140° , 150 to 160°) these points are the weighted average of the new distance terms using a running 5° window. Weights correspond to a cosine taper within the window. In the range 140 to 150° linear interpolation of the rapidly changing terms was used. Beyond 160° the distance terms in all of the five depth ranges are poorly constrained by the data. All results were therefore pooled to give average smoothed values in this range. Table 3 gives the smoothed curves interpolated at 0.5° intervals. To aid their use and for comparison with other results they are all baselined to give zero mean value within the "teleseismic window" $\Delta = 30$ to 90° . To enable conversion to the baselines of the Gutenberg and Richter (1) and Veith-Clawson (3) curves table 4 gives the mean values of these curves for the same distance interval and for a range of focal depths.

The station terms obtained for the shallow-focus curve are given in table 5. Although in general the distance terms are well constrained by a large quantity of data this is not true for all the station terms. For various reasons (sensitivity, period of operation) individual stations vary considerably in the quantity of data they contribute to the analysis and this is reflected in the confidence limits. To obtain an "improved" set of station terms a much larger data set was assembled. An attempt was made to optimise the spatial distribution by employing rectangular regions as before but the number per region increased from 3 to 12 and the time period extended to the end of 1983. Figure 5 gives the source distribution which like figure 3A shows the major seismic belts uniformly represented. Using this extended data set a final set of station terms were computed using the method described in section 2. Distance terms dk were not estimated, instead values derived from the smoothed curves in table 3 were applied to the input data. Only the initial piecewise scheme described in section 2 was used, the saving in data storage required by the full Newton Raphson method enabling the large number of sources to be processed. As already mentioned the errors introduced by this are at most 0.02 (logA/T) units in the estimated terms. The "preliminary" estimates of the station terms (table 5), where available, were used as the starting point in the iterations. The final revised terms together with confidence limits are also listed in table 5.

4. DISCUSSION

It is of interest to compare the amplitude distance curves estimated here with those of other studies. Most workers have concentrated on the curves for shallow sources in the range 20 to 100⁰. Figure 6 compares the shallow focus (0 to 50 km) curves with those obtained by Gutenberg and Richter (1), Booth et al (2), Veith and Clawson (3), Vanek et al (4) and Marshall et al (5). To aid comparisons, all the curves have been baselined to a zero mean in the range $\Delta = 30$ to 90° . With the exception of the Gutenberg and Richter curve, agreement between the baselined curves is impressive. The oscillatory nature of the Gutenberg-Richter curve about the more recent results is well known and these results reaffirm the need for a revised standard for the investigation of small magnitude differences or as a baseline in the determination of station terms. This conclusion is reinforced in figures 7A and 7B which compares the present results with the Gutenberg-Richter curves for the range of depths used. Also shown is the comparison with the Veith-Clawson (3) curves. Apart from the 400 to 600 km depth range agreement with the rebaselined Veith-Clawson curves is excellent with maximum deviations rarely exceeding 0.1 (Log A/T) units. The new empirical curves show more structure in the distance range 20 to 40°, particularly for the three deeper focus curves. It is possible that for deeper foci, especially at shorter distances, they may have a regional bias because of the relatively poor distribution of the sources shown in figures 3C to 3E. The Veith-Clawson curves on the other hand are computed from the depthvelocity model derived from the Herrin et al (20) travel times and a Q structure based on a limited amount of amplitude data from nuclear explosions. Considerable smoothing is involved in the production of this earth model and therefore fine structure is not expected.

Figure 8 compares the new shallow focus empirical curve for PKP amplitudes with those of Mizoui (7) and Sweetser and Blandford (6). Here the curves have been rebaselined to that of the new curves for the distance intervals 110 to 150° and 110 to 170° respectively. Differences between the curves are evident near 110° and between 136° and 140° for the Mizoui curve and near 110° for that of Sweetser and Blandford. The Mizoui and Sweetser-Blandford curves are poorly constrained by the data at these ranges however and the differences may not be real. In figure 9 the surface focus curve is compared with the raw amplitude distance terms published by Marshall et al (5) for Soviet observations. Although the latter is well constrained over most of the PKP range the terms are larger by up to 0.5 units in the region of low amplitudes between 100 and 140°. This anomaly is the direct result of station thresholds which are not allowed for by the least squares estimator employed by Marshall et al (eg, Lilwall (22)). A common difference, visible near the PKP focus in the range $\Delta = 145$ to 150° , probably results from the multiplicity of the PKP branches (PKIKP, PKHKP, PKP2) for which the Log(A/T) data may correspond. The reader is referred to two of the above mentioned papers (6,7) for detailed discussion of the effect of these phases on amplitude measurements in this distance range. The empirical curve here corresponds to the average value resulting from the ISC PKP associations for a world network of stations. The amplitude range for the strongest and weakest phases (PKP2, PKIKP) at these distances probably spans up to 0.4 Log(A/T) units (6) and maximum errors resulting from the use of an overall average curve appear to be ± 0.2 units. A logical extension of this work is a more detailed evaluation of the amplitude variation in terms of travel time near the PKP focus.

The shape of the curve between 95 and 110° requires explanation. In this range the times and amplitudes are those for diffracted P, beyond 110° they correspond to PKP. Diffracted P amplitudes should fall progressively with distance and the observed fall off up to 105° agrees well with theory (Lilwall (22)). The apparent rise between 105 and 110° is not predicted by diffraction theory unless there is a tendency toward longer periods in the Log(A/T) measurements. Examination of period T with distance shows no such trend. Another possible explanation is that the small number of readings contributing to this range (78 for 106 to 110° compared with 1077 for 70 to 74° for instance) have a high proportion of spurious associations.

The final set of station terms are plotted against four other sets of determinations in figures 10A-B. All are well correlated but the North (19) and Ringdal (18) terms have a positive bias. The best correlation is between the preliminary and final sets of corrections given in table 4. This is clearly expected, and confirms that the addition of the extra data and the simplified analysis have not introduced any unforeseen perturbations in the results. The Lilwall and Neary (16) terms were obtained using an estimation method similar to that described in this report with a much larger, but spatially unselected, set of seismic sources. Again the two sets are well correlated but with a slight tendency for the amplitude of some of the negative Lilwall and Neary terms to be greater. A possible explanation of this is the difference in the value of σ used in the two studies: a value of 0.35 was assumed in the Lilwall and Neary (16) study and 0.30 (table 2) in this report. Too high a value of σ results in overcorrection of the positive bias found in standard estimates especially for stations with high "effective" $(=G_j-S_j)$ thresholds. The North (19) and Ringdal (18) terms are both based on a relatively simple averaging procedure with no allowance for station thresholds. That this appears to give an overall positive bias is obvious in figure 10B, but figure 11 reveals that the situation is more subtle. Here the difference in the final and Ringdal terms are plotted against the average "effective" station threshold for the period 1970-80. A correlation coefficient of -0.7 for these points indicates that half the variation of the two variables can be accounted for by an underlying linear relationship. Figure 11 shows that the Ringdal terms exhibit an increasing positive bias with increasing station threshold, exactly as observed from previous investigations on estimation methods used, (Lilwall (21,22)). These considerations suggest that the station terms in table 5 represent a considerable improvement over similar sets hitherto published.

5. ACKNOWLEDGMENTS

I would like to thank Mr P D Marshall for useful advice and discussions concerning amplitude measurements and the amplitude-distance curve. Also thanks are due to the station analysts who produce the raw amplitude readings and to the International Seismological Centre in presenting this data in such a useful form.

REFERENCES

- 1. B Gutenberg and C F Richter: "Magnitude and Energy of Earthquakes". Annali Geofis, <u>9</u>, 1 (1956)
- 2. D C Booth, P D Marshall and J B Young: "Long and Short Period P-wave Amplitudes from Earthquakes in the Range 0 to 114^o". Geophys J R Astr Soc, <u>39</u>, 523-537 (1974)
- 3. K F Veith and G E Clawson: "Magnitude from Short Period P-wave Data". Bull Seism Soc Am, <u>62</u>, 435-452 (1972)
- 4. J Vanek, N V Kondorskaya and L V Christosokov: "Earthquake Magnitude in Seismological Practice. PV and PVs Waves". Bulgarian Acad of Sciences, Sofia (1980)
- 5. P D Marshall, J Bingham and J B Young: "An Analysis of P-wave Amplitudes Recorded by Seismological Stations in the USSR". Geophys J R Astr Soc, <u>84</u>, 71-79 (1980)
- 6. E I Sweetser and R B Blandford: "Seismic Distance-Amplitude Relations for Short Period, P, Pdiff, PP and Compressional Core Phases for $\Delta > 90^{\circ}$ ". SDAC Report TR-73-9 (1973)
- 7. M Mizoui: "On the Magnitude Calibration Function for Core Phases with Special Reference to the PKP1-PKP2 Caustic". J Phys Earth, <u>25</u>, 143-162 (1977)
- F Ringdal: "Maximum Likelihood Estimation of Seismic Magnitude". Bull Seism Soc Am, <u>66</u>, 789-802 (1976)
- 9. E W Carpenter, P D Marshall and A Douglas: "The Amplitude-Distance Curve for Short Period P Waves". Geophys J R Astr Soc, <u>13</u>, 61-70 (1967)
- 10. L A Christoffersson, R T Lacoss and M A Chinnery: "Statistical Models for Magnitude Estimation". Lincoln Lab SATS, TR-75-335, 2-5 (1975)
- 11. L A Christoffersson and F Ringdal: "Optimum Approaches to Magnitude Measurements". In "Identification of Seismic Sources -Earthquake or Underground Explosion". Proc NATO Adv Study Inst, edited by E S Husebye and S Mykkelvert, 575-587, Reidal Publishing Co (1980)
- 12. H Jeffreys: "The Theory of Probability" 3rd Ed. Oxford University Press (1961)
- 13. A W F Edwards: "Likelihood". Cambridge University Press (1972)
- 14. J Aitchison and S D Silvey: "Maximum Likelihood Estimation of Parameters Subject to Restraints". App Math Statist, <u>29</u>, 813-828 (1958)

<u>REFERENCES</u> (Cont'd)

- 15. E J Kelly and R T Lacoss: "Estimation of Seismicity and Network Detection Capability". MIT Lincoln Lab, Tech Note 41 (1969)
- 16. R C Lilwall and J M Neary: "Redetermination of Earthquake Body Wave Magnitudes (mb) Using ISC Bulletin Data". AWRE Report No. 021/85, HMSO, London
- 17. D von Seggern and D W Rivers: "Comments on the Used Truncated Distribution Theory for Improved Magnitude Estimation". Bull Seism Soc Am, <u>68</u>, 1543-1546 (1978)
- 18. F Ringdal: "Study of Magnitudes Seismicity and Earthquake Detectability Using a Global Network". In: The VELA Program A 25 year Review of Basic Research". DARPA edited by Anne Kerr, 611-624 (1985)
- 19. R G North: "Station Magnitude Bias Its Determination, Causes and Effects". Lincoln Lab Tech Note 1977-24 (1977)
- 20. E Herrin et al: "Estimation of Surface Focus Travel Times". Bull Seism Soc Am, <u>58</u>, 4, 1273-1291 (1968)
- 21. R C Lilwall: "Some Simulation Studies of Seismic Magnitude Estimators". AWRE Report No. 022/86 (1986)
- 22 R C Lilwall: "Station Threshold Bias in Estimates of Short Period Amplitude Distance and Station Terms". Geophys J R Astr Soc (Submitted).

TABLE 1

<u>Mean (50%) Thresholds (q_j) and Standard Deviation (γ_j) Given as a Function of Time for Stations Used in this Report.</u> (The time periods are given in terms of year and month.)

STATION THRESHOLD DATA AS FUNCTION OF TIME

4

à

	STATION	THRESHOLD	UNIA A	3 FUNC	1108 07 117								
AAE AAI		6401-7012 8006-8312	1.52	0.28									
ABQ		7401-7712	~.05	0.17	7801-8312	2.24	0.20						
ABU ACO		7001-7712	1.58	0.33	7801-8312	1.52	0.31						
AD- ADE		6401-6912 7401-7712	2.01	0.27	7801-8312	2.20	0.27						
ADK AFI		7001-7712 7001-8112	1.98	0.29									
A FR AGM		7001-7712 7001-8112	2.00	0.33 0.34	7801-8312	1.90	0.22						
AKU ALE		7801-8312 6401-6912	1.49	0.19	7001-7309	1.13	0.14	7310-7712	0.72	0.18	7801-8312	0.81	0.23
ALM		7801-8312 6401-6912	12	0.11	7001-7312	1.02	0.19	7401-7712	0.93	0.23	7801-8312	0.37	0.14
ALQ		7001-8112	1.98	0.23	7001-8112	2.41	0.25		••••				
ANG		6401-6912 6401-6912	2.21	0.10	7801-8312	2.42	0.23						
ANR APA		7801-8112 7801-8112	1.80	0.16									
APT ARE		7401-7712	1.43	0.30	7101-7712	1.66	0.27	7801-8312	1.55	0.15			
ARU ASH		7801-8112 7801-8112		0.20									
ASP		7001-7312 6401-7012	1.41	0.30	7401-7712	1.40	0.32	7801-8112	1.77	0.22			
AVF		7701-7712	0.98	0.21	7801-8312 7001-7312	0.95	0.21	7401-7712	1.86	0.19	7801-8312	2.00	0.20
BOT		7801-7904	1.60	0.34	7905-8312 7903-8312	1.58	0.24						
BDW		7001-7312	1.53	0.17	7001-7312		0.15	7401-7712	0.71	0.05			
BHA		6401-6912 8108-8312	1.88	0.20	1001-1312	0.01	0.15		••••	0.05			
BHO	•	8105-8312 6401-7512	2.00	0.39									
BJ1 BKR		7001-8112	1.42	0.19									
ÐKS Bla		6401-6912		0.26	7001-7312 7801-8312		0.19 0.29	7401-7712			7801-8312	1.01	0.21
BLC		6401-7012 7801-8212	1.90	0.12	7101-7405	2.00	0.26	7406-7706	1.20	0.26			
BMC)	6401-6912 6401-7012	2 0.04	0.17	7001-7312 7001-7312		0.17	7401-7712 7401-7712	0.16	0.22	7801-8312	0.78	0.13
BNH	1	7001-8112	2 1.20	0.26	7001-7312		0.25	7401-7712	1.63	0.25			
BNS)	7801-8112	2 1.08	0.14	7001-1312	1.05	,						
801 821		6401-6912 7001-8112	1.27	0.22									
BR(7001-8112 7001-7312	2 0.88	0.30	7401-7712	0.89	0.13	7801-8312	0.94	0.09			
BSI	F	7401-7712		0.18	7801-8312	1.14	0.21						
808 800	3	7001-8112	2 1.58	0.19	7801-8312	1.76	0.24						
BUI	1	6401-7012	(1.2/	0.26	7001-7312	0.74	0.11	7401-7712	0.81	0.11	7801-8312	0.67	0.09
CAR		8101-8312 6401-6912	2 0.90	0.19	7001-7312		0.27						
CAP	2	6401-6912	2 1.50	0.16	7001-7312 7801-8312	1.54	0.11	7401-7712	1.65	0.16	7801-8312	1.69	0.18
CBP	F	7401-7712	2 1.07	0.20	7801-8312	1.00	0.21						
CER		7801-8201 8012-8312	2 1.83	0.25			A 10	7801-8312	1.09	0.17			
CHO		6401-6712 8201-8312	2 0.73	0.19	7401-7712		0.19				7801-8301	0.63	0.05
CIN	1	6401-6912 6401-6912	2 0.56	0.16	7001-7312 7001-7312	0.64	0.12	7401-7712 7401-7712	0.75	0.06	7801-8303	0.71	0.06
ČLI		6401-6912	2 1.57	0.23	7001-7312	1.21	0.12	7401-7712	1.16	0.11	7801-8312	1.17	0.13
CNO	1	7901-831	2 1.71	0.22									
C 06	3	7801-831	2 2.23	0.15	7001-7312	0.95	0.14	7401-7712	0.97	0.14	7801-8312	0.90	0.12
COL	>	6401-6912	2 1.89	0.13	7001-7312	1.81	0.18	7401-7712 7401-7712		0.18	7801-8312	1.90	0.18
CP()	6401-691 7001-811	2 1.28	0.26	1001-7511	••••	••••						
CR CT	r N	6401-701 7801-820	6 1.32	0.10	8207-8317	1.32	0.26						
CUI	4 F	7001-811	2 1.47	0.18	7801-8312	1.43	0.30						
CW		7001-811 8301-831	2 2.74	0.27									
DA	6	7401-771	2 0.97	0.20	7801-8312	0.94	0.17						
DA	R	7001-731	2 1.63	0.19									
DBI	N	6401-691 7801-790	2 2.80	0.18	7904-8312	2 1.84	0.27						
DCI	ĸ	7001-800	6 1.68	0.18	8007-831	1.71	0.21						
DK	M	7801-811	2 1.72	0.21	8006-831	2 1.76	0.24						
DL DM	N	7801-800 8301-831	2 1.22	0.22									
DN	U	7801-790	3 1.78	0.27	7904-831	2 1.80	0.20						

TABLE 1 (Cont'd)

s	TATION THRESHOLD	DATA A	S FUNC	TION OF TIM	E										
DOM DUG EAB EAU EBH	6401-6912 6401-6810 7401-7712 7401-7712 7401-7712 7401-7712	0.31 1.55 1.55 1.51	0.25 0.22 0.28 0.28 0.28 0.31	6811-7312 7801-8208 7801-8209 7801-8209 7801-8209 7801-8209	1.58 1.69 1.63	0.30 0.26 0.27 0.26 0.28	7401-7712	1.12	0.26						
EBL ECB ECP	8102-8312 7801-8005	1.38 1.88 2.57	0.29	8006-8312	1.56	0.36									
ËCT EDI	7001-8112 7401-7712	1.21	0.29	7801-8208	1.59	0,22									
EDM EDU	6401-6912 7001-8112	1.80	0.20	7001-7312	1.59	0.12	7401-7712	1.69	0.15	7801-8312	1.69	0.14			
EGL EKA	7401-7712 6401-6912	1.42	0.28	7801-8112 7001-7312	1.59	0.27	7401-8001	1.17	0.20	8002-8312	0.91	0.27			
ELO ELT Emm	7401-7712 7801-8112 7801-8112	1.53 1.30 1.50	0.30	7801-8209	1,58	0.27									
ENN	8201-8312 7801-8312	1.22	0.21												
ESK ETA	6401-6912 8202-8312	1.53	0.19	7401-7712	2.05	0.30	7801-8312	1.91	0.24						
EUR	6401-6912 6401-7012	0.54	0.22	7001-7312			7401-7712	0.60	0.35	7801-8203	0.71	0.37	8301-8312	0.71	0.37
FBA FBC	7801-7805 6401-6912	1.16	0.29	7806-8312 7001-7312	1.23	0.30	7401-7717			2001-0712		0 30			
FCC FDA FEL	6401-6912 7001-8112 6401-6912	1.71 1.03 2.07	0.10 0.18 0.27	7001-7312	1.75	0.09	/401-//12	1.01	0.17	7801-8312	1,03	0.28			
FFC FLN	7001-7309 7401-7712	1.60	0.07	7310-7712 7801-8312		0.26	7801-8312	1.07	0.25						
FLO FRB	6701-7312 7401-7712	1.35	0.23	7801-8312											
FRF FRT	8107-8312 7801-8112	1.40	0.29												
FRU FSJ FUR	7801-8112 6401-6912 6401-6912	1.54 2.14 1.52	0.12 0.39 0.42	7001-7312 7001-7312	1.55	0.13	7401-8112 7401-7908	1.64	0.28	7000-8017	2 10	0.25	8101-8312	1 84	0 24
FVM GAR	7501-7505 7801-8112	1.00	0.20	7805-8112	2.20	0.20	8205-8312	1.29	0.24			0.27	0.01.0512	1.04	54
GBA GDH	6401-6912 6401-6912	1.26	0.20	7401-7712 7001-7312	1.18	0.19 0.34	7801-7912 7401-7712	0.80	0.30 0.36	8001-8312 7801-8312	0.55	0.24 0.27			
GEO GIL	6401-6912 6401-6912	2.14	0.35	7001-7312	0.89	0.25	7401-8112	1.11	0.28						
GLD GOL	8202-8312 6401-6912		0.23	7001-7312	0.83	0.27	7401-7712	0.93	0.24	7801-8312	0.94	0.28			
GRE GRF GRM	6401-6912 6901-7312 6901-7312	1.76 1.53 1.46	0.24 0.19 0.22	7001-8112 7401-7712 7401-7712	1.47	0.23	7801-8312 7801-8312		0.26 0.31						
GRR GRS	7401-7712 7801-8112	1.33	0.22	7801-8312	1.31	0.24	1001-0312	1.00	0.31						
GUA GUMO	7001-7312 7001-7712	2.30	0.20	7401-7712 7801-8312	2.17	55.0 55.0	7801-8312	2.22	0.17						
GWC HAU	6401-6912 7401-7712	1.81	0.11	7001-7312 7801-8312	2.00	0.19									
HDM HFS	7401-7712 7001-7312 7001-8112	1.34 0.58 1.54	0.27 0.24 0.32	7801-8112 7401-7712	1.54	0.32	7801-8312	0.72	0.23						
HNH HNR HOF	6401-8112 7001-8012	2.12	0.32	8101-8312	1.79	0.25									
HYB ILT	6401-6912 7801-8112	1.38	0.15	7001-7312	1,55	0.21	7401-7712	1.54	0.21	7801-8312	1.45	0.18			
IMA INK	7001-8002 6901-7312	0.79	0.29	8003-8312 7401-7712	0.95	0.31	7801-8312	1.55	0.12						
IPM IRK	7801-7904 7801-8112 7801-8112	1.55 1.24 1.98	0.15 0.19 0.19	7905-8312	1.34	0.15									
PZI SAL YAL	6401-7012 7801-7906	1.70	0.32	7907-8312	1.78	0.16									
JCT JER	6401-7312 6401-6912	1.04	0.18	7401-7712			7801-8003	0.99	0.50	8004-8312	0.98	0.18			
JOS KBA	7001-7712 8203-8312	1.30	0.23	7801-8312											
KBL KBS	6401-6912 6401-6912	1.22	0.28	7001-7312	1.01	0.17	7401-7712				1.54	0.19			
KEV KGM KHC	6401-6912 7801-7904 6401-6912	1.22 2,18 1.26	0.16	7001-7312 7905-8312 7001-7312	1.26 2.20 1.15	0.14 0.20 0.16	7401-7712			7801-8312 7801-8312					
KHE	7801-8112 6401-6912	1.71	0.24			01.10			••••	,		0.50			
KIR KJF	7401-7712 7001-7312	1.81	0.11	7801-8312 7401-7712	1.08	0,10	7801-8312	1.21	0.12						
KJN KKM	6401-6912 7801-7904	1.03	0.17	7001-7312 7905-8312	1.02	0.14									
KLG Kmu	6401-6912 7001-8112 7401-7712	1.41 1.88 2.31	0.3D 0.14 0.29	7001-7312 7801-8312		0.31	/401+//12	2.32	0.28	7801-8312	2.06	0.37			
KNA Kod Kon	6401-6912 6401-6912	1.35	0.21	7001-7312 7001-7312	1.61	0.17	7401-7712 7401-7712	1.38	0.17	7801-8312	1.91 1.49	0.22			
KRA KRI	6401-6912 7801-7809	1.42	0.16	7001-7312 7810-8312	1.54	0.18	7401-7712	1.49	0.14	7801-8312	1,49	0.09			
KRK Krl	6401-6912 6401-6912	1.62	0.16				7801. 4745		• ••						
KRP Krr	7001-7312 6401-6912	1.79	0.17 0.16	7401-7712 7001-7312		0.19 0.14	7801-8312 7401-7712	1.91 0.75	0.19 0.06						

TABLE 1 (Cont'd)

KSP KSR	8110-8312 7801-8112 6401-6912	1.22	0.11 0.21 0.28 0.27	7001-7312		0 35	7401-7717	1 10	0.28	7801-8112	1 21	0.22			
KTG LAO	6401-6912 7401-7712	1.56 0.40 0.91	0.27	7001-7312 7801-8312	0.03	0.24	7401-7712	08	0.13	7801-8112		0.12			
LBF LDF	8209-8312	1.26	0.23	1001-0312	0.75	0.25									
LD3 LEM	7001-8112 7801-8312	1.17	0.28												
LFF LF1	7401-7712	1.27	0.20	7801-8312	1.28	0.23									
LFZ LF3	6401-7012 6401-7012	0.06	0.16												
LF4 LGP	6401-7012 7801-7903	0.22 2.20	0.15	7904-8312											
LHC LHN	7401-7712 6401-6912	1.79	0.08	7801-8312	1.96	0.16									
LIS LJU	6401-7012 6401-6912	2.52	0.23	7001-7312	1.68	0.22	7401-8112	1.74	0.19						
LLS LMR	8104-8312 7401-7712	1.55	0.28	7801-8312	1.26	0.32									
LON	6401-6912 7001-7312	1.16	0.30	7001-7312 7401-7712	1.18	0.23	7401-8112 7801-8312	1.13	0.14						
LPA LPB	6401-6912 6401-6912		0.21	7401-7712	1.41	0.22	7801-8312								
LPF LPO	7401-7712 7401-7712	1.21	0.21	7801-8312 7801-8312	1.29	0.24			••••						
LPS	6401-6912	1.35	0.21	7001-7312	1.21	0.16	7401-7712	1.33	0.19	7801-8312	1.59	0.15			
LRG LSF	7401-7712 7401-7712	1.45	0.25	7801-8312 7801-8312	1.55	0.31									
LZH MAIO	8101-8312 7001-7712	1.73	0.18	7801-8011	1.04	0.15									
MAT MAW	7401-7712 6401-7012	1.42	0.31	7801-8312 7801-8312	1.26	0.20									
MBC MBL	6401-6912 7401-7712	1.30	0.18	7001-7309 7801-8112	1.43	0.14	7310-7712	0.70	0.22	7801-8312	0.66	0.25			
MEK MFF	7401-7712	2.43	0.44 J.19	7801-8312 7801-8312	1.74	0.28 0.27									
MHC	6401-6912 8110-8312	2.04	0.28												
MIM MIR	7401-8112 7801-8112	1.26	0.26												
MJZ MMK	7001-7312 8201-8312	2.15	0.13												
MNG MNT	7001-7312 7001-7312	1.68	0.17	7401-7712 7401-7712			7801-8312	1.71	0.19						
MOS	7801-8112 6401-6912	1.93	0.20							7801-8312	1 77	0 13			
MOY	7801-8112 7001-8112	1.33	0.14	1001 1512	1.05	0.15			0.15	1001-0512		0.15			
MSO MSZ	7001-7312 7001-7312	1.72	0.17	7401-7712	2.08	0.24	7801-8312	0 44	0.05						
MTD MUD	8208-8312	0.71	0.10 0.31 0.24							7801-8717	3 14	0.44			
MUN Mwi	6401-6912 6401-7612	1.68	0.12				1401-1112	2.00	0.31	7801-8312	2.10	0.41			
MZF NAE	7001-7712 7001-8112	0.90	0.25	7801-8312		0.21									
NAI NAO	6401-6912 7001-7312	1.50	0.25	7001-7312 7401-7712	0.91	0.05	7801-8312	0.42	0.31	7801-8312	1.43	0.10			
NAU NBO	7801-8003 7001-7712	1.56	0.27 0.28 0.26	8004-8312 7801-8312	1.72	0.32									
NB2 NCS	7801-8312 6401-6912	0.21	0.16									. . .			
NOI NEW	6401-6912 6401-6912	1.65	0.24	7001-7312 7001-7312	1.17		7401-7712 7401-7712	1.43	0.31	7801-8312 7801-8312	1.44	0.31			
NIE NNA	6401-6912 7001-7712	1.20	0.19	7001-7312 7801-8212	1.04	0.14	7401-7712	0.97	0.05	7801-8312	1.20	0.10			
NOR NP-	6401-6912 6401-6912	1.02	0.19	7001-7312	0.88	0.16									
NR1 NSC	7801-8112 7001-8112	0.94	0.16												
NUR NVL	6401-6912 7801-8112	1.19	0.18	7001-7312	1.26	0.15	7401-7712	1.11	0.11	8001-8312	1.18	0.12			
NVS	7801-8112 7401-7712	1.52	0.29	7801-8312	1 43	0 33									
NWAO OBN	7801-8112	1.48	0.20	1001-0512	1.05	0.33									
0GA 01C	8010-8312 7001-7312	1.29	0.24	7401-8112											
015 0TP	6401-6912 7001-8112	2,10	0.34	7001-7312			7801-8313	• • •	A 10						
PAE	6701-7309 7001-7712	2.10	0.16	7801-8312	1.79	0.24	7801-8312	1,40	0.17						
PAS Poj	7801-8312 6401-7012	2.21	0.27												
PCO PCT	7001-8112 7801-8312	1.95	0.29												
PEL Pet	8105-8312 7801-8112	1.67	0.16												
PHC PLV	7001-8112 6401-7012	2.50	0.32												
PME PMG	8203-8312 6401-6912		0.31	7001-7312	1.62	0.17	7401-7712	1.79	0.20	7801-8312	1.96	0.23			
PM0 PMR	7001-7712 6401-6912	1.04	0.31 0.22	7801-8312 7001-7312	1.72	0.28							8201-8312	1.46	0.33
PNS	6401-7012	1.02	0.28	7101-8112		0.35									

STATION THRESHOLD DATA AS FUNCTION OF TIME

~ D

5.

7.

TABLE 1 (Cont'd)

STATION THRESHOLD DATA AS FUNCTION OF TIME

4

٠.

	STATION	THRESHOLD	DATA	AS FUNC	TION OF TIP	46							
PNT POO		7001-7309	1.40	0.12	7310-7712 6801-7312	1.19	0.17	7801-8312 7401-7712	1.21	0.16	7801-8312	1.63	0.18
PPI		7801-8312 7001-7312	1.63	0.20 0.18 0.25	7401-7712	1.61	0.27	7801-8312	1.62	0.22			0110
PPR		7907-8312 7001-7312	1.80	0.20	7401-7712	1.89	0.28	7801-8312	1.89	0.22			
PRA		6401-7112 6401-6912	2.36	0.21	7201-7312 7001-7312	1.54	0.12	7401-7712	1.52	0.09	7801-8312 7801-8112	1.57	0.18 0.23
PRU		6401-6912	1.24	0.23	7001-7312	0.86 1.27	0.12 0.12	7401-7712	0.88 1.39	0.06 0.21	7801-8312	1.30 1.40	0.20
PRZ PSI		7801-8112 7801-8312	1.59	0.23									
PSZ PTO		7001-8112 6401-6912	2.07	0.31 0.31									
PUL		7801-8112 6401-6912	1.94	0.21	7001-7312	1.30	0.21						
RAB		6401-7106 6401-6912	1.72	0.18	7107-7312	1.84	0.26						
RES		6401-6912	1.64	0.15	7001-7309	1.54	0.15	7310-7712	0.72	0.18	7801-8112	0.68	0.12
RIV RJF		6401-6912 7401-7712	2.06	0.23	7001-7312 7801-8312	2.01	0.24	7401-7712	1.92	0.24			
RKT		7401-7712 7001-7312	1.85	0.30 0,24	7801-8312	1.80	0.21						
RUV SAM		7401-7712 7801-8112	1.72	0.29	7801-8312	1.72	0.25						
SBA SCH		8001-8312 7001-7312	1.37	0.17	7401-7712	1 97	0.21	7801-8312	1 41	0.26			
SCO		8208-8312	1.35	0.35	1401-1112	1.75	01	1001-0512	1.01	0.20			
S D B S D V		6401-7012 7801-8312	1.81	0.17									
SEO SES		6401-6912 6701-7312	1.47	0.21	7401-7712	1.75	0.15	7801-8312	1.82	0.18			
SEY SFA		7801-8112 6701-7312	1.47	0.17 0.13	7401-7712	2.09	0.22						
SHK SHL		6401-6912 6401-6708	1.63	0.26	7001-7312 6709-6912	1.78	0.22	7401-7712 7001-7312	1.88	0.17 0.11	7801-8112	2.04	0.16
SJG SKI		6401-6912 7001-8112	1.43	0.26	7001-7712	1.56	0.22	7801-8312	1.56	0.21			
SLE		8201~8312	1.50	0.25									
SLL		7801-8312 8106-8312	0.55	0.18									
SMF SNA		7401-7712	0.99	0.21 0.29	7801-8312	1.02	0.22						
SOC SOP		7801-8112 7001-7712	2.12	0.29	7801-8112	1.43	0.23						
SPA SPF		6401-6912 7401-8112	1.95	0.36 0.24	7001-7312	1.73	0.36	7401-7712	1.22	0.30	7801-8312	1.08	0.28
SPO SSC		6401-6912 7401-7712	1.70	0.25	7801-8312	1.25	0.22						
5 S E		7001-7910	1.54	0.27	7911-8312	1.67	0.29						
SSF STJ		7401-7712	0.93	0.18	7801-8312	0.96	0.22						
S TU S U D		6401-6912 6401-7012	1.68	0.28	7001-7312	1.86	0.22	7401-7712	1.82	0.22			
SUF SUR		8101-8312 8005-8312	0.66	0.15									
SVE SVI		7801-8112 6401-6912	1.66	0.21									
SVT TAC		6401-6912 6401-7012	1.72	0.14	7001-8112	2.23	0.17						
TAN		6901-7312 7801-8112	2.05	0.19 0.12									
TCF		7401-7712	0.97	0.20	7801-8312	1.01	0.24						
TFO ILG		6401-6912 6401-6912	01 0.93	0.20									
TMA TMT		8206-8312 7001-8112	1.64	0.24									
TOL Too		7001-8112 6401-6912	2.00	0.33 0.31	7801-8312	1.69	0.20						
TOV TPT		7001-7712 7001-7312	1.75	0.22	7801-8312 7401-7712	1.76	0.22	7801-8312	1.67	0.24			
TRM TRN		7001-8112 6401-6912	1.50	0.30	7001-7312	1.56	0.15	7401-7712			7801-8113	1.67	
TRO		6401-6912	1.41	0.20	7001-7312	1.44	0.20	7401-7712	1.57	0.15	7801-8112	1.07	0.18
TRT TSI		7801-8312 7801-8112	1.94	0.21									
TSK TUC		6401-6912 6401-6912	1.48	0.35 0.20	7001-8112 7001-7312	1.38	0.27	7401-7712	1.11	0.26			
TUL TVO		6907-7312 7001-7312	1.24	0.30	7401-7712 7401-7712	1.09	0.27 0.25	7801-8312 7801-8312	1.11	0.26			
UAV UBO		7001-8112 6401-6912	2.08	0.21 0.20	7001-7312	0.31	0.29						
UCT		7401-7712 7604-7712	1.35	0.26	7801-8112	1.42	0.23						
UZH		7801-8112	1.83	0.11									
VAH		7001-7312	1.64	0.25	7401-7712 7001-7312	1.67	0.31 0.28	7801-8312 7401-7712	1.63	0.24	7801-8312	2.09	0.29
VAO VIC		7806-7812 7001-8112	1.00	0.20									
VIE VKA		7001-7312 7001-8112	2.17	0.19 0.22	7401-7712	2.09	0.31						
VLA WBN		7801-8112 8006-8312	2.21	0.29 0.31									
WES		7001-8112 8010-8312	2.54	0.37									
WGL		7001-8112	1.56	0.19	4005. 3743		o ••	7404 3345		• • •			
WLO		7001-8112	1.32	0.27	UTU3-7312	0.88	0.10	7401-7712	0.87	0.06			
WMO WOL		6401-6912 7001-8112	0.23	0.14									
WRA		7801-8312 8101-8312	0.65	0.34									
YAK YKC		7801-8112 6901-7309	1.86	0.24	7310-7712	1.15	0.20	7801-8312	1.13	0.19			
YSS ZAK		7801-8112 7801-8112	1.56	0.22						,			
ZLP 2080		7001-8112 7001-8112	0.95	0.19	8301-8312	0.54	0.18						
ZUL		7401-7712	1.38	0.20		1.55	0.19						

TA	BLE	2

Depth Range km	Number of Sources	Number of Readings	Standard Deviation σ
0-50	500	20604	0.30
50-150	245	10431	0.33
150-250	152	6956	0.34
300-500	111	4991	0.34
500-700	132	6456	0.32
0-700	1663	74500	0.31
(Station terms only)			

Statistics of Data Used in the Determination of Amplitude Distance Curves and Station Terms

16

Ζ.

<u>Smoothed Amplitude Distance Curves for Five Depths</u>. (Note that baselines of the curves are arbitrary but here have been set so that the mean values in the distance range 30 to 90⁰ are zero.)

r.	J.
5	1
2	1
2	1

7463/2000000000000000000000000000000000000	
+	
89999999999999999999999999999999999999	
× × × × × × × × × × × × × × × × × × ×	
ਸ਼ੑੑਸ਼ੑਸ਼ਲ਼ਖ਼ਸ਼ਸ਼ਸ਼ਫ਼ਲ਼ਫ਼	0000N

%qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq	
+ 9 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u>3LE 3</u>
-6666666666666666666666666666666666666	TABI
, 4666646666666666666666666666666666666	
ฎะธิธรรชชะะหหนณะระหหูสหนะธิธรชชงชิดตาดหลิดกลุดดูสดดูสดดูสองะะหรุ่นแระ Endiviorioriorioriorioriorioriorioriorioriori	

°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	
-22-28-05-000 -22-28-05-000 99-99-99-99-99-99-99-99-99-99-99-99-99-	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
- 666666666666666666666666666666666666	
° ° ° ° ° ° ° ° ° ° ° ° ° °	

22222222222222222222222222222222222222	
#2557 #2577 #2557	79.5 179.6 180.0

...

.

, , , , , , , , , , , , , , , , , , ,	
+	0.068 0.74 0.75 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76
уаааааааааааааааааааааааааааааааааааа	
	ພພະ ະ ທຸທຸທຸທຸທຸ
v	
₩₩₩₩₩₩₩₩₩₩₩₩₩₩₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽	

8	
8	
2	0.00 0.00 0.00
00000000000000000000000000000000000000	
2	0.67 0.67 0.67
Allen and a second	128.0 128.5 129.0 129.5

TABLE 4

Mean	Baselines	of the	Gutenbe	rg-	<u>Richter</u>	<u> (G-R</u>) and	<u>Veith-</u>	<u>Clawson</u>	<u>(V-C)</u>
	in the	Distanc	e Range	30	to 900	as a	Funct:	<u>ion of</u>	Depth	

Depth km	G-R	V-C
0.0	3.80	3.75
10.0	3.80	3.69
20.0	3.73	3.63
30.0	3.73	3.58
40.0	3.73	3.53
50.0	3.73	3.51
60.0	3.73	3.49
80.0	3.64	3.45
100.0	3.64	3.42
120.0	3.64	3.38
140.0	3.49	3,34
180.0	3.49	3.27
220.0	3.34	3.20
260.0	3.32	3.15
300.0	3.32	3.09
350.0	3.26	3.04
400.0	3.24	2.99
450.0	3.25	2.94
500.0	3.25	2,88
550.0	3.24	2.83
600.0	3.24	2.77
650.0	3.18	2.72
700.0	3.17	2.67
750.0	3.17	2.65
800.0	3.17	2,62

STATION				FINAL				N PRELIM			FINAL		
CODE	TERM	+0R-	NOBS	TERM	+0R-	NOBS	CODE	TERM	+0R-	NOBS	TERM	+0R-	NOBS
AAE	0.09	0.06	44	0.10	0.04	118	CAr				-0.11	0.03	152
AAI		_		-0.04	0.06	48	CAN	-0.34	0.07	35	-0.25	0.03	152
ABQ	-0.20	0.07	29	-0.19	0.04	81	CAR	-0.05	0.04	151	-0.12	0.02	431
ABU	0.03	0.05	93	0.10	0.03	265	CBM	0.02	0.08	25	-0.16	0.05	76
ACO				0.09	0.06	40	CDF	-0.09	0.04	85	-0.14	0.02	346
AD-				0.07	0.11	12	CER	-0.36	0.11	20	-0.15	0.05	60
ADE	0.39	0.05	70	0.33	0.03	217	CGP				-0.13	0.07	36
ADK				0.04	0.06	52	CHG	-0.12	0.04	85	-0.16	0.02	334
AFI				-0.04	0.08	35	CHTO				-0.12	0.05	40
AFR	-0.06	0.05	63	-0.10	0.03	199	CIR	-0.36	0.03	213	-0.38	0.01	601
AGM				0.11	0.09	16	CLK	-0.44	0.03	213	-0.43	0.02	596
AKU	-0.18	0.05	57	-0.11	0.02	252	CLL	0.11	0.02	234	0.07	0.01	776
ALE	-0.10	0.02	192	-0.11	0.01	627	CMC	-0.01	0.09	21	0.0	0.05	64
ALM	-1.64	0.08	22	-1.61	0.04	105	CNG				-0.07	0.06	56
ALQ	-0.17	0.02	202	-0.19	0.01	678	CNN				0.21	0.05	54
AMN	•••			-0.05	0.05	55	COB				0.45	0.10	15
ANG	0.49	0.09	26	0.34	0.05	72	COL	0.08	0.02	229	0.04	0.01	707
ANP	0.37	0.06	45	0.22	0.03	151	COP	0.16	0.03	151	0.14	0.02	472
ANR	0.45	0.06	35	0.53	0.04	87	CPO	-0.14	0.03	181	-0.12	0.02	479
APA	0.45	0.00		-0.07	0.06	42	CRO		• • • • •	•	0.20	0.06	42
APT	-0.14	0.08	21	-0.18	0.05	48	CRT				1.07	0.09	19
ARE	-0.06	0.06	39	-0.11	0.04	108	CTA				-0.12	0.03	127
ARU	0.35	0.07	31	0.38	0.04	78	CUM				-0.19	0.06	55
	0.55	0.07	21	0.52	0.04	37	CVF	-0.10	0.05	52	-0.11	0.03	184
ASH	0.05	0.04	99				CWF	-0.25	0.07	26	-0.40	0.04	73
ASP	-0.05	0.04	79	-0.10	0.02	267	CYP	0.15	0.01	20	1.51	0.04	82
ATL	0.14	0.05	50	-0.02	0.06	43	DAG	-0.09	0.03	150	-0.10	0.02	566
AVF	-0.14	0.05	58	-0.10	0.02	275	DAL	-0.07	0.05	100	-1.52		
BAG	0.07	0.06	45	0.02	0.03	147	DAL					0.17	13
BDT	-0.12	0.05	56	-0.02	0.02	261					-0.04	0.07	31
BDW	-0.13	0.05	44	-0.24	0.02	261	DAV				0.28	0.08	27
BER				-0.12	0.11	12	DBN	0 70	0.04		0.68	0.07	35
BHA	-0.33	0.03	157	-0.32	0.02	425	DCN	0.28	0.06	36	0.23	0.03	179
BHG				0.07	0.05	63	DDK	0.28	0.07	23	0.11	0.04	105
BHO				0.02	0.04	95	DIX	-0.17	0.04	89	-0.19	0.02	235
BHP				0.07	0.06	53	DKM	0.16	0.06	32	0.10	0.04	72
BJI				-0.13	0.06	39	DLE	0.26	0.07	28	0.18	0.03	161
BKR	0.48	0.07	25	0.42	0.04	64	DMN		0.04	-	0.12	0.05	69
BKS	-0.01	0.04	111	0.05	0.02	393	DMU	0-16	0.06	38	0.18	0.03	183
BLA	-0.05	0.06	51	0.01	0.04	151	DOM	0.00	o 07		-0.01	0.07	_30
BLC	0.03	0.05	59	0.06	0.03	154	DUG	-0.08	0.03	122	-0.10	0.02	305
BMN	-0.10	0.05	46	-0.18	0.03	173	EAB	-0.20	0.05	70	-0.22	0.03	201
BMO	-0.23	0.02	242	-0.24	0.01	622	EAU	0.01	0.05	66	-0.02	0.03	199
BNG	-0.15	0.03	244	-0.10	0.01	908	EBH	-0.11	0.04	74	-0.12	0.03	213
BNH				-0.28	0.06	36	EBL	-0.06	0.04	75	-0.11	0.03	213
BNS	0.12	0.03	149	0.06	0.02	374	ECB				0.03	0.05	66
BOD	0.13	0.06	32	0.07	0.04	91	ECP				0.14	0.04	118
BOZ	-0.05	0.06	40	-0.14	0.04	103	ECT				-0.41	0.07	38
BPT				-0.31	0.07	27	EDI	-0.11	0.05	62	-0.16	0.03	168
BRA				-0.03	0.07	38	EDM	0.38	0.03	134	0.34	0.02	396
BRG	0.02	0.03	184	-0.02	0.01	623	EDU	0.04	0.05	58	0.0	0.03	153
BSF	-0.02	0.04	94	-0.04	0.02	376	EGL	-0.09	0.04	73	-0.10	0.03	191
BSI				0.04	0.06	46	EKA	-0.19	0.03	194	-0.16	0.01	682
BUB	0.12	0.07	31	0.11	0.04	84	ELO	-0.15	0.05	54	-0.16	0.03	163
BUD	-0.11	0.06	48	-0.14	0.03	160	ELT	0.17	0.06	39	0.18	0.04	89
BUH	-0.49	0.11	25	-0.26	0.07	51	EMM			_ •	-0.04	0.06	4Ĵ
BUL	-0.16	0.02	364	-0.17	0.01	1157	ENN				-0.05	0.03	145
002	0.10	0.01	204	0.11	0.01		-					0.00	

• *

• •

• •

r.

· ,

--,

TABLE 5

Estimated Station Terms, Standard Deviations and Number of Observations. (The preliminary results are determined jointly with the shallow focus (0 to 50 km) curve. The final results are for much larger data set and assume the smoothed amplitude distance curves in table 3.)

20

1 N

 RESULTS

 0.01
 0.02

 0.01
 0.02

 0.02
 0.03

 0.03
 0.03

 0.04
 0.03

 0.05
 0.03

 0.06
 0.03

 0.01
 0.03

 0.02
 0.03

 0.03
 0.03

 0.04
 0.03

 0.05
 0.03

 0.06
 0.03

 0.03
 0.03

 0.04
 0.03

 0.05
 0.03

 0.05
 0.03

 0.06
 0.03

 0.06
 0.03

 0.06
 0.04

 0.07
 0.05

 0.08
 0.06

 0.09
 0.06

 0.06
 0.06

 0.07
 0.07

 0.08
 0.08

 0.09
 0.09

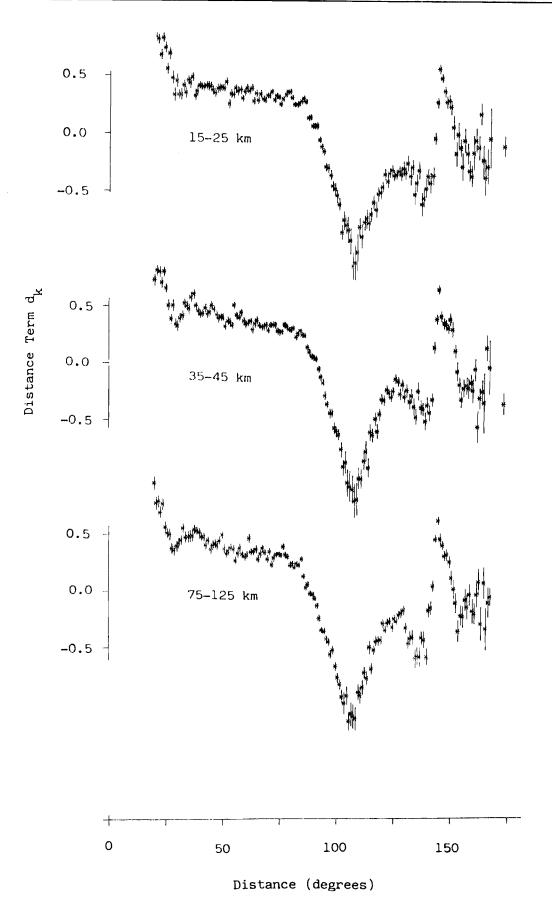
 0.09
 0.09

 0.09
 0.09

 0.09
 0.09

 0.09
 0.09

 0.09
 0.09 PRELIMINARY RESULTS TERM 40R- NOBS -0.06 0.02 229 253 0040 39 21 84 75 75 282 846 846 846 84 232 52225 107 224 150 5 0.02 0.03 0.02 0.040 0.08 0.04 0.03 0.080.08 0.06 0.03 0.40 0.20 -0.034-0.0 0.08 0.03 -0.22 0.14 0.050 -0.08 -0.08 -0.08 -0.34 -0.13 -0.02 -0.11 0.06 N CONSTRUCTION OF CONSTRUCTION ли пробрами и пробрам PRELIMINARY RESULTS TERM +0R- NOBS 0.12 0.06 42 0.01 0.06 47 228 178 22 \$92 40 222 32106 40 31880 3635 52 5 132 2004 2004 0.05 0.05 0.03 0.07 0.07 0.05 0.06 0.07 0.03 0.03 0.06 0.07 0.00 0.03 0.03 0.05 -0.07 -0.49 0.13 0.05 0.05 0.08 -0.34 0.02 0.16 0.12 -0.07 -0.03 ATION CCODE CCODE

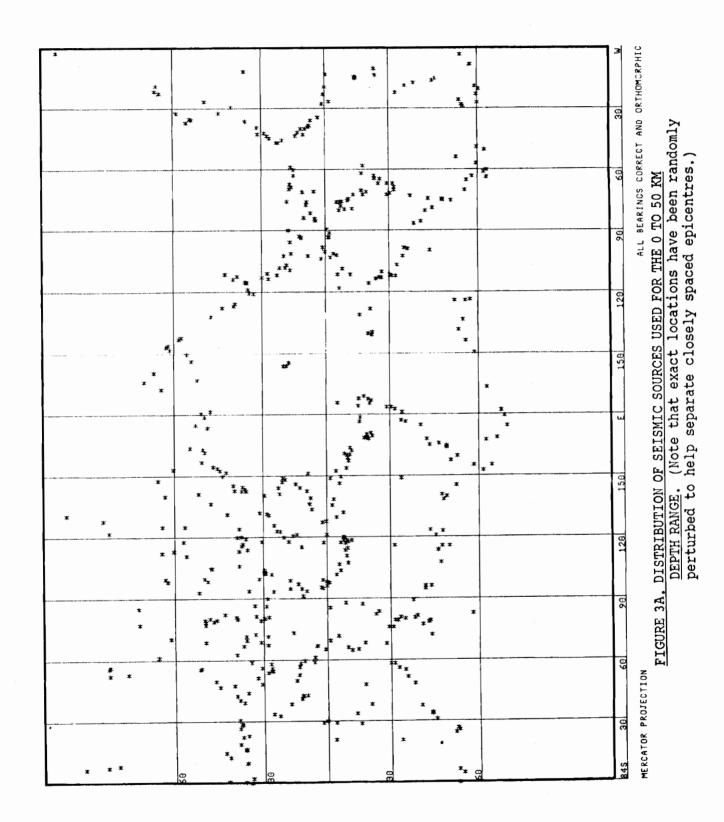

TABLE 5 (Cont'd)

CT # T T ^**				FINAL	RESUL	тс		ON DOC!		DCC10 TC	FINAL	RESUL	тс
STATION CODE	TERM	+OR-	NOBS	TERM	+08-	NOBS	STATI COD	ON PRELI E TERN			TERM	+0R-	NOBS
MFF	0.07	0.04	81	0.03	0.02	309	PMR			2 221	-0.02	0.01	621
MHC				-0.05	0.09	21	PNS	ŏ.č	jz 0.0	5 64	0.02	0.03	185
MHI				0.02	0.06	44	PNT	0.0	0.0		0.03	0.02	447
MIM	-0.29	0.08	25	-0.25	0.04	70	P00	-0.1			-0.14	0.02	300
MIR				0.10	0.06	37	PPI	-0.1	12 0.0	8 21	-0.23	0.04	124
MJZ				0.65	0.09	16	PPN	-0.1	9 0.0	5 79		0.03	241
MMK				0.11 -0.03	0.04	109 38	PPR				-0.15	0.06	56
MNG	-0.02	0.06	42	0.06	0.06	172	PPT	0.0	0.0	15 69 14 83	0.0 0.0	0.02 0.02	246 292
MNT MOS	-0.02	0.00	42	0.44	0.06	41	PRA PRE	0.0 -0.1		3 228	-0.16	0.02	631
MOX	0.03	0.02	308	0.01	0.01	949	PRU	-0.0	0.0	2 223	-0.04	0.01	633
MOY	0.09	0.07	27	0.11	0.04	79	PRŽ	0.3	56 0.0	8 30		0.04	71
MSO	-0.01	0.03	120	-0.03	0.02	310	PSI	-0.2		6 49	-0.14	0.02	235
MSZ	••••			0.33	0.07	29	PSZ	•••		-	-0.14	0.07	41
MTD	-0.26	0.03	159	-0.27	0.01	571	P70				0.02	0.06	42
MUD				-0.07	0.04	73	PUL	0.2	27 0.0	9 20	0.27	0.05	56
MUN	-0.02	0.05	56	0.02	0.03	184	QUE	-0.0				0.05	62
MWI				0.0	0.08	35	RAB	-0.1	12 0.0	7 40	-0.02	0.04	137
MZF	-0.02	0.05	50	-0.06	0.02	214	RCD				0.30	0.06	37
NAE				-0.06	0.07	30	RES	-0.0			-0.05	0.02	481
NAI	-0.07	0.03	148	-0.08	0.02	450	RIV	0.1			0.17	0.03	182
NAO	0.0	0.04	83	-0.04 -0.25	0.02	238 28	RJF	0.0	0.0	4 69	-0.03	0.02 0.04	301 103
NAU				-0.23	0.07	18	RKT	-0.1	50 0.0	8 24	-0.28 0.27	0.04	42
NBO NB2	-0.13	0.05	51	-0.07	0.02	342	ROL RUV	0.1			-0.10	0.00	298
NCS	-0.13	0.05	11	-0.05	0.08	19	SAM	-0.1	0.0	כז כו	0.52	0.11	11
NDI	0.14	0.04	111	0.11	0.02	407	SBA				-0.03	0.05	49
NEW	-0.06	0.05	75	-0.07	0.02	255	SCH	-0.0	0.0	5 61	0.04	0.03	206
NIE	-0.04	0.03	117	-0.02	0.02	415	SCO	0.0			-0.23	0.04	80
NNA	-0.06	0.07	42	-0.03	0.04	123	SDB				-0.18	0.09	23
NOR	-0.14	0.04	108	-0.17	0.02	298	SDV				-0.05	0.05	82
NP-	-0.12	0.06	36	-0.07	0.04	92	SEO				0.0	0.09	15
NRI				0.08	0.05	46	SES	0.3	52 0.0	5 67	0.30	0.02	230
NSC				-0.09	0.11	11	SEY	0.1	16 0.0	7 27	0.18	0.04	81
NUR	0.02	0.02	253	0.01	0.01	850	SFA	-			-0.06	0.07	40
NVL	0.22	0.08	20	0.10	0.05	56	SHK	-0.0			0.08	0.03	142
NVS NWAO	0.20	0.06	28	0.21 -0.12	0.04 0.04	75 77	SHL	0.0			-0.04	0.04	105 284
OBN	0.33	0.06	37	0.41	0.04	6	SJG SKI	0.0	0.0	14 94	0.01 -0.04	0.02	33
OGA	0.55	0.00	5,	0.11	0.03	151	SLE				0.12	0.03	119
ÕIC	-0.45	0.07	38	-0.47	0.04	103	SLL				-0.25	0.10	15
ÕĪŠ	05	0.07		-0.11	0.06	37	SLR				0.17	0.03	143
OTP				-0.03	0.06	53	SMF				-0.07	0.02	281
OTT	-0.08	0.04	90	-0.06	0.02	321	SNA				0.04	0.05	62
PAE	-0.06	0.05	73	-0.14	0.03	223	SOC				0.13	0.08	24
PAS				0.09	0.05	67	SOP	-0.0	0.0	5 59	-0.08	0.03	153
PBJ				-0.14	0.10	14	SPA	0.	16 0.0	3 151	0.12	0.02	555
PCO		_		0.45	0.11	10	SPF	0.0	0.0)5 58		0.03	128
PCT	-0.41	0.07	42	-0.37	0.03	198	SPO				-0.08	0.07	28
PEL	• • -			-0.18	0.09	23	SSC	0.0	0.0)4 79		0.02	243
PET	0.23	0.09	20	0.20	0.05	47	SSE				-0.05	0.05	_80
PHC				-0.06	0.06	42	SSF	-0.0	0.0	97 לי	-0.04	0.02	368
PLV PME				0.26	0.08	24 67	STJ	~		47/	0.16	0.07	33
PME	0.0	0.04	125	-0.02 0.0	0.05 0.02	358	STU	0.	12 0.0)4 136	0.12 0.14	0.02 0.08	367 23
PMG PMO	-0.10	0.04	86	-0.10	0.02	334	SUD SUF	0.	14 0.0	8 21		0.08	243
1 nv	0.10	0.04	50	0.10	0.02	227	30F	ν.	0.0	,	0.01	0.00	243

TABLE 5 (Cont'd)

(cont'd)
TABLE 5

TS NOB 66	9048990 9048990 90688408 90688408		-000			* 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		0000FN	
ST000		00000		<u> </u>			0-000	00000-	
A TOW	000000000000000000000000000000000000000	00000	-000	-00000		00000000000000000000000000000000000000	00000	040000	5.0
SULTS NOBS	25 29 78 130	103 34 93	187 21	77 104 220 77	170 30 88 87 87 87	4 8 8	147 112 65		157
NARY RE +OR-	0.08 0.07 0.04 0.03	0.04 0.07 0.04	0.03 0.08	0.05 0.04 0.02	0.03 0.04 0.04 0.04 0.04	0.08	0.03		0.03
PRELIMIN TERM	0.26 0.37 -0.17	-0.02 -0.02	-0.05	-0.22 -0.14 0.26 0.08	-0-02 -0.02 -0.144 -0.1344 -0.1344 -0.1344 -0.1344 -0.1344 -0.1344 -0.1344 -0.1344 -0.	-0.18 0.19	-0.18 -0.07 0.12	4000	0.29
-03>>		TOOOL	~ ~ ~ ~ ~	NN337	< 00 0 L N < < ·	L L L L L L L L L L L L L L L L L L L	DUTEO	(HAXNAT	105


۲.

c

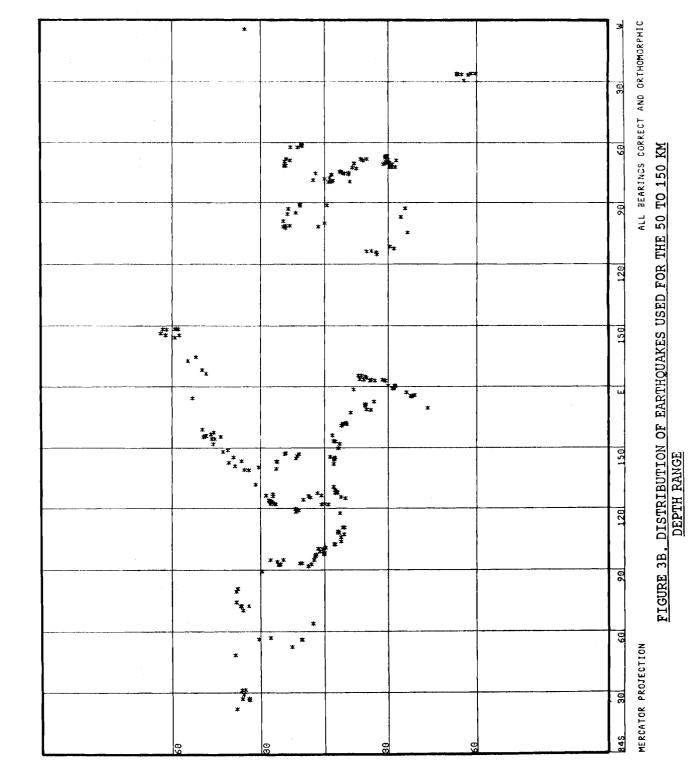

FIGURE 1. PRELIMINARY AMPLITUDE DISTANCE TERMS ESTIMATED FOR EARTHQUAKES IN THE FOCAL DEPTH RANGES 15 TO 25 KM, 35 TO 45 KM AND 75 TO 125 KM. (Vertical lines through points represent standard confidence bounds.)

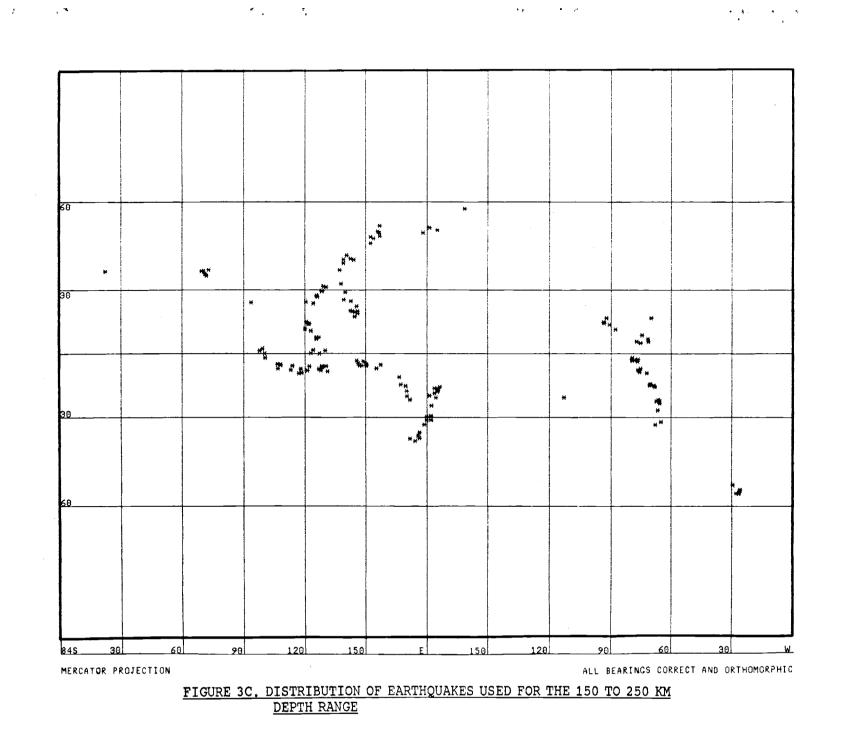
FIGURE 2. PRELIMINARY AMPLITUDE DISTANCE TERMS ESTIMATED FOR SEISMICSOURCES IN THE FOCAL DEPTH RANGES 175 TO 225 KM, 375 TO425 KM AND 575 TO 625 KM. (Vertical lines through pointsrepresent standard confidence bounds.)

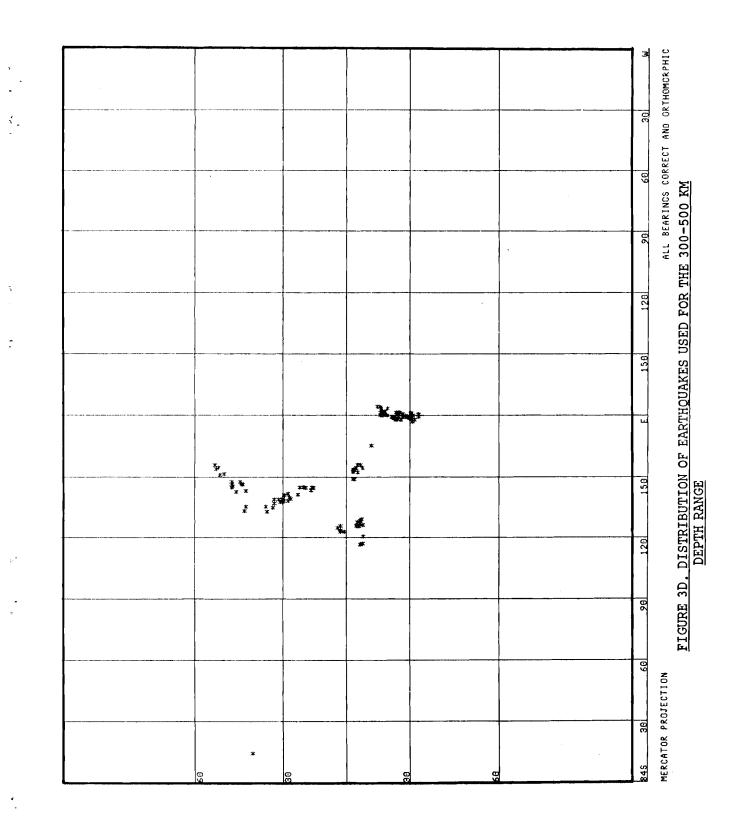
ſ

•____

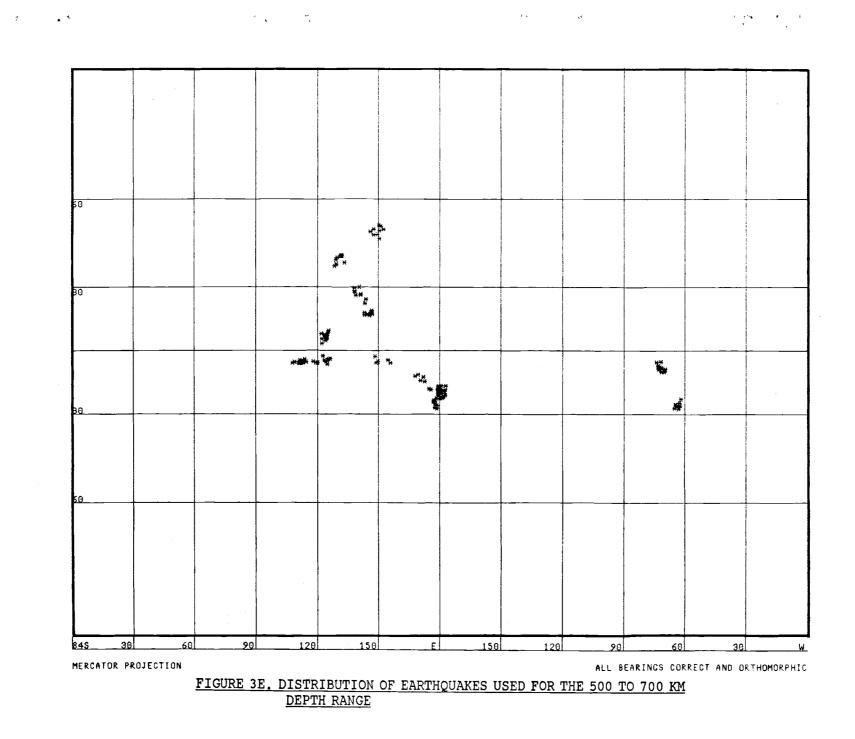
۳.

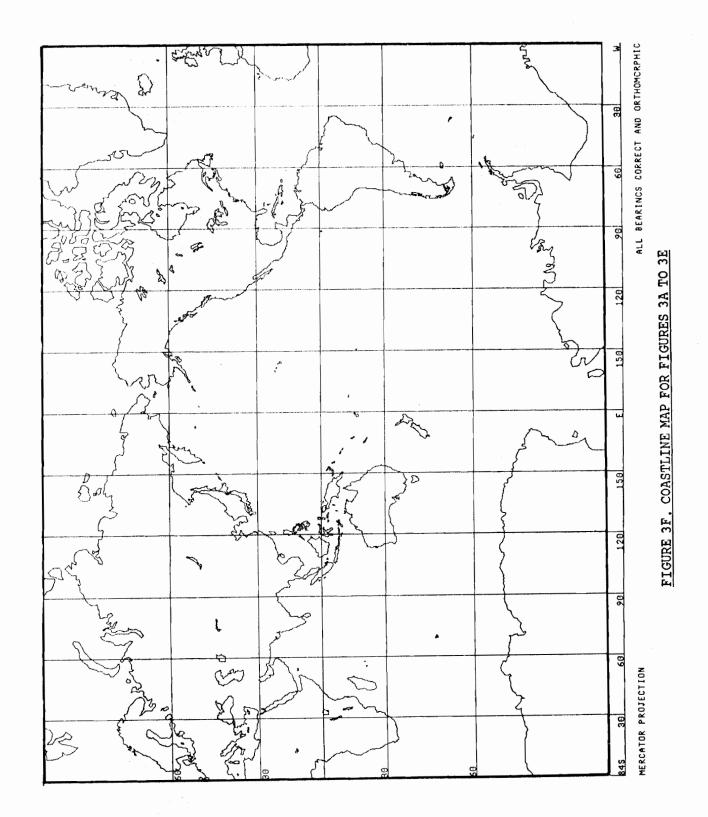
۰۰ -


-.


τ

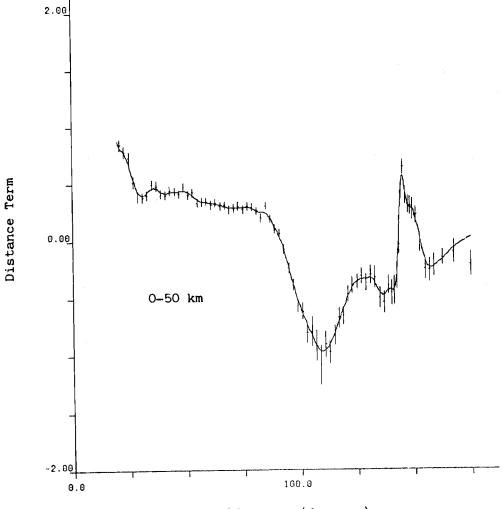
•


:


к^{. –}

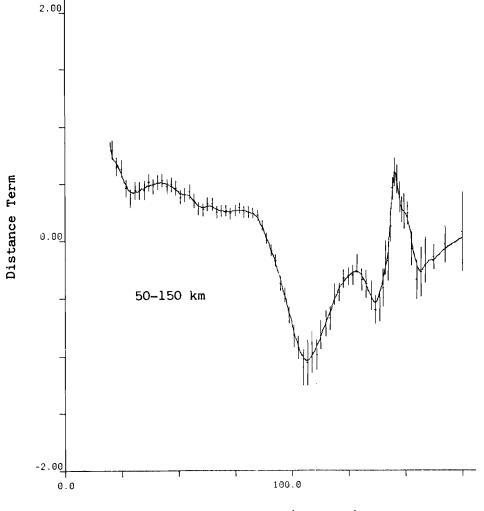
U,

•


۳<u>-</u>

į,

÷


3-

•

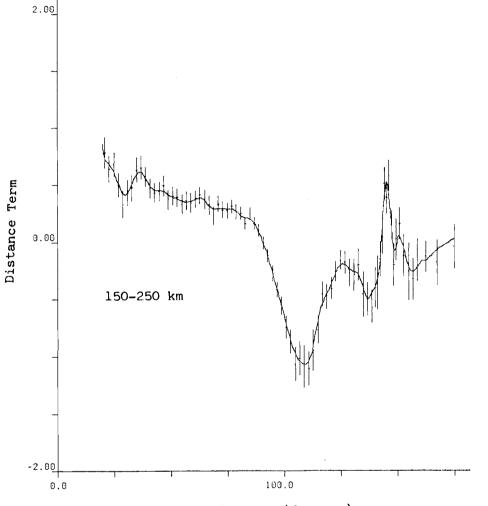

Distance (degrees)

FIGURE 4A. EMPIRICAL AMPLITUDE DISTANCE CURVE FOR SHALLOW FOCUS (0 TO 50 KM) SOURCES. (Vertical lines through the unsmoothed estimates are <u>95%</u> confidence limits.)

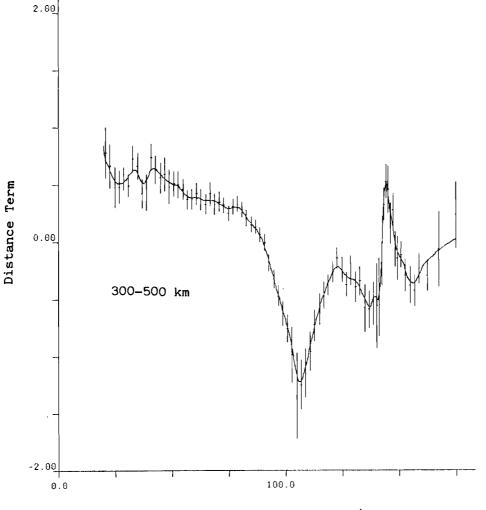
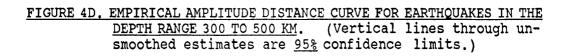

Distance (degrees)

FIGURE 4B. EMPIRICAL AMPLITUDE DISTANCE CURVE FOR EARTHQUAKES IN DEPTH <u>DEPTH RANGE 50 TO 150 KM</u>. (Vertical lines through the unsmoothed estimates are <u>95%</u> confidence limits.)



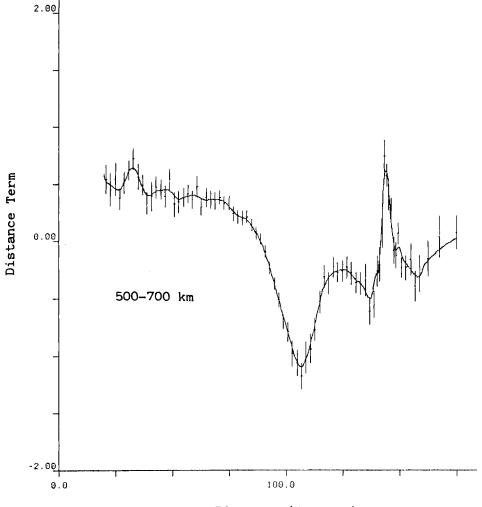
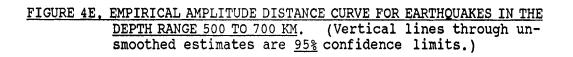
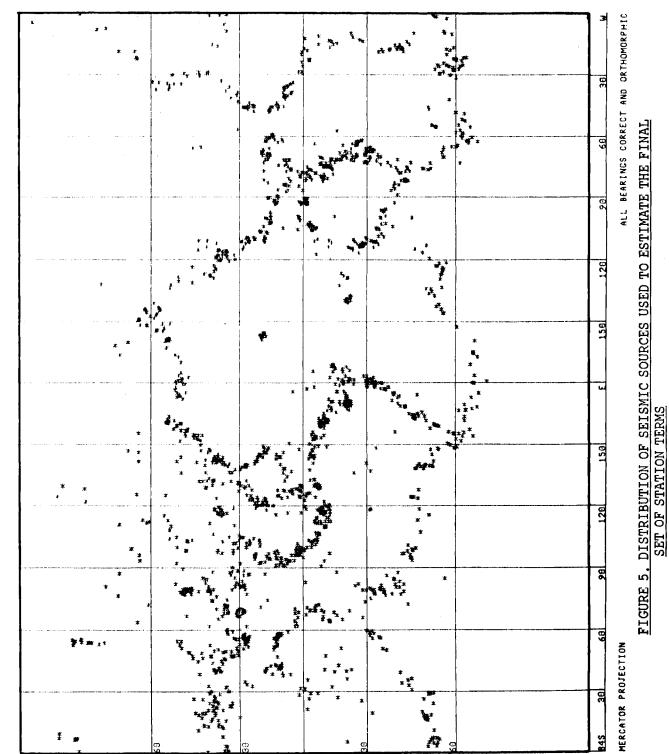

Distance (degrees)

FIGURE 4C. EMPIRICAL AMPLITUDE DISTANCE CURVE FOR EARTHQUAKES IN THE DEPTH RANGE 150 TO 250 KM. (Vertical lines through unsmoothed estimates are 95% confidence limits.)

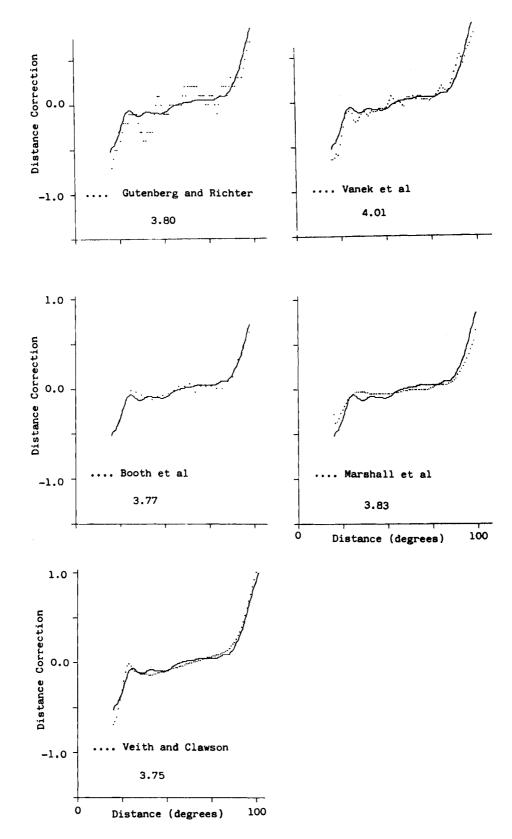
Distance (degrees)

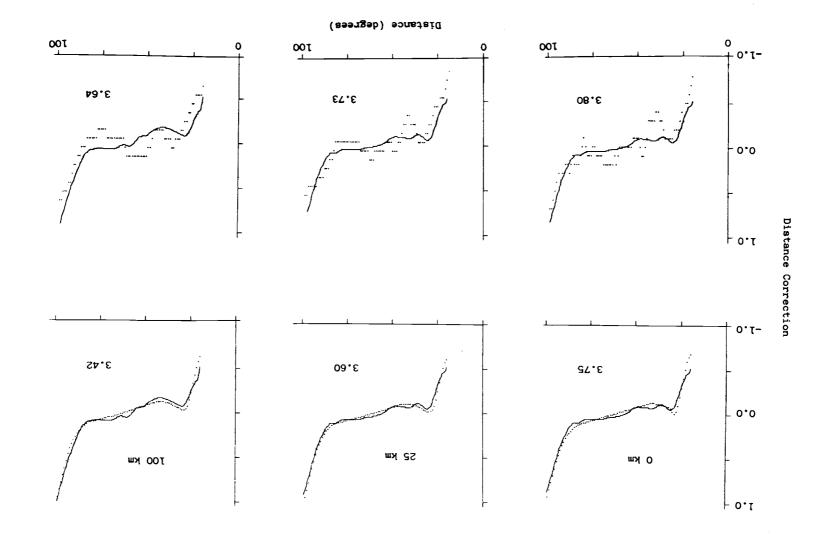



ŝ

<u>)</u>-

Ľ


Distance (degrees)


<u>_</u>c

ţ.,

ŀ

FIGURE 6. SHALLOW FOCUS EMPIRICAL AMPLITUDE CORRECTION FACTORS (CONTINUOUS CURVE) COMPARED WITH OTHER PUBLISHED VALUES (DOTS) IN THE DISTANCE RANGE 20 TO 100°. (Published curves are baselined to zero in the 30 to 90° distance range using the baseline factor given under the respective authors' name(s).)

• ~

· .>

• -,

 \dot{c} .

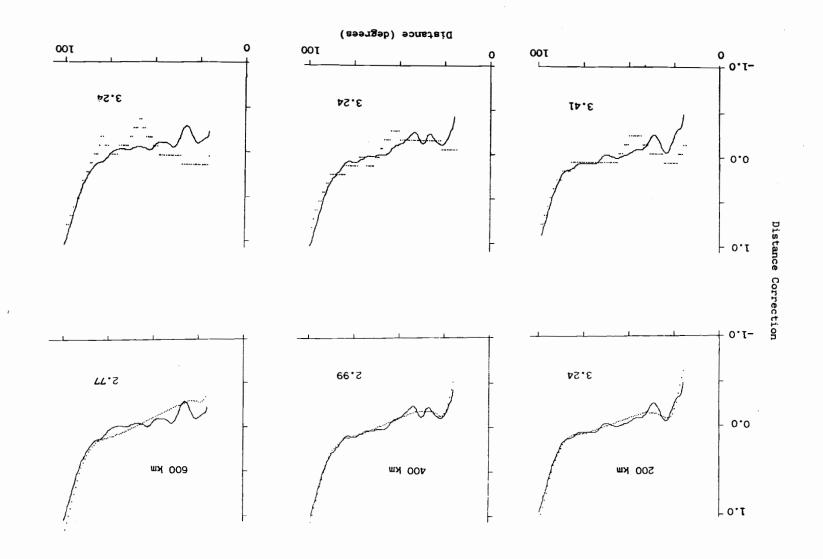
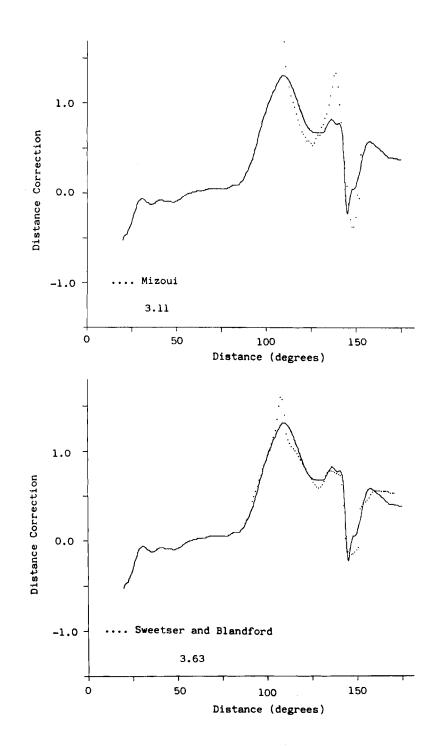

а.

FIGURE 7A. AMPLITUDE DISTANCE CORRECTION FACTORS CORRESPONDING TO DEPTHS OF 0, 25 AND 100 KM COMPARED WITH THOSE OF GUTENBERG AND RICHTER (1) (BOTTOM) AND VEITH AND CLAWSON (3) (TOP). (Baseline normalisation factors for 30 to 90° range applied to the latter are given below the curves.)

39

è

• •


۰.

1.

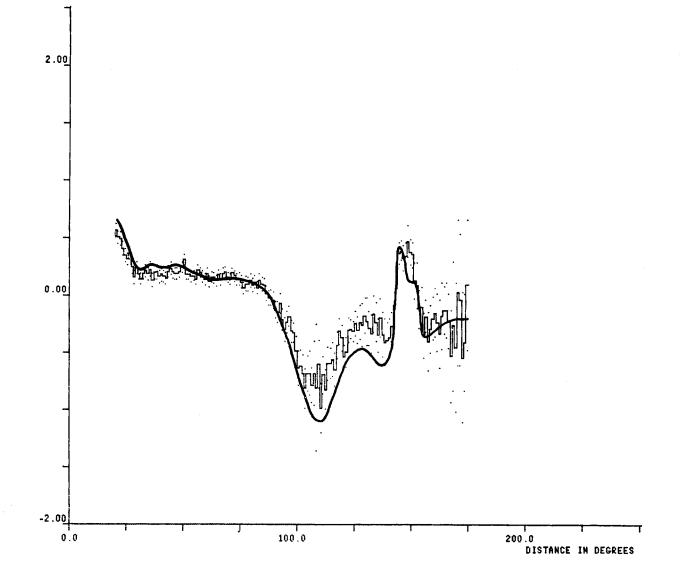
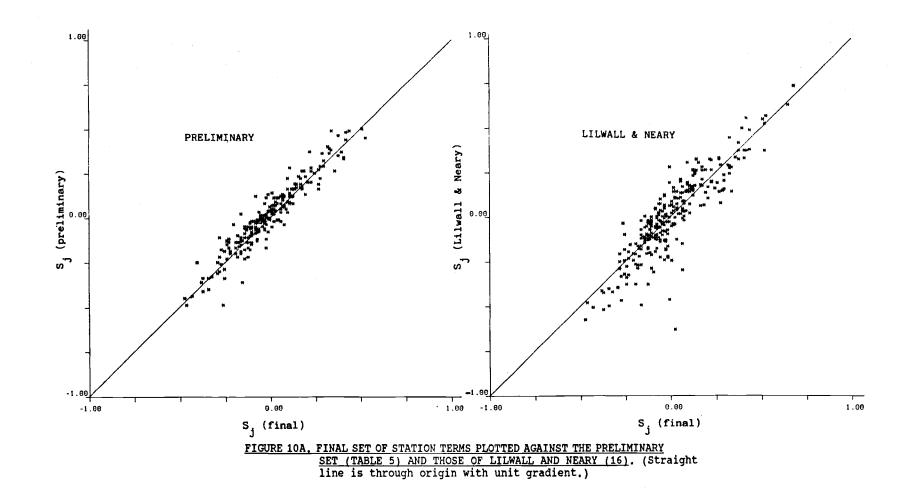
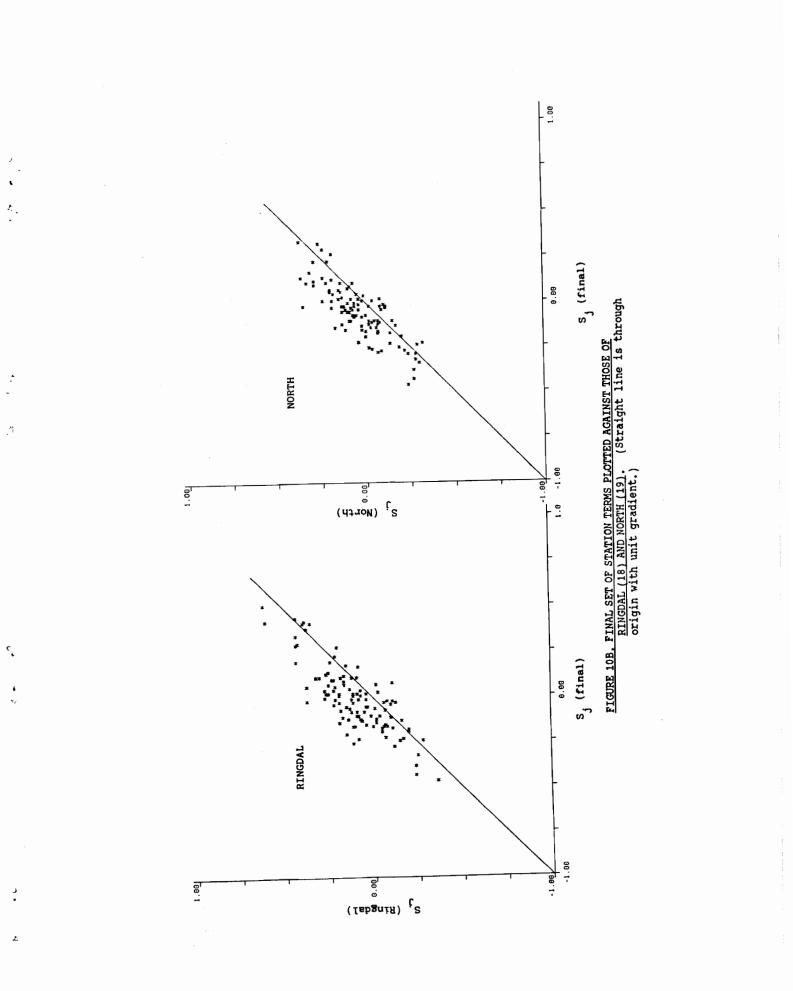
FIGURE 7B. DISTANCE CORRECTION FACTORS CORRESPONDING TO DEPTHS OF 200, 400, AND 600 KM COMPARED WITH THOSE OF GUTENBERG AND RICHTER (1) (BOTTOM) AND VEITH AND CLAWSON (3) (TOP). (Baseline normalisation factors used for the 30 to 90° range applied to the latter are given below the curves.)

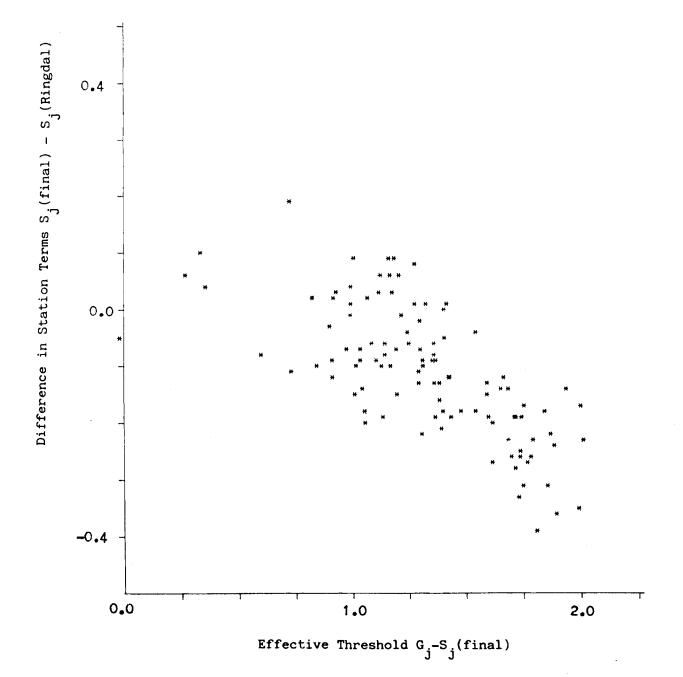
40

,n

K

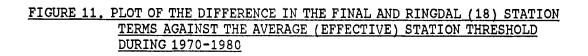
FIGURE 8. PKP SHALLOW FOCUS (0 TO 50 KM) DISTANCE CORRECTION FACTORS <u>COMPARED WITH THOSE OF MIZOUI (7) (TOP) AND SWEETSER AND</u> <u>BLANDFORD (6) (BOTTOM)</u>. (Normalisation factors applied to the latter given under authors' name(s).


FIGURE 9. SMOOTHED SURFACE FOCUS AMPLITUDE DISTANCE CURVE COMPARED WITH THE UNSMOOTHED VALUES PUBLISHED BY MARSHALL ET AL (5). (Both curves have same baseline in the range 30 to 90° and to aid comparison with the results as presented by Marshall et al are given in the form of distance <u>terms</u>.)

с,

ъ.,-



ς {

4

<u>,</u> 5

۲.

