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SUMMARY 

Theoretical analysis is given of absorption of elastic waves in the 
frequency rangc of seismological interest. The impulse response of a 
system satisfying the constant Q hypotl~esis i s  calculated and the results 
discussed. 

Over the past few years much has been written about the 
absorption of elastic waves in the frequency range of seismological 
interest. That there i s  attenuation of elastic waves i s  easy to observe, 
a s  is  the increase in attenuation with increasing frequency. What i s  
difficult to measure with enough precision to support any theoretical 
analysis is the amount of attenuation. Bearing in mind the variable 
nature of geologic materials, this is not too surprising. 

In any theoretical work on the amplitude of seismic signals, the 
effect of absorption must be taken into account. Since the experimental 
data a r e  not adequate to define the appropriate parameters uniquely, 
the natural approach i s  to postulate an analytical model which 
satisfies the data. 

The literature contains several relevant papers, those by 
Kolsky I.] (see also Hunter L 21 ) and Futterman [ 31 being particularly 
explicit, while a review article by Knopoff [ 4 ]  i s  also very valuable. 
The essential point brought out in these papers i s  that absorption must 
be accompanied by di spers im [ 51 . In using the dispersion relations, it 
has proved convenient to derive an operator which can be used for con- 
volution in the time domain. Although Kol~ky derived essentially the 
same operator in his early paper, there does seem to be some value 
in repeating the calculation with appropriate comment on the applica- 
bility of the results to seismic problems, 

2. ONE DIMENSIONAL PROPAGATION WITH NO ATTENUATION 

In addition to absorption of energy by non-elastic processes, there 
is, in general, attenuation during propagation because of geometrical 
spreading. For  simplicity we shall therefore consider one dimensional 
propagation so that any attenuation i s  entirely due to non-elastic effects. 
The co-ordinate system i s  chosen such that X represents distance and 
t time . 

Suppose we generate at X ;. 0, t = 0 a pulse having Fourier 
components A(w), then the waveform A(0,t) i s  given by 
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where o is  the angular frequency. 

I f  the pulse now propagates in  one dimension with constant 
velocity U the wave form at distance X and time t can be written 

If we now refer time to a new origin moving with velocity V and call the 
1 new time t , then 

, ' t'" - 
B ( x , t l )  = 5 ~ ( o )  c x p  io ( t  - X/U + x/~)do. ...... ( 3 )  

Comparing (1) and (3) we note that if V = U, B(x, t l )  = A(0,t); which 
i s  obvious from8physical considerations. 

3. OBSERVATION AND THE CONSTANT Q POSTULATE 

In practice it i s  found that absorption of energy takes place during 
propagation and we may write quite generally that 

IB(x,o)( = J X ( O , ~ )  J c x p  ( -  a w x ) .  . .. . . . ( 4 )  

Experience shows that high frequencies are preferentially absorbed and 
to the degree of experimental accuracy obtainable the absorption coeff- 
icent a i s  usually found to be independent of frequency over quite wide 
frequency bands. 

If  we postulate that as  an identity a = constant, then certain compli- 
cations arise. Both Futterman [ 31 and Kolsky [ l ]  show that if we 
require a theory which i s  both linear (i.e., one which obeys the principle 
of superposition, and has the attendant mathematical advantages) and 
obeys the principle of causality, then:- 

(a) There must be a low frequency cut-off below which the ab- 
sorption coefficient i s  not constant but decreases. 

(b) There must be a phase shift, i.e., dispersion must occur. 

The first condition i s  relatively unimportant. Since all observations 
refer to some finite bandwidth we simply take the low frequency cut-off, 

Oo well below the lowest frequency of interest, so that the fact that there 

is th i s  finite cut-off frequency becomes of purely academic importance. 

The second condition, that there i s  necessarily some phase shift, 



is of very considerable importance. From Section 2, we had, for no 
absorption 

(.xp - ( i m x / l l ) ,  ...... ( 5 )  

where U is a constant. Now with absorption we must write 

- - 
R (x,w) = A ( o , ~ I )  c x p  ( i o ~ x )  ...... ( 6 )  

where K = i~ - l /C(u),  in which a is, by definition, constant for m >ao and 

C @ ) ,  the phase velocity at (angular) frequency a, i s  a function of w .  

Although the variation of C with W i s  probably too small to measure 
by direct means, the fact that there i s  a variation has fundamental im- 
plications to the subsequent analysis. Essentially it derives from the 
causality condition and i s  analogous to the similar theorem in electronic 
circuit theory whereby a filter cannot give an output before it receives 
an input. Thus, as i s  shown in many texts (e.g., Mason and Zimmerrnann 
[6] ), the real and imaginary parts of the filter transfer function 
(correspondingto U and C respectively) are  intimately related via the 
Hilbert transform. 

Futterman's analysis i s  analytical and makes no appeal to physical 
processes, whereas Kolsky's analysis i s  based on the concept of linear 
elastoviscosity 21. Their results are for practical purposes identical, 
although in the following analysis  itt term an's notation will be used. 

We first define Q by the relation 
0 

where CO, a constant, i s  the velocity of the very low frequency waves 

( U  < %) which suffer no absorption. Since a and C are both constants, 
0 

Q0 
is  a constant also. Then the phase velocity, C(o), of the wave having 

frequency o i s  given by 

where y is Euler's constant. 

This expresssion i s  derived by Futterman for a particular model 
of the behaviour of a for CO U The details need not concern us; it i s  

0' 

sufficient to accept that C varies but slowly with w according to the 
logarithmic law. 
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Note that for a given frequency, U, the conventional definition of 
Q relates the absorption coefficient a (which i s  defined a s  being constant 
in the frequency range of interest) to the phase velocity C (which i s  a 
function of W) by the equation 

s o  that to say that we have a constant Q model is strictly incorrect. 
However to insist on the difference between constant Q and constant 

Q0 
would be pedantic and henceforth the subscript i s  omitted. 

From equations (6 ) ,  (7) and (8) we can therefore write 

1 +m ~ ( x , t )  = 5 Id,X(0,o) exp ( -  mx/2QC) exp  iia[t - c{' - ln(ym'oO)}]dm. TQ 

If instead of going to the frequency domain a s  in equation (10) we 
use convolution in the time domain, we can write 

where I(x,t) i s  derived from equation (10) by putting A(0,w) = 1, i.e., 
I(x,t) is the response to unit impulse, 6 (t), applied at X = 0. Our aim 
now is to evaluate the impulse response. 

4. THE NORMALISED IMPULSE RESPONSE 

Consider the impulse response derived in the previous section 

I( X ,  t )  =  ex^( - ~ , ) X / ~ Q C ~ )  exp im[t - ' - 1:~'("0 )}]ciw. . ( I  2) 
- m  

Since the function i s  a real  function of space and time K(a\) = K*(-&) 
and we can write 

+CO 1 - ln(yo/oo) ...... 
1 ( x , t )  = e x p ( - w x / 2 ~ ~ ~ )  c o s  o[t - 3 ,Q }]dw. ( 1  3 )  

0 

A s  in Section 2 it  would now be convenient to refer  I(x,t) to a moving 
frame of reference. Examination of equation (13) shows that choosing 
a frame of reference moving with constant velocity C i s  one possibility. 

0 
Kolsky [ l  ] suggests using a frame of reference which travels with a 
velocity 5 



where X is an arbitrary constant. This has a very important result 
0 

that it introduces similarity (see later) but the choice of X has no 
0 physical basis. 

The question which then arises is, can the advantages of similarity 
be preserved with a more physically satisfying choice of velocity? 

In any particular case where the integral in equation (13) is  evalua- 
ted numerically, some limit will necessarily be set on accuracy. For 
instance we may choose to work to an accuracy of l part in 10'. Then 
to this degree of approximation there will be for each case some value 
cf frequency, 9' say, above which all contributions to the integral will 

CO 

be negligible, e:g., I, of equation (13) is less than 1 0 - ~ .  Examination 
CD 

of equation (13) sho i s  that it i s  more convenient to work in terms of the 
dimensionless parameter 

w1 X - = D, say.  
QC 0 

The accuracy of the solution i s  then directly related to D, a value of 
1 0 ~  being adequate for most calculations. 

The velocity to be used as  the velocity of the frame of reference 
should be related to V'. Neither the phase velocity 

nor the group velocity 

are appropriate, the signal commencing before the origin in both cases. 
If however, we heuristically define an average "signal velocity" S(&) 
from the equation 



then it  can resdily be shown that 

It is interesting to note that if U( W') and C(U' ) are,  substituted in 
equation (18) in place of S(@') and U(@') respectively then the solution 
for  U(W') is in fact equation (17), which can equally be derived from the 
more familiar equation 

This velocity, S(ccl), is then the pulse velocity, and is a function 
of distance. Note that the pulse velocity is to some extent arbitrary 
because it  depends on the highest frequency resolvable, but the reso- 
lution changes s o  rapidly with frequency while the velocity changes s o  
slowly with frequency that no rea l  problem arises. 

Referred to an origin moving with velocity S(@') the impulse 
response can be written 

0 1 - ..... ~ ~ ( t ' )  = 1 exp ( -  ox/2QCo) c o s  w [tl '- TMln(o/o') 2)]dro, (21) 
0 

where d = (QCoD)/x. 

This equation is a function of cc.x/QC only and further simplification 
0 

is therefore possible. 

5. THE SIMILARITY SOLUTION, E(g) 

The principle of similarity asser ts  that if Gl(mcl;) = G 2 ( 4  and f(t) 
is the time transform of G,, then the time transform of G2  is 

Applying this principle to equation (18) we can write, ignoring the 
superscript, 

QCo 
Io(f) =X E(x/CoQ), 



where E(g) 

where g is the dimensionless time 

g = t i (x/QCo) 

and h i s  the dimensionless (angular) frequency, h = o.(x/QCo), 

This then i s  the impulse response which is to be calculated. 

Note that to a good approximation x/C can be written a s  T the 
0 

travel time. This is particularly useful when considering cases where 

Q and C vary with position for then we can replace, - 
o go along the 

propagation path by T/Qav where T is the travel time and Q an av 
effective "average" value for the whole path travelled. Thus in practice 
we estimate T/Q and use the function (Q/T)E(T/Q) a s  the convolution 
operator which allows for absorption. 

6. EVALUATION OF THE FUNCTION E(g) 

The function 

D 
E ( ~ )  = $ Jo[exp ( - h / 2 )  c o s  ~ ( C J  + {W }]dh 

was evaluated by standard Fourier ser ies  techniques, replacing the 
integral by a summation. I 

Two parameters a re  required, the maximum and minimum 
(excluding zero) frequencies. The maximum, o r  Nyquist , frequency 
FNYQ cycles is selected directly and gives the maximum value of h 
according to the equation 

HMAX = 2nFNYQ =D. 

This parameter defines the sampling interval in the g ( G  time) 
domain, i.e., 

DELG = 1/(2.FNYQ). 

The minimum frequency is defined indirectly 2s the reciprocal 
of the fundamental period (GMAX) which is in turn derived a s  a number, 
Z, times the sampling interval. Thus, 
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GMAX = Z.DELG 

FMIN = l/GMAX = l/(Z.DELG) 

and HMZN = 2x.FMIN = 2x/(Z.DELG) = 4x.FNYQ/Z. 

The integral is now replaced by a summation using increments of h, 
DELH, equal to the minimum frequency. 

Thus, 

where R takes integral values from 0 to Z, where the dash is used to 
denote a calculated value a s  opposed to an absolute value. 

The f i rs t  term inside the brackets, 0.5, takes account of the zero 
frequency component which is unaltered during the pulse transmission. 
This ensures that 

i.e., the area  under the E1(g) curve i s  always unity, a s  required by the 
condition that very low frequencies a r e  unattenuated. By using the 
se r ies  expansion we have also forced E' (0 )  = E' (GMAX). In general 
the se r ies  expansion is an approximation to the integral, hence the use 
of the superscript to indicate an approximate evaluation. 

7. RESULTS 

The expression for E '(g) was evaluated for sevaral combinations 
of the parameters FNYQ and Z. The results for  FNYQ = 5, Z = 1000 
a r e  given in Table 1 and plotted in Figure 1 together with the curve 
for  FNYQ = 2, Z = 80. Note that E' (g) i s  positive for al l  values of g. 
If, therefore, one imagines convolving E '(g) with input waveform, 
it  i s  c lear  that the model cannot provide a mechanism for the inversion 
of f i rs t  motion. Despite the fact that phase changes of x a r e  produced, 
the changes a r e  ~rirtually linearly dependent upon frequency (from 
equation (21)) and a time shift rather than inversion occurs. 

Inaccuracies in E 'g  (i.e., differences from E(g)) a r i se  in three 
ways. Firstly, there i s  an e r r o r  due to replacing an integral over 
frequency from zero to infinity by an integral from zero to some finite 
maximum, FNYQ. Secondly, there a r e  inaccuracies in evaluation of 
the integral by a summation. Finally, there i s  the inaccuracy 
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due to the requirement that the integral over the duration of the tran- 
sient should be unity. The first type of e r ro r ,  which must be less 
than exp (- .rrFNYQ), can be reduced by increasing FNYQ, the second 
and third by increasing the duration of the transient, i.e., Z. In 
general the third type of e r r o r  is numerically the most significant, but 
appears simply a s  a base line shift. This effect i s  well demonstrated 
in Figure 2, where E'(g) i s  plotted on a logarithmic scale for 
different values of Z. 

The significance of the second source of inaccuracy can be 
evaluated by examining how first  differences vary with Z, thus removing 
the larger base qne shift. For FNYQ = 5, Z = 1000 the e r r o r s  are  of 
the order of 10- , which are  comparable with the f i rs t  type of inaccuracy 
for FNYQ = 5. If therefore the value of E' (0) i s  subtracted from the 
E " ~ )  values given in Table 1, the results represent the values of E(g) 
to an accuracy of at least the last digit. 

The problem of defining an arrival time is well illustrated in 
Figures 1 and 2. The plotting accuracy in Figure 1 i s  about 1 0 - ~ ,  and 
to this accuracy FNYQ = 2, Z = 80 i s  adequate. The time origin i s  chosen 
a s  the arrival of FNYQ travelling with the signal velocity a s  defined 
by equation (19), the corresponding group and phase arrival times being 
1/n and 2/51 units respectively. For  FNYQ = 5 the origin is referred to 
the signal velocity for FNYQ = 5. In Pigure 1 the plotting accuracy i s  
not sufficient to show the early high frequency arrivals, but Figure 2 
demonstrates how the apparent onset gets earl ier  with increasing 
resolution. 

8. CONCLUSIONS 

The main purpose of this report was to calculate the impulse 
response of a system satisfying the constant Q hypothesis. There 
seems to be no practical justification for regarding the models of Futter- 
man and Kolsky a s  different, and although Futterman's analysis has 
been more widely quoted, Kolsky's work contains several valuable 
features which can be applied directly to Futterman's model. In par- 
ticular the principle of similarity means that a single operator in the 
time domain can be scaled for use with any values of the independent 
variable. In a homogeneous medium this variable is the distance 
divided by C Q, but for an inhomogeneous model the variable can be 

0 - 

replaced by the parameter [ (C~Q)-"X, where the integration i s  taken 

over the whole path. Although for the model the velocities a r e  a 
continuous function of frequency, the changes a re  so slight that for 
practical purposes the parameter can be written a s  T/Qav, where T 

i s  the travel time. Nevertheless the change of velocity with frequency, 
though small, does preserlt some interesting problems in rigorously 
defining the arrival time. The arrival time is a function of resolution, 
and for practical applications it  corresponds to the "signal" 
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velocity of a frequency of about (2(2/T) cycles per second. Perhaps 
the most important observation i s  that, since the operator i s  positive 
for all time, there can be no reversal of first motion. 

The operator as  calculated i s  suitable for taking account of 
absorption by convolution in the time domain. In many cases it i s  
more convenient to work in the frequency domain throughout, but even 
then a knowledge of the impulse response of the absorptive part of the 
system will help assess its importance. In particular the above nomen- 
clature may assist in avoiding that irritating feature of numerical 
calculation, the precursor. 



APPENDIX A 

Although as  was stated in the text, pulse experiments cannot be 
expected to show the dispersion associated with absorption, there does 
appear to be possibility of an observable effect. Suppose the model i s  
physically realised. The percentage difference in velocity between 
two periods T, and T, i s  approximately 30q-' log T,/T,. Now in e 
current geophysical techniques applied to the earth, T varies between 
1 S for body waves and 1 h for the earth's fundamental oscillations, 
giving the log T, /T, term value of up to 10. In the "low velocity" or  
"low Q" layerebeneath the Moho, Q may be as  low as 40 for shear waves 
and 100 for P waves. Therefore we might expect that, since velocity 
decreases with period, the low velocity layer becomes more pronounced 
for S waves than for P waves, and more pronounced for the longer periods. 
It i s  certainly true that over the past few years, as longer period waves 
have been observed, the evidence of the low velocity layer has increased 
substantially. Although the low velocity (or Q) layer i s  of relatively 
small thickness, the accuracy of 1 part in 104 o r  105 with which funda- 
mental oscillations are observed does raise the possibility that changes 
of velocity with period could be observed. In essence it means that we 
would need a velocity depth structure which i s  frequency dependent. 
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E ' ( ~ )  f o r  FNYQ = 5, Z = 1000 



FIGURE I. THE FUNCTION E(q) T O  g 8 4  





FIGURE 2. LOGARITHMIC PLOT OF E(g) SHOWING EFFECT OF INCREASING Z 




