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SUMMARY 

Techniques a r e  described f o r  recording atmospheric waves a t  
t h e  AWRE Blacknest Research Centre. 

Examples, wi th  i n t e r p r e t a t i v e  comments, of var ious  types of 
atmospheric waves observed over a period of s eve ra l  years  a r e  
i l l u s t r a t e d  i n  a s e r i e s  of f igu res  taken from a r ep resen ta t ive  
se1ec:t ion of Blacknes t records.  

INTRODUCTION 

For many years  microbarographic recordings of very small, 
r e l a t i v e l y  r ap id  f luc tua t ions  i n  atmospheric pressure  have been made 
by AWRE a s  p a r t  of research i n t o  t h e  problem of de t ec t ing  geophysical 
e f f e c t s  of nuclear  weapons t e s t s  and d iscr iminat ing  between these  
e f f e c t s  and those due t o  o the r  causes. During t h e  pas t  decade, t h i s  
work has been based a t  t he  Blacknest Research Centre where observat ion 
of atmospheric waves has been complementary t o  the  main a c t i v i t i e s  i n  
de t ec t ion  seismology. 

Of p a r t i c u l a r  i n t e r e s t  among the  many observed pe r tu rba t ions  
of atmospheric pressure  a r e  dis turbances which o r i g i n a t e  from man-made 
sources ,  such a s  l a r g e  explosions i n  the  atmosphere, f l i g h t s  of 
supersonic a i r c r a f t  and t h e  passage of space vehic les ,  a s  w e l l  a s  from 
n a t u r a l  events ,  such a s  l a r g e  earthquakes. Very low frequency components 
of t h e  acous t i c  energy from such sources can be propagated t o  g r e a t  
d i s t ances  from t h e  poin t  of o r i g i n  wi th  r e l a t i v e l y  low a t t enua t ion  and 
a r e  sensed a t  d i s t a n t  rece iv ing  s t a t i o n s  a s  s p a t i a l l y  coherent p re s su re  
waves wi th  periods i n  t h e  range 1 t o  1000 S and hor i zon ta l  v e l o c i t i e s  
over t h e  ground su r face  c lose  t o  the  speed of sound i n  a i r .  

The purpose of t h i s  r epor t  is  t o  g ive  a b r i e f  desc r ip t ion  of 
micro'barometric d a t a  recording f a c i l i t i e s  based a t  Blacknest f o r  t h e  
r o u t h e  monitoring of atmospheric wave phenomena and t o  g ive  examples 
of e f f e c t s  observed over seve ra l  years  from various types of events .  
Some d iscuss ion  and i n t e r p r e t a t i o n  of t h e  records is  given i n  t h e  t e x t  
ad jacent  t o  t h e  i l l u s t r a t i o n s .  

2. TERMINOLOGY 

A un ive r sa l ly  cons i s t en t  terminology has no t  y e t  been 
e s t ab l i shed  i n  t h e  atmospheric wave l i t e r a t u r e ,  although a use fu l  
summary of nomenclature and types of waves has been given by Georges 
and Young [ l ] .  The terminology used i n  t h i s  r epor t  follows t h a t  
adopted i n  previous Blacknest publ ica t ions  i n  t h i s  f i e l d  and i n  t h e  
following notes  some b r i e f  o u t l i n e  d e f i n i t i o n s  a r e  given:- 



In f r a son ic  Waves: Atmospheric waves which t r a v e l  a t  son ic  speed bu t  
a r e  inaudib le .  This i s  a  convenient d e s c r i p t i o n  f o r  
denoting any of t h e  modes of acous t ic -gravi ty  waves 
which f a l l  w i th in  t h e  s t a t e d  band of i n t e r e s t  s i n c e  
only a  common property of t h e  waves and not  t h e  
mechanism of propagation i s  implied. 

Units. of Pressure:  The I n t e r n a t i o n a l  System ( S I )  u n i t  f o r  t h e  
measurement of pressure  is t h e  Newton p e r  square  
metre, bu t  a  number of o t h e r  u n i t s  may be  
encountered i n  re ferences  t o  t h e  observed amplitudes 
of atmospheric wave pressure  f l u c t u a t i o n s .  The 
r e l a t i o n s h i p  between t h e  var ious  u n i t s  i n  use  i a  :- 

1 Newton pe r  square metre ( ~ / m ~ )  

Dynam.ic Range : 

= 1 Pasca l  (Pal 
= 10-2 m i l l i b a r  (mb) 
= 10 microbar (pb) 
= 10 dynes per  square cent imet re  (dyn/cm2) 

,h-+ C A 3  
The dynamic range over which an infrasonic-wave 
recording system opera t ing  wi th in  a  pass-band of 
1 t o  10000 S must func t ion  extends from amplitudes 
of t h e  order  of 50 ~ / m ~  f o r  some r e l a t i v e l y  
inf requent  la rge-sca le  events  down t o  l e v e l s  w e l l  
below 0 .1  ~ / m ~  where an u l t ima te  l i m i t  of r e s o l u t i o n  
f o r  weak i n f r a s o n i c  waves is  imposed by t h e  no i se  
c h a r a c t e r i s t i c s  of t h e  recording system. 

Background Noise: I n  p r a c t i c e  i t  is t h e  ambient "background noise" of 
t h e  atmosphere r a t h e r  than t h e  e l e c t r i c a l  n o i s e  of 
t h e  recording system which is t h e  p r i n c i p a l  f a c t o r  
governing t h e  de t ec t ion  of wanted i n f r a s o n i c  
s i g n a l s .  Atmospheric no i se  v a r i e s  widely wi th  
meteorological  condi t ions ,  o r i g i n a t e s  from a v a r i e t y  
of sources and includes i n  t h i s  context  some 
components due t o  unwanted i n f r a s o n i c  waves. The 
p r i n c i p a l  and most obvious components of background 
noise ,  however, a r e  usua l ly  those  due t o  t h e  l o c a l  
wind. 

Arrays : A t  a  s i n g l e  recording po in t  i t  may be  d i f f i c u l t  t o  
ident.ify a  p a r t i c u l a r  i n f r a s o n i c  s i g n a l  among t h e  
many o t h e r  pressure  f l u c t u a t i o n s  of s i m i l a r  
frequency content  t o  t h e  s igna l .  This d i f f i c u l t y  can 
be  lessened by sensing t h e  p re s su re  a t  a  number 
of po in t s  i n  an a r r ay  of s u i t a b l e  spacing and 
dimensions i n  o rde r  t o  e x p l o i t  t h e  d i f f e r ences  i n  
ve loc i ty ,  wavelength and waveform coherence which 
e x i s t  between organised coherent i n f r a s o n i c  waves 
and t h e  var ious  o t h e r  wave-like components of 
atmospheric background noise .  



Passive Array : 

Active Array : 

The desc r ip t ion  "array" has sometimes been used i n  
references t o  purely mechanical-acoustic devices 
which have d i s t r i b u t e d  pressure  sensing i n l e t  
geometry but  o f f e r  no provision f o r  d i sp lay  o r  
t ime-shif t ing of indiv idual  acous t ic  s i g n a l  
waveforms sensed a t  t h e  sepa ra t e  sensing i n l e t  
poin ts .  A more s p e c i f i c  name "passive array" was 
the re fo re  introduced i n  an e a r l i e r  no te  [ 2 ]  t o  
designate an i n e r t  assembly, such a s  t h e  o r i g i n a l  
Daniels '  type of l i n e  microphone [3]  o r  t h e  no i se  
reducing pipe f i l t e r  described i n  s e c t i o n  3.6 of 
t h i s  r epor t ,  i n  order  t o  d i f f e r e n t i a t e  between 
a r r ays  of t h a t  type and more complex systems which 
make provision f o r  s epa ra t e  handling and processing 
of s i g n a l s  from indiv idual  a r r ay  pos i t i ons .  

An a c t i v e  a r r ay  can be  defined a s  a system which 
provides f a c i l i t i e s  f o r  indiv idual ly  recording 
in f r a son ic  acous t ic  s i g n a l s  which appear a t  
well-separated sampling poin ts .  Thereby, improved 
de tec t ion  and d i r e c t i o n a l  es t imates  a r e  obtained 
f o r  wanted s i g n a l s  e i t h e r  by d i r e c t  observat ion of 
t i m e  r e l a t ionsh ips  of t he  ind iv idua l ly  r e g i s t e r e d  
wave t r a c e s  o r  by f u r t h e r  processing of t h e  
recorded data .  In  comparison t o  the  l imi t ed  
dimensions f e a s i b l e  f o r  pass ive  a r r ays ,  t h e  s i z e  
of an a c t i v e  a r r ay  can be  increased (within t h e  
cons t r a in t  of s p a t i a l  coherence of wanted s i g n a l s )  
t o  dimensions which a r e  optimum f o r  no i se  r e j e c t i o n  
and azimuthal determinat ion of detected waves. 

Post-recording processes involving bandpass 
f i l t e r i n g ,  summation of indiv idual  a r r ay  s i g n a l s  
a f t e r  t ime-shif t ing according t o  t h e i r  p o s i t i o n  i n  
t h e  a r r ay  and cross-corre la t ion  of p a r t i a l  sums, 
can be applied t o  t h e  output of an a c t i v e  a r r ay  
wi th  consequent improvements i n  signal-to-noise 
r a t i o ,  de t ec t ion  capab i l i t y  and azimuth 
determination. 

DESCRIPTION OF THE BLACKNEST MICROBAROGRAPH ARaAY 

3.1 Array configurat ion and loca t ion  

The Blacknest microbarograph a r r ay  uses a combination of 
both pass ive  and a c t i v e  a r r ay  p r i n c i p l e s  and c o n s i s t s  of a network of 
s i t e s  which funct ion  a s  nodes of an a c t i v e  a r r ay  l lnked  t o  a recording 
cen t r e  a t  Blacknest. I n  addi t ion ,  a t  each s i t e  of t h e  network t h e  
sensing instrument i s  assoc ia ted  wi th  a l o c a l  pass ive  ar ray .  

The pos i t i ons  of t h e  22 instrument s i t e s  comprising t h e  
complete network a r e  shown i n  f i g u r e  1. Eighteen of these  s i t e s  a r e  i n  
an "inner  zone" group l y i n g  wi th in  a rad ius  of 10 km from the  a r r ay  
recording s t a t i o n  a t  Blacknest cent re .  The remaining four  s i t e s  form a 
sub-group l y i n g  t o  t h e  south-west of t h e  main group a t  between 30 t o  



45 km from t h e  a r r ay  cen t r e  poin t .  Normally a maximum of twenty of t h e  
ava i l ab le  s i t e s  i n  t h e  network a r e  maintained i n  opera t ion  f o r  
nicrolbarographic recording. 

The co-ordinates of t h e  cen t r e  poin t  are:- 

Geographic: 51 21 50'.8N 
01  11 12.8W 

Grid : 

Array s i t e  i n s t a l l a t i o n s  

Each s i t e  has a 250 VAC mains supply and a leased  telephone 
l i n e  connection f o r  £m te lemetry of d a t a  t o  the  c e n t r a l  recording 
s t a t i o n .  The on-si te  recording instruments a r e  housed i n  c y l i n d r i c a l  
emplacements f ab r i ca t ed  from g l a s s  f ibre- re inforced  polymer buried t o  
a depth of 6 f t  t o  provide both temperature s t a b i l i t y  and s e c u r i t y  f o r  
t h e  equipment. Figure 2 i l l u s t r a t e s  t h e  arrangement. 

The lower chamber of t h e  emplacement houses t h e  p res su re  
sensing instrument assembly which i s  r e l a t i v e l y  small  but  is  i n s t a l l e d  
wi th in  a l a r g e r  ou te r  conta iner  of f ab r i ca t ed  polyurethane which 
provides f u r t h e r  i n s u l a t i o n  from temperature changes. A smal le r  
c y l i n d r i c a l  compartment houses a te lemetry u n i t  and fo rns  a simple a i r  
lock under a manhole access  cover a t  ground su r face  l e v e l .  

3 . 3  Pressure  sensor  

The b a s i c  instrument which senses the  small  v a r i a t i o n s  i n  
atmospheric pressure  assoc ia ted  wi th  in f r a son ic  waves i s  a s e n s i t i v e  
microbarometer. This instrument produces an e l e c t r i c a l  output s i g n a l  
propor t ional  t o  t h e  d i f f e rence  between t h e  ambient pressure  a t  i ts 
atmospheric input  and the  pressure  e x i s t i n g  i n  an i n t e r n a l  re ference  
volume. A small a i r  leak  between t h e  re ference  volume and atmosphere 
governs the  o v e r a l l  low frequency response of t h e  system and i s o l a t e s  
i t  from t h e  e f f e c t  of l a r g e  long-term barometric changes. 

The e l e c t r i c a l  s i g n a l  is produced by a s o l i d  s t a t e  l i n e a r  
v a r i a b l e  d i f f e r e n t i a l  t ransformer i n  which t h e  output  v a r i e s  according 
t o  t h e  p o s i t i o n  of a mu-metal s l u g  i n  t h e  core  of t h e  t ransducer;  t h e  
s l u g  is a t tached t o  t h e  f r e e  end of a f l e x i b l e  metal bellows which 
undergoes length  changes i n  proport ion t o  pressure  d i f f e rences  between 
t h e  atmosphere and t h e  re ference  volume which a l s o  a c t s  a s  a backing 
volume f o r  t h e  bellows. 

3 . 4  Container and c a l i b r a t o r  

The microbarometer is housed i n  a die-cast  containing v e s s e l  
which a c t s  as a p ro tec t ive  housing, hea t  s i n k  and c a l i b r a t i n g  tank.  
This v e s s e l  can be  sea led  from the  atmosphere by a solenoid-operated 
valve and small  s inuso ida l  changes can then be made t o  t h e  sea led  
volume by means of a motor d r i v e  bellows s i t u a t e d  i n  t h e  l i d  of t h e  
tank, thereby generat ing corresponding pressure  v a r i a t i o n s .  This 
pressure  waveform is used t o  c a l i b r a t e  t h e  instrument and assoc ia ted  
recording system. 



The opera t ions  of s e a l i n g  t h e  tank and d r iv ing  t h e  bellows 
motor a r e  usua l ly  c a r r i e d  out  a t  i n t e r v a l s  pre-selected by an 
automatic sequence c o n t r o l l e r .  A sequence which provides weekly 
c a l i b r a t i o n s  wi th  waveforms of 5 ~ / m ~  peak-to-peak amplitude and 
pe r iods  of 15  and 120 s i s  normally p r e s e t  from a number of poss ib l e  
opt ions  of amplitude, per iod and sequence i n t e r v a l .  A s e c t i o n a l  view 
of t h e  microbarometer and c a l i b r a t o r  assembly i s  given i n  f i g u r e  3. 

3.5 Signal  te lemetry 

The e l e c t r i c a l  output  s i g n a l  from t h e  microbarometer is fed  
t o  an fm sender  u n i t  which i s  housed i n  t h e  upper compartment of t h e  
a r r a y  s i t e  emplacement. This u n i t  con t ro l s  t h e  s i g n a l  te lemetry and 
c a l i b r a t i o n  func t ions  f o r  t h e  microbarometer and provides a l l  
necessary power supp l i e s .  

I n  t h e  fm sender t h e  incoming s i g n a l  i s  amplif ied and 
separa ted  i n t o  two frequency bands by bandpass f i l t e r s .  The two 
r e s u l t i n g  channels,  designated wide band and narrow band, cover s i g n a l  
components of 1 t o  1000 S per iod  and 1 t o  60 S per iod r e spec t ive ly .  
The outputs  of t hese  two f i l t e r e d  channels a r e  used t o  modulate two 
c a r r i e r  f requencies  which a r e  combined and t ransmi t ted  t o  t h e  record ing  
c e n t r e  a t  Blacknest v i a  a  Pos t  Off ice  l i n e  p a i r .  

A f u l l  desc r ip t ion  of t h e  fm sender  system is given i n  
r e f e rence  [ 4 ] .  

3 .6  Noise reducing p ipe  f i l t e r  

The var ious  elements from atmospheric input  t o  s t a t i o n  
recorder  output  f o r  one of t h e  twenty channels of t h e  microbarograph 
a r r ay  a r e  represented  diagrammatically i n  f i g u r e  2 .  It can be  seen t h a t  
t h e  microbarometer is no t  connected d i r e c t l y  t o  t h e  atmosphere bu t  t h a t  
i t s  inpu t  i s  i n s t e a d  connected t o  a  c i r c u l a r  p ipe  ly ing  on t h e  ground. 
The p ipe ,  which is cons t ruc ted  of 50 mm bore  polythene tub ing ,  has  
120 c a p i l l a r y  i n l e t s  spaced a t  3 m i n t e r v a l s  around i ts  circumference 
and ac:ts a s  a  s p a t i a l l y  d i s t r i b u t e d  f i l t e r  providing a  reduct ion  of 
s h o r t  per iod background noise .  

Unwanted atmospheric no i se  a r i s e s  p r i n c i p a l l y  from random 
f l u c t u a t i o n s  of p re s su re  a s soc i a t ed  wi th  l o c a l  wind turbulence.  A wanted 
signal.  may be  masked by t h e  no i se  a t  a  s i n g l e  recording po in t  and 
frequency f i l t e r i n g  is o f t e n  i n e f f e c t i v e  a s  t h e  no i se  spectrum conta ins  
frequency components s i m i l a r  t o  those  seen i n  many acous t i c  s i g n a l s .  By 
sampling t h e  atmospheric p re s su re  a t  a  number of d i s t r i b u t e d  p o i n t s ,  t h e  
pipe f i l t e r  tends t o  cancel  non-coherent no i se  components passing t o  . 
t h e  microbarograph inpu t  feeder  pipe.  On t h e  o t h e r  hand, p re s su re  
changes appearing a t  t h e  pipe i n l e t s  a s  a  r e s u l t  of t h e  passage of 
i n f r a s o n i c  acous t i c  waves remain coherent  because t h e  wavelengths a r e  
l a r g e  i n  comparison wi th  dimensions of t h e  a r r ay  of i n l e t s .  

The s ignal- to-noise improvement obtained from t h e  p ipe  f i l t e r  
dependls on s e v e r a l  f a c t o r s ,  inc luding  t h e  v a r i a b i l i t y  of wind speed. 
F u l l  dletai ls  of design cons idera t ions  a r e  given i n  re ferences  [ 2 ]  and 
L51. 



3 . 7  Recording cen t r e  and ava i l ab le  records 

Pos t  Off ice  telephone l i n e s  from the  microbarograph a r r ay  
s i t e s  a r e  terminated a t  t h e  Blacknest recording cen t r e  where t h e  dual  
modulated c a r r i e r  frequency outputs  from each l i n e  a r e  fed  v i a  l i n e  
balancing t ransformers t o  c a r r i e r  separa t ion  f i l t e r s .  Af t e r  s epa ra t ion ,  
t h e  t.wo c a r r i e r s ,  modulated r e spec t ive ly  by wide and narrow band 
s i g n a l  information,  a r e  passed t o  frequency d iv ide r s .  These d iv ide  t h e  
cen t r e  frequencies  of t h e  c a r r i e r s  down t o  the  value required by t h e  
tape  head d r i v e  s t a g e s  of two 24 channel £m analogue t ape  recorders  
running a t  0.075 i n . / s .  A t  t h i s  speed t h e  recording time per  t ape  r e e l  
is 1 4  days. The recorded wide and narrow band 1 i n .  wide da ta  tapes  a r e  
r e t a ined  f o r  two years  before  being erased ,  though c e r t a i n  events  a r e  
t r ansc r ibed  t o  an ed i t ed  l i b r a r y  t ape  f o r  r e t en t ion .  

In addi t ion  t o  t h e  magnetic t ape  records,  t h e  wide and narrow 
band d a t a  a r e  recorded by two drum recorders  each of which produces a 
record,  w r i t t e n  h e l i c a l l y  by a hea t  s t y l u s  on s e n s i t i v e  paper every 
24 hours.  These he l i co rde r  c h a r t s  provide a s i n g l e  channel monitor f o r  
r o u t i n e  d a i l y  analyses of d a t a  from one s i t e  of t h e  a r r ay ;  they a r e  
s t o r e d  f o r  reference.  An e i g h t  channel heat-s tylus recorder  is  
a v a i l a b l e  when requi red  f o r  on-line monitoring of s e l e c t e d  a r r ay  
channels.  

Accurate t iming f o r  both t ape  and cha r t  records is obtained 
from a time encoder which produces a vers ion  of t h e  VELA time code 
used I n  seismological  da t a  recording. A "slow" code is used f o r  t h e  
cha r t  records.  

Ca l ib ra t ion  waveforms, automatical ly generated a t  t h e  a r r a y  
recording sites a s  described i n  s e c t i o n  3.4, a r e  p r e s e t  t o  occur on one 
day each week i n  sequence across  the  a r ray .  These waveforms, which can 
be replayed a t  any time, with t h e  r e l a t e d  s i g n a l  da t a  from t h e  magnetic 
tape  records,  a r e  monitored each week. This provides a use fu l  on-line 
check of t h e  amplitude response of each system channel from 
microbarograph t o  recording medium a t  two spot  periods o f  t h e  o v e r a l l  
bandwidth. Amplitude response curves of t h e  system f o r  both wide and 
narrow bands a r e  given i n  f i g u r e  4 .  
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4. MICROBAROGRAPH ARRAY RECORDS 

4.1 Nuclear explosions 

Models f o r  t h e  s t r u c t u r e  of t h e  atmosphere have been 
p r o p o ~ ~ e d  by a number of authors  [6-81 t o  demonstrate t h e  e f f e c t  of 
s t r a t i f i c a t i o n  on t h e  propagation of var ious  poss ib l e  modes of 
ac0ust:ic-gravity waves. A l l  t h e  models a r e  s i m p l i f i c a t i o n s  of t h e  
r e a l  atmospheric s t r u c t u r e  a s  i t  e x i a t s  a t  any p a r t i c u l a r  t i m e ,  Tn 
genera l ,  acoust ic-gravi ty wave energy from l a r g e  explosions i s  rece ived  
a t  a d i s t a n t  record ing  s t a t i o n  as a d ispersed  t r a i n  of i n f r a s o n i c  waves 
i n  which t h e  long per iod  "gravi ty" modes a r r i v e  f i r s t ,  shading o f f  
through s h o r t e r  per iod  waves t o  modes which a r e  p r i n c i p a l l y  "acoustic".  
The models show t h a t  i n c r e a s e  i n  sound speed a t  a l t i t u d e s  of around 50 
and 100 km, due t o  t h e  temperature s t r a t i f i c a t i o n  of t h e  atmosphere, 
a r e  important i n  providing two p r i n c i p a l  "sound channels" through which 
i n f r a s o n i c  waves a r e  ducted over g rea t  d i s t ances .  

4.1.1 Seasonal v a r i a t i o n s  i n  propagation 

The e f f i c a c y  of t h e  wave guide formed by t h e  50 km boundary 
has  beben shown [g]  t o  be  g r e a t l y  a f f e c t e d  by t h e  d i r e c t i o n  of winds 
wi th  speeds of t h e  o rde r  of 180 km/h which e x i s t  a t  t h i s  l e v e l .  I n  t h e  
no r the rn  hemisphere t h e  wind a t  t h e  50 km l e v e l  has a d i r e c t i o n a l  
behaviour p a t t e r n  such t h a t  four  f a i r l y  d i s t i n c t  per iods  can be  
d iscerned  dur ing  a gear [10,11], thus:- 

A long "winter" per iod  Wind d i r e c t i o n  and speed Propagation from 
(Octobler t o  March) wes ter ly ,  180 km/h w e s t  t o  e a s t  is 

favourable  

A " t ramsi t iona l"  Wind d i r e c t i o n  and speed Propagation 
per iod  (mid-March changes from wes te r ly  t o  v a r i a b l e  
t o  May) e a s t e r l y .  Winds become 

weak and v a r i a b l e  during 
t h i s  per iod  

A s h o r t  "summer" Wind d i r e c t i o n  and speed Propagation from 
per iod  (June t o  e a s t e r l y ,  180 km/h e a s t  t o  west is  
August.) favourable  

A secclnd " t r a n s i t i o n a l "  Wind d i r e c t i o n  and speed Propagation 
per iod  (August t o  end changes from e a s t e r l y  t o  v a r i a b l e  
of September) wes ter ly .  Winds weak and 

- v a r i a b l e  

The h igh  dependence of propagat ion on t h e s e  seasonal  
var ia t : ions  i n  t h e  atmospheric s t r u c t u r e  can be  demonstrated by 
comparing observa t ions  made a t  d i f f e r e n t  times of t h e  year  from 
atmospheric explosions of similar s i z e  which have occurred a t  t h e  same 
source  p o i n t  and have been recorded a t  t h e  same r ece ive r .  F igure  5 ,  
f o r  example, i l l u s t r a t e s  a series of records  of i n f r a s o n i c  waves from 
l a r g e  atmospheric nuc lea r  explosions a t  t h e  Chinese test s i te  a t  
Lop Nor, Sinkiang. A l l  t h e  explosions were over  a megaton and of roughly 



t h e  same y ie ld .  Published est imates  of t h e  y i e lds  p lace  f i v e  of t h e  
shots  c lose  t o  3 Mton and the  s i x t h  over 4 Mton. Other d e t a i l s  about 
t h e  explosions, such a s  height  of bu r s t ,  a r e  not  known but  f o r  t h e  
purposes of t h i s  comparison t h e  source parameters a r e  assumed t o  be  
s imi l a r .  

A l l  t he  recordings were made under t h e  wide-band condit ions 
descr ibed previously and a r e  reproduced i n  f i gu re  5 so  t h a t  t h e  
r e l a t i v e  amplitudes ( v e r t i c a l )  and time durat ions (horizontal)  of t h e  
s i x  t r aces  a r e  t o  t h e  same sca le .  The higher background noise  i n  
t r aces  2 and 6 is because the  records were obtained a t  an e a r l y  s t a g e  
i n  t h e  commissioning of t h e  microbarograph ar ray  before pass ive  a r r ay  
noise  reducers were i n s t a l l e d .  

It can be seen t h a t ,  apa r t  from t h e  d i f fe rences  i n  background 
noise  condit ions,  t h e  s i g n a l  waveforms f a l l  i n t o  pa t t e rns  which r e l a t e  
t o  t h e  time of year  of t h e  recordings. Thus, t h e  waveforms of two 
s igna l s  from events  which occurred i n  oummer exh ib i t  s t rongly  developed 
acous t ic  mode waves of around 45 ~ / m ~  amplitude and 55 s period. I n  t h e  
recordings of s igna l s  occurring i n  t h e  t r a n s i t i o n a l  autumn perAod, t h i s  
mode is g rea t ly  reduced i n  amplitude and u l t imate ly  becomes 
ind is t inguishable  i n  t h e  background noiee of the  win ter  record. The 
t o t a l  time durat ion of t h e  received s i g n a l  a l s o  becomes much extended 
wi th  t h e  progression of t h e  seasone from summer t o  winter .  

It may be in fe r r ed  from these observations t h a t  t h e  
boundaries of atmospheric waveguides become modified a s  a r e s u l t  of 
chang,es i n  t h e  upper s t r a to sphe r i c  winds. Thus, t h e  p r inc ipa l  acous t ic  
mode is no longer supported a f t e r  t h e  t r a n s i t i o n ,  while t h e  g r e a t l y  
increased d ispers ion  of t h e  acoustic-gravity wave t r a i n  suggests  
g rea t e r  complexity i n  t h e  propagation pa ths ,  followed by t h e  longer 
wave modes. The long pers i s tence  of very sho r t  period (20 t o  30 S )  

waves i n  t h e  t a i l s  of t h e  wave t r a i n s  has been a t t r i b u t e d  [l21 t o  t h e  
ex is tence  of o the r  wind ducts  i n  t h e  layered s t r u c t u r e  of t h e  
atmosphere i n  which sho r t  period components of t h e  o r i g i n a l  pu lse  a r e  
propa.gated and repeatedly "spl i f"  during t r a n s i t ,  thus g rea t ly  
extending t h e  dura t ion  of t he  received s igna l s .  

4.1.2, Coherence of ~ o i s e  and s i g n a l  waveforms 

Observations a t  Blacknest and elsewhere [l31 have shown t h a t  
noise! due t o  t h e  l o c a l  wind has l i t t l e  coherence a t  d i s tances  g rea t e r  
than 1 km and hence t h e  separa t ion  of t h e  sites i n  an a r ray  by t h a t  
order  of d i s t ance  would be advantageous i n  improving t h e  de tec t ion  of 
signarls aga ins t  wind noise  unaffected by l o c a l  passive a r ray  f i l t e r i n g .  
However, longer  wavelength components i n  atmospheric background noise  
due t.o soa~~ees o the r  than t h e  wind (such a s  waves with subsonic 
ve1oc:ities generated near  t h e  tropopause from sourcee similar t o  t h e  
jet-etream [ l41 o r  i n  t h e  troposphere under c e r t a i n  meteorological 
condi.tions) requi re  even g rea t e r  spacing of a r ray  elements f o r  
improvements i n  signal-to-noise r a t i o  t o  be  achieved. 

I n  p rac t i ce ,  t h e  f i n a l  a r ray  ape r tu re  is a compromise between 
l o g i ~ ~ t i c a l  considerat ions and t h e  l a r g e s t  dimensions which a r e  
consi-stent with waveform congruence of wanted s igna l s  across  a l l  t h e  



sites of an array.  I n  t h e  case of s i g n a l s  observed from d i s t a n t  nuclear  
explosions,  wave periods a r e  t y p i c a l l y  i n  t h e  range 30 t o  300 S ,  

equivalent  t o  wavelengths i n  t h e  range i 0  t o  100 km. 

The d i spos i t ion  of sites i n  t h e  Blacknest microbarograph 
ar ray  t e s t s  t h e  c o r r e l a t i o n  of nuclear  explosion s i g n a l s  i n  an a r ray  
of up t o  50 km aper tu re ,  equivalent  t o  seve ra l  wavelengths of t h e  
s h o r t e r  period s i g n a l  components. I n  f i g u r e  6 ,  t h e  upper t h r e e  t r a c e s  
a r e  s i g n a l s  recorded from t h e  Chinese nuclear  explosion of 27 June 1973 
a t  t h r e e  s i t e s  of t h e  Blacknest array.  Traces 1 and 2 a r e  from s i t e s  
separated by 5 km and t r a c e  3 is from a s i t e  30 km d i s t a n t  from t h e  
second site. The s i g n a l  i n  t r a c e  4 was recorded from t h e  same 
explosion by an AWRE microbarograph operated by t h e  I n s t i t u t e  of 
Geological Sciences Observatory a t  Eskdalemuir, 465 km from t h e  a r r a y  
cen t re  ( t r a c e  2 ) .  It can be seen t h a t  the  whole wavetrain,  including 
s h o r t  period acous t ic  waves, has good coherence across t h e  Blacknest 
a r r ay  sites. Summation and cross-corre la t ion  processes can the re fo re  
be  applied with advantage t o  t h e  indiv idual  s i t e  outputs  of an a r ray  
of t h i s  s i z e  t o  improve de tec t ion  of weaker s i g n a l s  of t h e  kind 
i l l u s t r a t e d .  The Eskdalemuir s i g n a l ,  while  having general  s i m i l a r i t y  
of form, lacks  waveform congruence (except f o r  t h e  longer i n i t i a l  
waves) e s s e n t i a l  f o r  a r r ay  processing. 

4.1.3 Mul t ip le  a r r i v a l s  

Because of the  l a r g e  energy r e l e a s e  from major explosions 
and t'he low a t t enua t ion  of in f ra son ic  waves i n  t h e  atmosphere, mul t ip le  
arr iv(a1s due t o  successive r e f l e c t i o n s  of waves a t  t he  ant ipodes of 
t h e  s~ources have been reported on a number of occasions [15]. An 
example of t h i s  is given i n  f i g u r e  7 which shows successive wave 
groups, A l ,  A2, A3 and A4, recorded on t h r e e  instruments of the  
Blacknest microbarograph a r ray  from t h e  Chinese nuclear  t e s t  of 
14  October 1970. 

The a r r i v a l s  subsequent t o  t h e  f i r s t  a r r i v a l  A 1  may be  
t r e a t e d  as round-the-world waves propagating with a group v e l o c i t y  of 
approximately 1100 km/h (or  10" a r c  per hour) .  D i rec t iona l  and o the r  
d e t a i l s  of t h e  wave a r r i v a l s  a r e  the re fo re  a s  follows:- 

A 1  Direc t  waves from t h e  source,  
Lop Nor 

A2 The f i r s t  wave group re turn ing  
from t h e  antipodes of Lop Nor, 
t r ave r s ing  t h e  a r m y  i n  t h e  
opposi te  d i r e c t i o n  t o  A l ,  i e ,  
t r a v e l l i n g  towards t h e  source 

A3 The second group of waves t o  
a r r i v e  from the  d i r e c t i o n  of 
t h e  source 

A4 The second group of waves t o  
a r r i v e  t r a v e l l i n g  towards t h e  
source 

Distance t r a v e l l e d  60" 

Ef fec t ive  pa th  length  300". 
Travel  time approximately 
30 h 

Ef fec t ive  pa th  length  420". 
Travel  t i m e  very approximately 
42 h 

Ef f e c t i v e  pa th  length  660". 
Travel  time very approximately 
66 h 



The f i r s t  a r r i v i n g ,  "gravity" mode, waves a r e  i n  each case  
a n n ~ t ~ a t e d  "G" and t h e  l a t e r ,  "acoustic" mode, waves a r e  annotated "S". 
Due t o  t h e  g rea t  d i s t ances  t r a v e l l e d  and t h e  d i f f e r i n g  group v e l o c i t i e s  
of t h e  wave modes, t h e  d i spe r s ion  of t h e  wave t r a i n s  becomes 
inc reas ing ly  g r e a t e r  so  t h a t  t h e  two p r i n c i p a l  wave modes G and S 
becomes separa ted  by ever  increas ing  t i m e  i n t e r v a l s  i n  t h e  success ive  
a r r i v a l s .  I n  t h e  A2 t r a c e s ,  where t h e  waves a r e  c l e a r l y  def ined ,  t h e  
t i m e  s epa ra t ion  of t h e  two p r i n c i p a l  modes i s  of t h e  o rde r  of 2 h.  The 
backg~cound n o i s e  condi t ions  were worse a t  t h e  times of t h e  A3 and A4 
a r r i v a l s  and t h e  A3(S)  and A4(G) waves a r e  ill defined - t h e i r  
p o s i t i o n s  on t h e  records a r e  ind ica t ed  by dot ted  l i n e s .  The S mode 
waves of t h e  A4 t r a c e ,  however, a r e  d i s t i n c t  and t h e  time sepa ra t ion  
from t h e  presumed G wave onse t  is  about 5 h. 

4.1.4 Beam-forming techniques 

The app l i ca t ion  of beam-forming processes t o  t h e  phased 
 output:^ of a r r ays  has  been va luable  f o r  de t ec t ing  weak s i g n a l s  i n  
background n o i s e  and computing t h e i r  d i r e c t i o n  of a r r i v a l .  A complete 
account of t h e  theory and app l i ca t ion  t o  se ismic  wave a n a l y s i s  i n  AWRE 
has  been given by B i r t i l l  and Whiteway [ l61 and t h e  techniques evolved 
f o r  processing seismological  d a t a  a t  AWRE were appl ied  t o  atmospheric 
wave recordings from t h e  microbarograph a r r ay ,  using t h e  s p e c i a l  
purpose hybrid processing system described by Hutchins [17]. D e t a i l s  
of some e a r l y  app l i ca t ions  of t h e  system t o  t h e  processing of 
infrasionic wave d a t a  have been repor ted  previously [18].  

I n  t h i s  technique t h e  outputs  of i nd iv idua l  a r r a y  channels 
a r e  f i r s t  bandpass f i l t e r e d  t o  remove n o i s e  components o u t s i d e  t h e  
frequency spectrum of t h e  s i g n a l  and then d i g i t i s e d .  The d i g i t i s e d  
outputs  of t h e  a r r a y  channels a r e  swept through a range of time de lays  
corresponding t o  t h e  a r r i v a l  time d i f f e rences  a t  a r r a y  instrument  
p o s i t i o n s  f o r  var ious  combinations of s i g n a l  v e l o c i t y  and azimuth. 
Summation and cross-corre la t ion  processes a r e  then appl ied  t o  t h e  a r r a y  
channel outputs  f o r  each time delay condi t ion  i n  t h e  swept range. 

The e f f e c t  of t h i s  processing is t h a t  a number of "beams" a r e  
formed, corresponding t o  each ve loc i ty /az imuthal  combination i n  t h e  
range of t ime delays.  A v i s u a l  p re sen ta t ion  of t h e  processed d a t a  
enables  the  range of beam outputs  t o  be examined f o r  t h e  "best  beam", 
i e ,  t h a t  i n  which t h e  c ross-corre la t ion  between two s e p a r a t e l y  summed 
groups of t h e  a r r ay  instruments  i s  optimum. The t o t a l  sum of a l l  t h e  
a r r a y  instruments  under t h i s  optimum condi t ion  provides t h e  b e s t  
s ignal- to-noise d i sp lay  of t h e  wave a r r i v a l s .  

An example is  i l l u s t r a t e d  &n f i g u r e  8 i n  which n i n e  channels  
of t h e  microbarograph a r r a y  recording of t h e  f i r s t  a r r i v a l ,  A l ,  a r e  
summed and cross-correlated.  The signal-to-noise r a t i o  of t h e  
wavet ra ins  recorded by t h e  ind iv idua l  channels is  s u f f i c i e n t l y  good 
i n  t h e  case  of t h i s  s i g n a l  f o r  i t  t o  be e a s i l y  de tec t ab le  be fo re  
summat:lon, b u t  i n  t h e  case  of t h e  second a r r i v a l  from t h e  same 
atmosplheric nuc lea r  explosion ( f i g u r e  9) de t ec t ion  of t h e  presence 
of t h e  much weaker s i g n a l  is achieved by a r r a y  processing.  The 
correl~ogram is a smoothed, i n t e g r a t e d  output  derived from t h e  
cross-corre la t ion  products  and is u s e f u l  a s  an event  d e t e c t o r  when 
long sequences of raw d a t a  are t o  b e  ecanned. 



Chemical explosions 

In f ra son ic  waves from chemical explosions have been recorded 
on a number of occasions by instruments  of t h e  Blacknest microbarograph 
ar ray .  Typical ly,  sources have been assoc ia ted  wi th  i n d u s t r i a l  and 
shipping a c t i v i t i e s  i n  t h e  B r i t i s h  Isles a rea ,  u sua l ly  involving a major 
acc ident  s i t u a t i o n .  Energies equiva lent  t o  TNT detonat ions i n  t h e  range 
of a few tons  t o  a few hundred tons have produced s i g n a l s  of t h e  order  
of 1 t o  10 ~ / r n ~  a t  d i s t ances  up t o  s e v e r a l  hundred ki lometres .  

Events recorded inc lude  explosions a t  o i l  r e f i n e r i e s  i n  Wales 
and i n  Holland [18] ,  a t  a chemical works i n  t h e  English Midlands [l91 
and i n  an o i l  tanker  i n  t h e  English Channel. Two o t h e r  sh ip  explosions 
which occurred i n  t h e  English Channel a rea  were t h e  r e s u l t s  of d e l i b e r a t e  
detonat ions of cargoes of explosives.  These were unre la ted  episodes i n  
which a c t i o n  was taken by B r i t i s h  and French s e r v i c e s  r e spec t ive ly  t o  
des t roy  an unsafe cargo of explosives i n  t h e  one case (St  Bridget)  and 
t o  remove a shipping hazard i n  t h e  o the r  (Amersee). Records of 
i n f r a s o n i c  waves from t h e  two events  a r e  i l l u s t r a t e d  i n  f i g u r e s  10 and 
11. Some comparative d e t a i l s  of t h e  two events  a r e  l i s t e d  below:- 

Vessel St  Bridget Amer s ee  

Cause of 
exp1o;sion 

Detonation of cargo by Detonation of cargo by 
gunf i r e  (Royal Navy) bombing (French A i r  

Force and Navy) 

Reported cargo 110 tons  n i t ro-g lycer ine  175 tons  dynamite and 
o the r  unspeci f ied  
explos ives ,  320 tons  
i n  a l l  

Date-time of 14 February 1972 18172 6 October 1974 08302 
explorsion 

Reported l o c a t i o n  49'27 IN 04'59 'W 49O18'3O"N 03'29'30t'W 

Distance t o  344 km 
centrta of 
micro1)arograph 
a r r a y  

Bearing of 233' 
explosion source 
a t  arlcay c e n t r e  
p o i n t  

Amplitude and 
period of 
princjtpal waves 
i n  f i~:st group 

Horizontal  t r a c e  333 m/@ 
v e l o c i t y  of waves 
i n  f i r s t  group 



Amplitude and 1 ~ / m ~  18 s 1 
per iod  of waves 1 
i n  second group 

) Coherent waves 

Hor izonta l  t r a c e  400 m / s  ) ;lot seen 1 
v e l o c i t y  of waves ) 
i n  second group 1 

I n  t h e  case  of S t  Br idge t ,  t h e  a r r i v a l  of two main wave 
groups wi th  h o r i z o n t a l  t r a c e  v e l o c i t i e s  across  t h e  microbarograph 
a r r a y  of 333 and 400 m / s  and corresponding apparent  su r f ace  pa th  
ve loc . l t i e s  from source  t o  r ece ive r  of 312 and 255 m / s  accord wi th  
sound r ay  pa ths  w i th  r e f l e c t i o n s  a t  50 and 110 km a l t i t u d e  l e v e l s  
r e s p e ~ c t i v e l y  [19] ,  The second wave group c o n s i s t s  only of a r e l a t i v e l y  
weak :Low frequency pu l se ,  due t o  t h e  seve re  a t t e n u a t i o n  of h igher  
f requencies  i n  t h e  high a l t i t u d e  path through t h e  upper atmosphere. 
Weak h igh  frequency a r r i v a l s  i n  advance of t h e  p r i n c i p a l  waves i n  
group l, would b e  expected i f  minor duc t s  a t  lower l e v e l s  than  t h e  main 
r e f r a c t o r  a t  50 km were p re sen t  a t  t h e  t i m e .  Meteorological  d a t a  f o r  
14  February 1972 repor ted  wes t e r ly  winds of 113 knots  a t  10.8 km 
a l t i t u d e .  

Only one coherent  wave group can be  i d e n t i f i e d  i n  t h e  case  
of t h e  Amersee explosion;  t h e  r ecep t ion  of a second group v i a  high 
a l t i t u d e  r e f r a c t o r s  i s  c r i t i c a l l y  dependent on t h e  d i s t a n c e  from t h e '  
source  t o  t h e  r ece ive r  and on leakage through t h e  seasona l ly  varying 
50 km r e f r a c t o r .  The h o r i z o n t a l  t r a c e  v e l o c i t y ,  355 m / s ,  of t h e  waves 
recorded from Amersee is comparatively g r e a t e r  than t h a t  of wave group 
1 frorn t h e  S t  Bridget  explos ion ,  because of t h e  s h o r t e r  source  t o  
r e c e i v e r  pa th  and consequent h igher  angle  of e l e v a t i o n  t o  t h e  50 km 
refracztor. The r e l a t i v e  amplitudes of t h e  waves a r e  now i n  accordance 
wi th  a r e l a t i o n s h i p  

where A1 and A2 a r e  t h e  maximum amplitudes o r  s i g n a l s  recorded 
from events  1 and 2 ,  

W1 and W2 a r e  t h e  corresponding explos ive  charge weights ,  

and R1 and R2 a r e  t h e  corresponding source t o  r e c e i v e r  d i s t ances .  

4.3 Supersonic f l i g h t  

I n f r a s o n i c  waves generated by t h e  f l i g h t s  of supersonic  
a i r c r a l f t  have been observed on numerous occasions a t  Blackneet.  I n  
p a r t i c u l a r ,  sys temat ic  observa t ions  of t h e  e f f e c t s  of Concorde f l i g h t s  
have bleen made s i n c e  t h e  f i r s t  formal test f l i g h t s  began i n  1970 (201. 

Typica l ly ,  t h e  s i g n a l s  de t ec t ed  by t h e  microbarographs have 
amplit.udes of a few microbars and pe r iods  i n  t h e  range 1 t o  8 S.  These 
s i g n a l s  a r e  long-wave i n f r a s o n i c  components of sound o r i g i n a t i n g  a t  t h e  



c h a r a c t e r i s t i c  "N-wave" shock f r o n t s  a s soc i a t ed  wi th  t h e  supersonic  
source.  Audible sound is n o t  usua l ly  de tec ted  a t  t h e  d i s t ances  of 
s e v e r a l  hundreds of k i lomet res  t o  which i n f r a s o n i c  waves a r e  propagated, 
due t o  t h e  seve re  a t t e n u a t i o n  su f f e red  by waves of s o n i c  f requencies  
from t h e  e f f e c t s  of absorp t ion ,  s c a t t e r i n g  and d e s t r u c t i v e  
i n t e r f e r e n c e .  However, i n  common wi th  t h e  observed behaviour of 
atmospheric a c o u s t i c  waves from o the r  sources ,  t h e  long d i s t a n c e  
propagat ion of a c o u s t i c  waves from supersonic  a i r c r a f t  i s  s u b j e c t  t o  
seasonal  and d i u r n a l  v a r i a t i o n s  [20]. Under c e r t a i n  condi t ions  of t h e  
upper atmosphere, propagat ion of a l l  sound wave components may b e  
enhanced s u f f i c i e n t l y  f o r  audib le  sound t o  be perceived a t  d i s t a n c e s  
of some hundreds of k i lomet res ,  toge ther  w i th  corresponding l a r g e  
inc reases  i n  t h e  amplitudes of i n f r a s o n i c  waves recorded on these  
occasions.  

I n  1976, t h e  commencement of r e g u l a r  commercial f l i g h t s ,  
w i t h  s t r i c t l y  c o n t r o l l e d  f l i gh t -pa th  parameters,  provided an a c o u s t i c  
wave source  of cons tan t  dimensions (d i s t ance ,  azimuth, energy emiss ion) ,  
from which t h e  e f f e c t  of seasonal  v a r i a t i o n s  on t h e  propagat ion of t h e  
emi t ted  a c o u s t i c  waves could be  i n f e r r e d  by observa t ions  of waves 
recorded a t  Blacknest.  Observations t o  d a t e  i n d i c a t e  t h a t  l a r g e  
s e a s o ~ l a l  f l u c t u a t i o n s  i n  t h e  amplitudes of t h e  waves can occur;  f o r  
examp:Le, mean four teen  day amplitude l e v e l s  were 18 times g r e a t e r  i n  
November 1976 than  i n  June 1977. 

Because a c o u s t i c  energy generated by Concorde's supersonic  
f l igh i t s  is  r a d i a t e d  from a moving source  a t  1 5  km a l t i t u d e ,  t h e  
p o s s i 1 ) i l i t i e s  f o r  propagat ion t o  a  d i s t a n t  r ece ive r  a r e  r e l a t i v e l y  
complex. This i s  r e f l e c t e d  i n  t h e  v a r i a b i l i t y  of a r r i v a l  p a t t e r n s  of 
t h e  recorded i n f r a s o n i c  waves, The waves a r r i v e  i n  groups conta in ing  
a  few cyc le s  of a  predominant frequency; usua l ly  t h e r e  is more than  
one group and a p a t t e r n  of two groups of s i m i l a r  frequency ( 1  t o  2 S 

per iod)  separa ted  by a  minute o r  two is f a i r l y  common. This  i n d i c a t e s  
t h e  l i k e l i h o o d  of both i n i t i a l l y  upward-going and i n i t i a l l y  
downward-going r ays  from t h e  source  a r r i v i n g  a t  t h e  r e c e i v e r  a f t e r  
undergoing a  r e f l e c t i o n  a t  t h e  50 km l a y e r  i n  t h e  one case  and two 
r e f l e c t i o n s ,  a t  t h e  e a r t h ' s  s u r f a c e  and t h e  50 km l a y e r ,  i n  t h e  o the r .  

Under some atmospheric condi t ions ,  s e v e r a l  groups may b e  
recorded from one f l i g h t  manoeuvre (approach o r  depar ture)  and i n  t h e  
example of mult iple-path a r r i v a l s  given i n  f i g u r e  12 ,  f i v e  succes s ive  
a r r i v a l s  from one f l i g h t  were recorded a c r o s s  t h e  a r r ay .  The t h i r d  
arr ivinl  of t h i s  set is a low frequency pu l se  of about 10  s per iod  and 
i s  probably a  wave r e t u r n i n g  a f t e r  r e f l e c t i o n  a t  t h e  upper r e f r a c t i n g  
l a y e r  of t h e  atmosphere ( a t  about 110 km) wi th  corresponding l o s s  of 
h igh  frequency content .  The r ecep t ion  of t h i s  low frequency p u l s e  is 
v a r i a b l e ;  when t h e  50 km r e f l e c t o r  (normal temperature s t r a t i f i c a t i o n  
e f f e c t )  is s t rengthened  i n  w in te r  by winds a t  t h e  same a l t i t u d e ,  t h e  
propagat ion of i n f r a s o n i c  waves t o  t h e  h igher  l e v e l s  is i n h i b i t e d .  

By in fe rence ,  the. f i r s t  a r r i v i n g  s i g n a l  has  t r a v e l l e d  t h e  
short tzst  pa th ,  i e ,  one r e f l e c t i o n  a t  t h e  50 km l a y e r ,  and t h e  second 
a  r a t h e r  longer  pa th  a f t e r  r e f l e c t i o n  a t  t h e  ground s u r f a c e  and then 
a t  50 km; t h e  latter s i g n a l  is t h e  most c o n s i s t e n t l y  a r r i v i n g  wave 



group throughout t h e  year .  The l a t e r  a r r i v a l s ,  4 and 5, a r e  wave 
groupr; which have probably undergone mul t ip le  r e f l e c t i o n s  between t h e  
point  of emission and f i n a l  a r r i v a l  a t  the  rece iver .  

4.4 Earthquake coupled waves 

Acoustic waves i n  t h e  atmosphere caused by t h e  t r a n s f e r  of 
energy from t h e  seismic v ib ra t ions  of earthquakes may be  recorded a t  
consiclerable d is tances  from t h e  ep icen t re  of t h e  disturbance.  An e a r l y  
account of waves of t h i s  kind was given i n  1939 by Benioff and 
Gutenherg [21]. 

Close t o  earthquake sources, some seismic frequencies a r e  
high einough t o  produce audible micropressure v a r i a t i o n s  i n  t h e  
atmosphere. Lower frequency ( inf rasonic)  pressure  disturbances have 
a l s o  bleen recorded a t  grea t  d is tances  from the  epicent res  of very l a r g e  
earthcluakes [22-241. A number of poss ib le  mechanisms may be involved:- 

(a)  An acoustic-gravity wave may be  s e t  up by v io len t  ground 
displacement a t  t h e  epicent re .  This wave t r a v e l s  through t h e  
atmosphere a t  approximately 330 m / s .  

(b) A i r  p ressure  f luc tua t ions  coupled t o  a v e r t i c a l  
component of ground motion may be  s e t  up and t r a v e l  with t h e  
seismic su r face  wave a t  v e l o c i t i e s  of t h e  order  of a few 
kilometres per  second. 

(c) Air waves which r a d i a t e  away from t h e  ground su r face  a t  
normal sound ve loc i ty  may be generated when coupling occurs 
i n  a region (which could be a t  some d i s t ance  from t h e  
earthquake epicent re)  where t h e  seismic surface  wave v e l o c i t y  
is very low [21]. 

Ground t o  a i r  coupled waves of t h e  type described i n  (b) 
above have been detected a t  Blacknest on a number of occasions. The 
atmospheric pressure wave f luc tua t ions  a r e  coupled t o  t h e  v e r t i c a l  
(Rayleigh wave) components of seismic surface  waves t r a v e l l i n g  from t h e  
ep icen t re  and a c lose  analogy the re fo re  e x i s t s  between microbarographic 
records of t h e  pressure  va r i a t ions  and seismographic records of t h e  
ground motion. Figures 1 3  and 14 give examples of ground-coupled 
pressure  waves recorded by microbarographs of t h e  Blacknest a r ray  from 
two recent  major earthquakes, the  F r i u l i  earthquake i n  Northern I t a l y ,  
May 1976 and t h e  Tangshan earthquake i n  Northern China, Ju ly  1976. 

In  each f igure  .the atmospheric pressure  waves from t h e  
main shock a r e  shown, together  with a seismographic record of su r face  
waves from an aftershock from t h e  ep icen t ra l  region where t h e  main 
earthquake shock occurred. Records from aftershocks have been used 
because t h e  seismic waves from t h e  l a r g e  main shocks i n  both cases 
caused t h e  s e n s i t i v e  long-period seismograph t o  overload t h e  recording 
system. However, because t h e  waves t r a v e l  over i d e n t i c a l  paths from t h e  
same source, use of t h e  aftershock waveforms can provide a v a l i d  b a s i s  
f o r  comparison between ground motion from t h e  l a r g e  earthquakes and t h e  
r e l a t e d  microbarographic phenomena. The d i f fe rence  i n  t h e  distance8 of 
t h e  two earthquake epicent res  from Blacknest (1200 km t o  F r i u l i  and 



8400 km t o  Tangshan) is re f l ec ted  i n  t h e  d i f f e r e n t  frequency content 
of t h e  recorded waves. For t h i s  reason a "broad-band" seismographic 
output (covering an intermediate frequency band) is used f o r  t h e  F r i u l i  
recordings and a "long-period" output (covering lower frequencies)  i a  
used f o r  t h e  Tangshan event.  

4.5 Microb aroma 

In f rason ic  waves of a p a r t i c u l a r  c l a s s ,  given t h e  name 
microlbaroms because of t h e  analogy with microseisms, a r e  f requent ly  
observed a s  acoust ic-veloci ty components of background no i se  i n  
microlbarographic records. The waves, which general ly have amplitudes 
of a few microbars, though occasionally reaching a s  high a s  10 microbars 
( 1   in^), a r e  charac ter ised  by t h e i r  confinement t o  a narrow band 
centred around periods of 5 t o  6 S .  Figure 15  i l l u s t r a t e s  t h e  s t rong 
peak f n  t h e  noise  spectrum of one of t h e  microbarographs of t h e  
Blacknest a r ray  on a day when microbaroms were being detected.  

The s p e c t r a l  s i m i l a r i t i e s  between microbaroms and microseisms 
and the  s t a t i s t i c a l  r e l a t ionsh ip  i n  t h e i r  occurrence suggest a common 
source. Empirical evidence supports t h e - o r i g i n a l  suggestion [25]  of an 
oceanic source f o r  both wave types and a number of subsequent l r ea tmen t s  
have t ieal t  with poss ib le  mechanisms of generation from standing waves 
i n  ma~rine storm cen t res  [26-291. Thereafter ,  however, microbarorns and 
microt~eiems propagate independently, without coupling, a t  acoust ic  and 
seismic v e l o c i t i e s  respect ive ly .  

McDonald and Herxin [ 30 1 ueed Blacknae t &crobarogrnph8c 
d a t a  i n  conjunction with da ta  recorded a t  r r r a y r  In  Tnxar and Alarla 
t o  ehtw t h a t  vary rimilar npact ra l  pease of around 4 t o  7 r prr iod  
exirttrd i n  da ta  ramples t a k m  on separa te  occamions when microbaromr 
wrrr br ing  d r t ec ted  a t  t h e  threa  loca t ionr ,  It war a l r o  rhown t h a t  no 
r igni l ! icmt  coherence ex i s t ed  betwren p a i r r  of renrore with 5 km 
rpacirra a t  each of the  t h r e e  ar rays ;  mignificant coherence war, however, 
rr tabl l i rhed f o r  sensor epacings of a f w  hundred mtrer a t  t h e  Texar 
a r r a y n  Thir accords with observatione a t  Blacknert where l i t t l e  
cohrrrncr  i r  apparent f o r  microbaromr de t rc ted  a t  ar ray  s i t a r  eeparated 
by d i r t m c r r  of 1,s t o  5 km and lende rupport t o  s concept of 
micro~~arom generat ion a t  widespread mul t ip le  emitter8 of acoust ic  wave 
rnrrgy , 

Microbarome are usual ly  recorded ar near ly  continuour t r a i n r  
of morrotonic waver with rhythmic var ia t ion8 i n  amplitude which, i n  t h e  
abrmt:r of o t h r r  background noiee, produce a "pearl-S t r ing"  appearance 
i n  thtr wavrfom r n ~ e l o p e . ~  Obrervationr over a long period a t  Blacknert 
domonntratr the  p robab i l i ty  of a l i n k  between t h e  occurrence of 
&orebereme and t he  ex i r$mce  of zones of high windr a t  rea, ueually 
slrroeffetrd with drprerrionm i n  t h e  North At lan t i c  area ,  A frequent  
f rat  u3:a i n  nicrobarographic recordr i r  f o r  microbaroms t o  become 
prearirrenf i n  th8 l u l l r  brtwren prr iodr  of high wind no i se  r e l a t e d  t o  
the arovrmmtr of  wrathrr  ryrtrme ac ro r r  t h e  recording a rea  - an example 
ifl given i n  f i g u r r  16,  In  addi t ion  the re  a r e  pronounced eeaeonal 
f luotrrat ienr ,  onrrtr of t h r  waver b r i n ~  frequent  i n  t h e  period October 
t o  Apr i l  and dnfrrqurnt  i n  t h e  period May t o  Srptrmbar, The h igher t  
mpli!:udrr f rnd t o  occur b r  twrrn Drcembrr and February. 



The seasonal  f l u c t u a t i o n s  can be  explained i n  t h e  fol lowing 
genera l  way : - 

( a )  Microbaroms a r e  generated by l a r g e  s e a  waves which occur 
i n  s t r o n g  wind zones of marine storms. These storm c e n t r e s  
e x i s t  most f requent ly  i n  t h e  oceanic a rea  t o  t h e  w e s t  of t h e  
B r i t i s h  Isles. 

(b)  Because of seasonal  changes i n  t h e  d i r e c t i o n  of t h e  
upper s t r a t o s p h e r i c  winds, propagation of acous t i c  waves i s  
good from west t o  e a s t  i n  t h e  "winter" period between t h e  
wind t r a n s i t i o n s  i n  September and Apr i l ,  i e ,  microbaroms 
o r i g i n a t i n g  i n  storm cen t r e s  t o  t h e  west of t h e  B r i t i s h  I s l e s  
w i l l  be  propagated t o  recording s i t e s  i n  B r i t a i n  more 
e f f i c i e n t l y  i n  win te r  than i n  summer. 

( c )  This  e f f e c t  i s  re inforced  t o  some e x t e n t  by t h e  g r e a t e r  
prevalence of storms i n  t h e  North A t l a n t i c  i n  win te r  than i n  
summer; consequently, t h e  occurrence of s e a  condi t ions  
favourable f o r  t h e  generat ion of microbaroms is  more l i k e l y  
i n  winter .  For s i m i l a r  synopt ic  condi t ions  i n  t h e  North 
A t l a n t i c  a rea ,  giving r i s e  t o  h igh  winds t o  t h e  west of t h e  
B r i t i s h  Isle and a calm zone over Southern England ( i e ,  good 
recording condi t ions)  microbarom l e v e l s  have a high win te r  
t o  summer r a t i o ,  amplitudes up t o  20 t i m e s  l a r g e r  i n  
February than i n  August having been observed. 

During per iods  when microbaroms are be ing  received 
continuously and t h e  records a r e  f r e e  from l o c a l  background no i se ,  
d i u r n a l  v a r i a t i o n s  i n  amplitudes may b e  apparent .  I n  t h e  USA, Donn and 
h i s  a s s o c i a t e s  [ 31-33] have shown t h a t  observat ions of t h e  way i n  which 
t h e  average amplitudes of microbarom s i g n a l s  vary can provide 
information on c i r c u l a t i o n  parameters i n  t h e  upper atmosphere; a l s o  
t h a t  measurements of t h e  h o r i z o n t a l  t r a c e  v e l o c i t i e s  of microbarom 
waves t r ave r s ing  an a r r ay  can be  used t o  ob ta in  es t imates  of wind 
v e l o c i t i e s  a t  t h e  l e v e l s  where i n f r a s o n i c  waves are r e f l e c t e d  downwards 
i n  t h e  upper atmosphere. They i d e n t i f y  s e v e r a l  ca t egor i e s  of microbarom 
conditions:- 

(a )  Continuous s i g n a l  recept ion  throughout a day bu t  w i th  
semi-diurnal amplitude v a r i a t i o n s .  

(b) Continuous s i g n a l  recept ion  wi th  t h r e e  per iods  of 
amplitude maxima. 

(c) Continuous s t rong  s i g n a l  recept ion  throughout a day. 

(d) Continuous weak s i g n a l  recept ion  throughout a day. 

These c h a r a c t e r i e t i c  p a t t e r n s  a r e  a s soc ia t ed  by t h e  au thors  
wi th  tlhe atmospheric c i r c u l a t i o n  a t  p a r t i c u l a r  a l t i t u d e s .  

I n  t h e  B r i t i s h  Isles, q u i e t  meteorological  condi t ions  a r e  
compar,atively r a r e ,  s o  long per iods  of  continuous microbarom recep t ion  
are r e l a t i v e l y  inf requent  and oppor tun i t i e s  t o  s tudy d i u r n a l  v a r i a t i o n s  



a r e  correspondingly l imi ted .  However, from observat ions made over a long 
period,  a c h a r a c t e r i s t i c  p a t t e r n  of a d iu rna l  na tu re  can be  i d e n t i f i e d  
i n  Blacknest microbarographic recordings of continuous microbarom 
episodes. The p r i n c i p a l  f e a t u r e  is t h a t  amplitude maxima of received 
s i g n a l s  tend t o  occur each day between 1600 and 2100 hours GMT. I n  
win te r  months t h e  genera l  l e v e l  of microbarom s i g n a l s  is o f t en  l a r g e  
enough t o  mask any d iu rna l  v a r i a t i o n s ,  while  i n  summer months few 
s i g n a l s  a r e  received;  t h e  e f f e c t  is most apparent i n  t r a n s i t i o n a l  
months such a s  March, a s  may be seen from t h e  records of microbaroms 
f o r  t h e  months January, February and March i l l u s t r a t e d  i n  f i g u r e  17. 

These observat ions a r e  s i m i l a r  i n  kind but  d i f f e r  i n  d e t a i l  
from those  of Donn e t  a l . ,  t h e  d i f f e r e n t  r e l a t i o n s h i p s  of land and sea 
a r e a s  and climatology of t h e  two zones, North-West Europe and Eastern 
USA, from which t h e  d a t a  a r e  acquired, probably accounting f o r  t h e  
d i f f e rence .  

Meteorological e f f e c t s  

Tn order  t o  enhance i ts  s e n s i t i v i t y  t o  small rap id ly  
changing p res su re  f l u c t u a t i o n s ,  t h e  system wi th  which we a r e  concerned 
d2acr:Eminates aga ins t  l a rge ,  slow, weather-related changes of barometr ic  
pressure .  Nonetheless, i t  records many meteorological  phenomena i n  which 
t h e  pressure-time funct ion  f a l l s  w i th in  t h e  passbands of t h e  sensing 
inetrilment and a s soc ia t ed  recording system. The a r r a y  has t h e  f u r t h e r  
advantage of being a b l e  t o  determine the  v e l o c i t y  of pressure  waves 
m P c h  t r a v e r s e  i t ,  thereby d i s t ingu i sh ing  between acous t i c ,  sub-acoustic,  
o r  slow-moving (wind ve loc i ty )  s i g n a l s  having s i m i l a r  waveforms. 

For example, t h e  rap id  change of pressure  which f r equen t ly  
accompanies t h e  passage of a weather f r o n t  produces a pulse  waveform a t  
t h e  output  of each microbarograph channel output  aa t h e  f r o n t  c rosses  
t h e  array.  The exact  time of a r r i v a l  of t h e  f r o n t  a t  p a r t i c u l a r  p l aces  
can thus  be r e a d i l y  ascer ta ined  and a l s o  its v e l o c i t y  and d i r e c t i o n  of 
travclt. The shape of t he  pu l se  waveform i s  l a r g e l y  determined by t h e  
response of t h e  instrument recording system t o  a s t e p  funct ion  of 
pressure,  bu t  where, as is  o f t e n  t h e  case,  t h e  main pressure  s t e p  is 
prececled o r  followed by p res su re  o s c i l l a t i o n s ,  t hese  may be f a i t h f u l l y  
recorded i f  t h e  period of t h e  o s c i l l a t l o n s  f a l l s  w i th in  t h e  passband of 
t h e  instrumental system. 

The s e r i e s  of f i g u r e s  18  t o  30 inc lude  a r r a y  records of six 
events) of meteorological  o r i g i n ,  toge ther  wi th  copies  of t h e  r e l a t e d  
s p o p t : i c  c h a r t  da ta .  Brief  d e t a i l s  of t h e  events  and records a r e  as 
f o l l o w  : - 
Figure! 18 The passage of a cold f r o n t  t r a v e l l i n g  east-north-east 

at a b u t  60 km/h across  BMBA between 0630 and 07452 on 
22 December 1973 is s h m  i n  t h i s  f igu re .  Records from 
8 fnstruments of t h e  a r r a y  a r e  reproduced i n  order  of 
arrival,  wi th  s su th iwes te r lp  s i t e s  of t h e  a r r a y  i n  t h e  
upper t r a c e s  and nor th-eas ter ly  sites i n  t h e  lower 
t r a c e s  of t h e  i l l u s t r a t i o n .  Short-period (Q 60 S)  
o s c i l l a t i o n s  occur ahead of t h e  main p res su re  pu l se  on 
most of t h e  channels and f l u c t u a t i o n s  wi th  per iods  of 



s e v e r a l  minutes occur t h e r e a f t e r .  The amplitudes of t h e  
p r i n c i p a l  pressure  pulses  (as recorded by t h e  BMBA 
fnatruments) a r e  around 20 Il/m2 peak t o  peak. 

Figure 19 The published synopt ic  cha r t s  i n d i c a t e  l i t t l e  change i n  
wind speed and d i r e c t i o n  caused by t h e  passage of t h e  
pressure  dis turbances.  However, unpublished 
meteorological  observat ions a t  t h e  most sou the r ly  s i te  
of t h e  a r r ay ,  PW, recorded t h a t  t h e  wind a t  0630 hours  
was from 210", gust ing t o  19 knots  between 0630 and 0635 
hours,  t h e r e a f t e r  dropping gradual ly t o  10 knots  a t  155O 
by 0700 hours. 

F igure  20 This  f i g u r e  shows pressure  pulses ,  approximately 30 min 
apa r t ,  c ross ing  t h e  a r r ay  i n  a genera l ly  south-eas ter ly  
d i r e c t i o n  a t  about 30 km/h. The d i f f e r e n t  "move-out" 
angles  made by t h e  two sequences of pulses  c ross ing  t h e  
a r r ay  i n d i c a t e  d i f f e r e n t  azimuthal planes f o r  t h e  two 
f r o n t s  which a r e  presumed t o  b e  t h e  cause of t h e  
recorded pulses .  The l a r g e r  time i n t e r v a l s  between t h e  
p a i r s  of pu l ses  on t h e  upper t r a c e s  of t h e  i l l u s t r a t i o n  
(southerly sites of t h e  a r ray)  aa compared wi th  t h e  
smaller i n t e r v a l s  on t h e  lower t r a c e s  (nor ther ly  s i t e s )  
f n d i c a t e  t h a t  t h e  two f r o n t s  a r e  c l o s e r  toge ther  i n  t h e  
nor thern  s e c t o r  of t h e  a r ray .  Also t h e  a r r i v a l  time 
p a t t e r n  of t h e  pulses  i n d i c a t e s  t h a t  both f r o n t s  were 
t r a v e l l i n g  i n  a genera l ly  south-eas ter ly  d i r e c t i o n  a t  
about 20 km/h. A sharp inc rease  I n  high frequency 
background no i se ,  due t o  wind, occurred about 10 min 
a f t e r  t he  passage of t h e  f i r s t  f r o n t  and remained a t  
t h f s  new higher  l e v e l  t h e r e a f t e r .  

Figure! 21 The synopt ic  c h a r t s  show a wedge-shaped zone bounded by 
w a r m  and cold f r o n t s ,  a t  t h e  leading  and t r a i l i n g  edges 
r e spec t ive ly ,  swinging over Southern England i n  
anti-clockwise r o t a t i o n  around a low p res su re  a r e a  t o  
t h e  no r th  of t h e  B r i t i s h  I s l e s .  The two f r o n t s  a r e  
sepa ra t e  aver  Southern England but  become occluded 
f u r t h e r  northwards. The near-occluded f r o n t a l  zone i s  
shown l y i n g  t o  t h e  east of t h e  BMEA a r e a  i n  t h e  1800 
hour char t .  

Figure 22 This figulze i l l u s t r a t e s  t h e  passage of a minor 
direturbance which crossed t h e  a r r a y  from south t o  no r th  
between 1730 and 17452 on 31  J u l y  1975. 

Figure 23 The synopt ic  cha r t s  i l l u s t r a t e d  show t h a t  a f r o n t  l y ing  
along t h e  l i n e  of t h e  English Channel a t  1200 hours had 
phff ted  northward8 t o  a p a r a l l e l  p o s i t i o n  ac ross  t h e  
3011th Midlands by 1800 hours on 31 Ju ly .  



Figure 24 Pressure s t e p s  recorded by s i x  channels of t h e  ar ray  a r e  
shown i n  t h e  f igure .  The shapes of t h e  pulses  were 
notably more cons is tent  across  t h e  e n t i r e  a r r a y  than i s  
usual  with recordings of weather f r o n t s .  Peak t o  peak 
amplitudes were about 30 ~ / m ~ .  Ahead of the  f r o n t  
condit ions were windy (high frequency o s c i l l a t i o n s  on 
t r a c e s ) ;  a f t e r  t h e  t r a n s i t  of t h e  p r i n c i p a l  p res su re  
s t e p  wind subsided, bu t  l a r g e  amplitude o s c i l l a t i o n s  of 
pressure  of around 300 s period occurred. Pressure 
o s c i l l a t i o n s  of t h i s  period a r e  o f t e n  seen i n  t h e  
wide-band records under comparable condit ions.  

Figure 25 The synoptic  cha r t s  f o r  1800 hours of 31 December 1975 
and 0000 hours of 1 January 1976 show t h a t  a well- 
defined cold f r o n t  t raversed  t h e  a r ray  during t h e  late 
hours of 31 December, t r a v e l l i n g  i n  a souther ly  
d i r ec t ion .  Moderately s t rong  winds were reported ahead 
of t h e  f r o n t a l  trough. 

Figure 26 A n  unusual sequence of pressure  o s c i l l a t i o n s  observed 
a t  BMBA sites between 2025 and 2055 hours i s  shown i n  
t h e  i l l u s t r a t i o n .  The dominant f e a t u r e  of t h e  episode 
is a well-developed t r a i n  of waves of about 55 s 
period,  preceded and followed by higher  frequency 
waves of 25 S period. 'Longer period waves i n  t h e  more 
commonly observed period range of 5 t o  10  min a r e  a l s o  
present .  Pothecary 1341 reported t h e  occurrence of 
short-period pressure  f luc tua t ions  a r i s i n g  from 
atmospheric condit ions associa ted  with thunderstorms. 
P ie rce  and Coroni t i  [35] suggested t h a t  Brunt period 
o s c i l l a t i o n s  [36] may be induced by convective storms, 
whi le  observat ions a t  Blacknest and elsewhere [37] 
suggest t h a t  t h e  adjacency of a weather f r o n t  can 
con t r ibu te  t o  the  production of atmospheric waves. 

.gure 27 The synopt ic  c h a r t s  f o r  1800 hours of 29 August 1976 
and 0000 hours of 30 August showed t h a t  a thundery 
low pressure  system was moving slowly northwqrds from 
t h e  Northern French coas t  t o  t h e  a r e a  of Southern 
England at t h e  time of t h e  o s c i l l a t i o n s .  The o the r  
p r i n c i p a l  f e a t u r e  i n  t h e  cha r t s  was a cold f r o n t  
s i t u a t e d  i n  t h e  A t l a n t i c  a rea  nor th  of Scotland which 
moved slowly south-eastwards towards t h e  B r i t i s h  Isles. 

Figure 28 A dis turbance which t raversed  the  14 elements of the  
a r ray  which were opera t ing  between 0840 and 0900 hours 
on 25 January 1977 i e  i l l u s t r a t e d .  The d is turbance  had 
an apparent ve loc i ty  of 148 km/h and was moving i n  a 
d i r e c t i o n  of 104'. Excursions i n  excess of 25 ~ / m ~  from 
b a s e l i n e  pressure  caused t h e  recording system t o  l i m i t  
on seve ra l  channels, bu t  a more r e a l i s t i c  es t imate  of 
t h e  t r u e  e i z e  of t h e  presaure jump is gained from t h e  
following u n f i l t e r e d  mi l l ibarographic  records.  



Figure 29 The mil l ibarograph c h a r t  f o r  t h e  week of 24 t o  31 January 
1977, reproduced i n  t h i s  f i g u r e ,  shows t h a t  an unusual ly 
sharp  f a l l  i n  pressure  of 4 mb o r  more took p lace  around 
0800 t o  0900 hours.  A p a r t i a l  recovery occurred w i t h i n  an 
hour, a f t e r  which p res su re  continued t o  f a l l  throughout 
t h e  day a t  t h e  s teady r a t e  e s t ab l i shed  during t h e  36 h 
preceding t h e  sudden decrease. 

Figure 30 The synopt ic  c h a r t s  f o r  0600 and 1200 hours of 
25 January 1977 show t h e  rap id  movement eastwards ac ross  
Southern England of f r o n t s  a s soc ia t ed  wi th  a depress ion  
which moved towards t h e  B r i t i s h  I s l e s  ahead of a complex 
a rea  of low pressure  over  t h e  North At l an t i c .  It appears 
t h a t  a tongue a t  t h e  north-east  corner  of a f a s t  moving 
warm a i r  mass, bounded by sharp ly  defined f r o n t s ,  may 
have caused t h e  p res su re  s t e p  and l a t e r  p a r t i a l  recovery 
i n  pressure  as i t  passed over t h e  a r r ay .  
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FIGURE 9 .  ARRAY PROCESSING OF WEAK SIGNAL (SECOND ARRIVAL A2 FROM THE 
C H m S E  NUCLEAR EXJ'LOSION OF 27 SEPTEMBER 1969) 
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PI- 14. GROUND-AIR COUPLED WAVES FROM TANGSHAN EBRTHQUm, CHINA. 
TRACES 1 TO 6 : MICaOBAROGRAPH ARRAY RECORDINGS OF AIR WAVES COUPLED TO SEISMIC SURFACE WAVES FROM MAIN SHOCK 27 JULY 1976 
TRACE 8: WNGPERIOD SEISMOMETER'RECORDING OF SEISMIC SURFACE WAVES FROH A TANGSHAN AFTERSHOCK 30 JULY 1976 
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CALIBRATION 0 L  

FIGURE 18. PASSAGE OF COLD FRONT TRAVELLING EASTWARDS ACROSS 
MICROBAROGRAPH ARRAY ON 22 DECEMBER 1973 



GENERAL Sl?#OPTIC DEBEU)PMEBT 

THE SLOW W I N G  DEPRESSION OVER SOUTH-WEST WALES I S  NOW NEARLY STATIONARY OVER NORTHERN 
IRELAND AND A SMALL DEPRESSION WHICH MOVED RAPIDLY SOUTH-EASTWARDS ??ROM SOUTH GREENLAM) 
TOWARDS IRELAND BEEN ABSORBED I N  THE GENERAL CTRCULATION OF THE PARENT LOW. 

FIGURE 19. EXTRACTS FROM DAILY W E A m R  CHART FOR 22 DECEMBER 1 9 7 3  









GENERAL SYNOPTIC DEVELOPMENT 

DURING THE P M T  24 HOURS ONLY MINOR CXANGES TOOK PLACE TN THE PRESSURE DISTRIBUTION OVER AND 
NEAR THE BRITISH .ISLES. A RIDGE OF HIGH PRESSURE PERSISTED OVER CENTFW., AND NORTHERN ENGLAND, 
WHILE PRESSURE REMAINED LOW NEAR ICELAND AND, TO A LESSER EXTENT, OVER F W C E .  

FIGURE 23. EXTRACT FKUM DAILY W'EATHER CIIART FOR 31 JULY 1975 











TIME CODE 

FIGURE 28. PASSAGE OF FRONT ASSOCIATED WITH RAPIDLY MOVING DEPRESSION TRAVERSING 
MICROBAROGUPH ARRAY ON 25 JANUARY 1977 
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