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SUMMARY
The relative size, M(1,J), of the seismic signal recorded at

station | from the Jth explosion at a particular firing site is assumed to
be given by the equation

M(L,J) = B(J) + S(D + e(1, D),

where B(J) depends on the size of the explosion and (D) is a station term

dependent mainly on the distance of the Ith station from the f1r1ng site.
M(1,J) is measured from seismic records and will usually be in error;
€ (1,J) is the error term.

A least squares program is described for estimating: (1) B(J) and
S(D, (2) the confidence limits on these quantities, and (3) the differences,
and confidence limits on the differences, between all possible pairs of

B(J).

Although written for a specific purpose the method is general and

can be used to estimate any quantities that can be expressed as equations

of the above type.

1. INTRODUCTION

A seismic event radiates elastic waves through the body of the
earth. The relative amphtude of these waves as measured at distant
recording stations will be determined by two main effects: (1) the size
of the event, and (2) the distance of the recording station from the
event. The recording instruments and the geology of the recording
statrion and firing site will also have an effect but for explosions from
the same firing site these effects will be constant.

If M(1,J) is a measure of the size of the signal (defined as propor-
tional to the log of the measured amplitude) for the Jth explosion at
the Ith station, M(],J) is given by the equation

ML =BO + D+ @D e (1)

where B(J) depends on the seismic size of the explosion and S(I) is a
station term dependent mainly on the distance of the Ith station from
the firing site, but including any effects due to recording instruments
and geology of the recording station. M(L,J) is measured from seismic
records and will usually be in error; € (1,J) is the error term.




The problem is to estimate (1) B(J) and I) (none of which are
known), (2) the confidence limits of these quantities, and (3) the differences,
and confidence limits on the differences, between the explosion terms.
This report describes a computer program for solving this problem by
lcast squares. The program was written by Mr. J. B, Young and is
currently in use at Blacknest; it has been given the name [L.SMF - Least
Squares Matrix Factorisation - for historical reasons. The program has
developed from others designed to solve the same problem; all these
have been titled LSMF, This name has therefore beén retained even
though “least squares matrix factorisation” is not a very informative
title.

2. THI: MODEL | |

Consider t explosions (fired at one test site) and r recording
stations. For every station that records one of these explosions there
will be an equation of type (1). If all stations record all explosions this 3
rcsults in rt equations. The system is apparently over-determined as
there are only r + t unknowns; this however is not so. Each equation only
defines S(I) + B(J); there are no equations relating two or more station
terms or two or more explosion terms. There is then no unique solution;
whatever value is given to one station term, S(K) say, can be allowed for
by adjustments to each of the remaining S(I) and B(J) - equation (1) can
always be satisfied.

Further assumptions must then be made. The simplest of these is
to give one station term a fixed value. As only the relative size of
S(I) and B(J) are really important, M(1,J) being a relative value, this
would be acceptable except that confidence limits cannot be determined
for the S(I) that is assigned the particular value.

To overcome this difficulty equation (1) is rewritten as

M(,J) = B(J) + T) + MBAR +€&(LJ), veenennn (2)

where MBAR is a constant. As M(L,J) is a purely relative value, the
addition of this constant does not mater1a11y affect the model. The
further assumption is now made that ZB(J) 0 and ZI:S(I) = 0. MBAR

can be thought of as the size of the average explosion at the average
station; B(J) and (I) then become corrections to this average for the
particular explosion J and station I, ‘ .

If it is assumed that the errors €(1,J) are normally distributed
with zero mean and variance 02, this model is the same as the widely
used analysis of variance model.
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3. THE ANAL;‘YSISOF VARIANCE APPROACH

The model described above is simply that of a two way analysis of
variance. The data displayed in the usual analysis of variance table
are:-

B(1) B(2) | B(t)
(1) M(1,1) M(L2) . . . ... ML)
S(2) M(2, 1) M(2,2) . . . . .. M2
S(3)
S(r) M(r;l) . e e e e M(r,t)

Now as ES(I)=O and §B(J) = 0 and the expectation of € (I,J)= 0,

the average of each column is an estimate of B(J) and the average of
each row is an estimate of §(I), The mean value over all M(1,J). gives
the value of MBAR. Substituting for S(I), B(J) and MBAR in equation
(2) gives the errors &1,J); from these errors 0° can be estimated and
hence the confidence limits obtained.

Unfortunately this method cannot be applied directly because not
all M(1,J) are known - stations of low sensitivity fail to record the
smaller events and some records are simply not available. The method
of least squares however does not require that all M(1,J) be known.

4. THE METHOD OF LEAST SQUARES

Consider the equation

y=ax tax tax tax *t ., a X e...(3)

where x, ...... x_ are independant variables; a,, a,, a_...... a_ are unknown
1 n 81y 8p, 34 n

coefficients, called the regression coefficients, and y is the dependent
variable determined experimentally. Ideally a,, a, ...... a_can be found

simply by observing n values of y for different values of the independent

variables and solving the resulting equations.

Usually, however, the measured value of y will be in error and the
problem becomes one of estimating the most probable values of a,,
P a givenm> n values of y. This can be done using the principle

of least squares which states: if €, ,€, ...... e _are the errors in m
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different equations of type (3) the most probable values of a, a

, . 2 2 2 . 2’
a_.....a_canbe
. , ¢an be found by making €7 + €~ + cone € (ice., the sum of f
the squared errors) a minimum, m
0ze?
i? .= :
16} - 2 0 for.j = 1,n. .
aaj ‘

If n= 2 and x, is held constant at 1 the problem reduces to the familiar
fitting of the “best” straight line.

Suppose that the m equations of type (3) are as follows:-

- ax tax tax t ,,,,.,8x TE
Yy 11 2712 a 13 noan i

= ax t ax tax ot ...... aXx  TE 3
L 1721 2 22 s 23 n-an 2

= a + + X ceeane A X T g .
ym 1xm1 azxmz as ma n mn m

These equations are called the equations of condition.

3
Now Ze- = (ax +*+ax +tax +* ....,.a.x _=-1y)?
f i 1711 2 1p 8 18 X T Y,
t (ax *Tax *t ......3.X% - )2
1 21 2 22 nsn yz
T oLieeen
&
+ (a +ax Ta ceeee - 2 |
( me Y3, s¥ms *****3n¥mn ym) )
8ge.; .
d _L* ‘
an = 2{(x x *+ x X * X X  t .,....X_X_)a
8a 1111 21 21 31 31 mymy’ Ty
1
T (x x + X X cesseeX X a
11 12 21 22 ma mz) 2
+ X X + x x + ..:...x X a
11 1N 21 2n mi mn) n
- (x + x T eereeeX .
11y1 zlyz m1ym)} 2
2 .
. 0Zej
For the best estimate of a , 1~ = 0,
! 3a
1 .
(4) ’
. 2 -
.e. X s + a X: X - | X.: X: = X: Y. ceeeld
Le€en @) ? ( 11) 2 % 11714 n % i17in % 1171




The process of deriving equation (4) is equivalent to multiplying each
equation of condition by its own coefficient of a_; the coefficient of
a. in equation (4) is then the sum of the coefficients of a. in these new

2
3 Eijei

equations. Similar equations are obtained (equivalent to equating———
: 3

43

to zero for j = 2,n) by multiplying each equation of condition by its own
coefficient of a, and summing coefficients. This produces n equations,

called the normal equations, with n unknowns. In matrix form the normal

equations are

IX. X.  ZX. X.
l1 131 11 12

X, X, ZX. X,
ls 113 1o 1o

IX. X.
13 11

2X. X, .
inTi;

o

or XA = Y; the X matrix being symmetrical about the diagonal.

The normal equations can usually be solved uniquely. Any of the
usual methods can be used, but one method, matrix inversion, has
advantages if the confidence limits of the unknowns are required. Matrix
inversion is therefore used in the LSMF program.

If the inverse of matrix X is the matrix C

.

c c .
11 13

[
21

c .
31

3 .

[of .
Lm

.

Cin

Cnn

X

Z

. X
11 1n

X« X,
1o 1N

X. X,
in 1n

a

el

X and C are related by the equation

L "

innyi

. e.o.. (D)

——




ni

LLJ .

Z(xil)

LX, X,
“%in%y

2%

in

in

T S

The elements of the inverse matrix can be found by expanding to give a
series of linear equations.

Solving this set of equations for ¢

of the vth row of the inverse matrix,

Thus, the result of multiplying the X matrix by the
inverse matrix (see also Appendix A) is

T C. LX., X,
Vs xllx

12

b S

Multiplying equation (5) by C gives

or

A= CY

—
c
13

[
21

C

12

00"(8)

vth row of the

i1

» C s vesesnC_ gives the elements
v2 vn

"y




each of the elements of the matrix can then be evaluated as both C and Y
are known. The part played by the inverse matrix in determining the
confidence limits will be discussed in the next section.

Equation (2) can be put in a form similar to equation (3) as follows:-
M(I,J)= 1 MBAR + 0 §(1) + ...... 1 S(T) + ......0 S(r) +

0 B(D) + ...... 1B + ... 0 B(t) +e(1,J),

M(1,J) is now equivalent to y, the dependent variable, MFAR to ;- S(D
and B(J) to the remaining a’s up to a_and the independent variables are

all either 1 to 0,

r Tt -
To include the assumptions Z S(I)= 0 and §B(J) = 0 two further

equations of conditions have to be added:

0= 0 MBAR + 1 §(1) + 1 §(2) + .veoeal S(D) + ... 1 S(r)
+0 B() + .ue. 0 BQ) ...... +0 B(¥)
and
0=0 MBAR + 0 (1) + 0 §2) + ......0 S(I) + ...... 0 S(r)
+ 1B + ... 1 BQJ) ...... 1 B(Y).

Using these equations of condition the normal equations can be derived
in exactly the same way as described above.

As an example consider the following set of equations of condition:

1001001 EORE 2.0
0101001 S(2) 3.0
0011001 S(3) 4.0
1000101 | B = 4.0
0010101 B(2) 4.0
100001 1| . B(3) 14.0
0100011 | MBAR| 5.0}
0010011 7.0
0001110 0.0
1110000 | 0.0}




In this example it is assumed that station S(2) did not record explosion
B(2).

Multiplying each equation of condition by its own coefficient of
§(1) and summing coefficients gives the first normal equation .

4 (1) + 5(2) +1 §3) +1B>) +1B(2) +1B(3) + 3 MBAR = 10.0.

Multiplying each equation of condition by its own coefficient of S(2) and
summing gives

1 S(1) + 3 §2) +1 §3) + 1 B(1) + 0 B(2) + 1 B(3) + 2 MBAR* 8.00.

Similar normal equations can be obtained for S(3), B(1), B(2), B(3) and
MBAR.

In matrix form the equations are _
- -

¢11.111.3 S(1) 10.0
131.101.2 S(2) 8.0
|
|
114.111,3 S(3) 15.0
-------- . LIC I “
’ (9) “ \i
111.411.3 B(1) 9.0
101.131,2 B(2) 8.0
111.114.3 B(3) 16.0
323 323.38 AR 33.0
A series of linear equations has a unique solution if the determinant of
the coefficients of the unknowns is not zero. The determinant of the
matrix of coefficients in equation (9) is non-zero, but if equation (1) is
10




used as the model it can easily be shown that the determinant of
coefficients is zero. Thus, the normal equations now become

300111 F—Q(S [10.0]
020101 S(2) 8.0
003111 S(3) 15.0
111300 B(1) ) 9.0
101020 B(2) 8.0
11100 3] BO3) | 16.0

Adding row 2 and 3 to row 1 and rows 5 and 6 to row 4 makes the new
rows 1 and 4 identical. Subtracting row 4 from row 1 makes all row 1
zero; hence the determinant is zero. This is true of any matrix based
on equation (1).

5. CONFIDENCE LIMITS

Estimates of the regression coefficients can be found by solving
the normal equations. As a measure of the reliability of these estimates
it is useful to compute the limits, called confidence limits, of the range
within which the true value of the regression coefficients can be expected
to lie with a given probability. The smaller this range turns out to be
the more reliable are the estimates.

Consider the siniple case of a random variable normally
distributed with variance 02 and mean &, then it is easily shown that
any item picked at random from such a population will lie between
E+1.960 and € - 1.960 (or in words within roughly two standard
deviations of the mean) with a 95% probability, i.e., 19 times in 20.

Confidence limits are arrived at in a similar way; the main
difference is that £ and o are not known and have to be estimated.

The estimates of the regression coefficients are analogous to the

mean in the above simple example. To estimate the variance requires
a more detailed study of equation (8). Expanding equation (8)

11




m m m
a * C Z X, . vt cC X. e e . . T C . .
1 11§ 11y1 12 ? 12y1 in ; xlnyl
i
m m m
a = c Z X, y. T ¢ ZX: ¥Yi o« . . . 7 c Y
e S T YT Ca ¢ MMMV ®an & *inYi
i
m m m
a = c Z X . T C . . . . . F s .
v vy & %3, vp 2 X1.Y1 Sun & XinYi eee. (10)
i i i
Rearranging (10)
m
a = . « X + s + . . . . . so e
v ? ' [cuxl1 Cy,%i, cvnxln]’ (11)
L]

which shows that a, is a linear function of Yy

Now the quantity in square brackets in equation (11) is solely a function
of the independent variables and can be represented by a single quantity,

say kvi'
Then
m
a_ = 3
\Y % yikVi

and (using equation (B3), Appendix B)
m
V[ = 2 m
Lav] Z kviVLVi] = g? 3 k2,
where V[ a_] is understood to mean the variance of a_ and ¢2 is the
variance og{ Yy i.e., the variance of the errors €, It can also be shown
that, because a is a linear function of Y; which is normally distributed,

a_ will also be normally distributed [1].

Now 0®is not known, so V [a_] cannot be determined. An estimate
of 02 s? say, can however be obtained. Thus,

m - n

where m is the number of equations of condition and n is the number of

. K. A. Brownlee: (1965) “Statistical Théory and Methodology in
Science and Engineering”. John Wiley and Sons Incorporated, New

York.

12




unknowns (regression coefficients). The quantity m - n is called
the number of degrees of freedom. An estimate of the errors e'i is obtained

by substituting the regression coefficients in the equations of condition.

As a, is normally distributed with variance s 21® , the 95%
i vi
confidence limits should then be a, + 1.96 /s23 18 . This is only true if
i vi
the degrees of freedom D is very large. For small D, s? is a less reliable
estimate of 0%; to allow for this the confidence limits become a, tt

/s? er?kz ,» where t (called Students t) depends on the degrees of freedom
and ils >v11.96. (Tables of Students t for various degrees of freedom and
level of probability are given in most books on statistics.)

To determine the confidence limits ;Inkz must be evaluated. At
first sight this appears a formidable task; 1it c\::n however be shown that

Zk?® is simply c,,i the vth diagonal element in the inverted matrix.
i vi

This can be demonstrated as follows:-

m m
:Z.L: k?}i - ‘E‘ viTvi
om
= 21: kvl[ vi 11'1- voip T Cvn ln]
m m
T fw 2 kygxg Ty, ? vi¥ip © Cyn T Kvi¥in®

Cy Z le ih - ¢ vh Z [CVl i4 T Canin]Xih
= Cynh [c ZX11 ih chinzxih S
..... c. 2X. 1.

vn®*in®ih
When h = v the quantity in the square brackets is identical to the left
hand side of an equation formed by multiplying the vth row of the C
matrix by the vth column of the X matrix; from (6) this is equal to 1.
For h # v the quantity in square brackets is identical to the left hand
side of one of the other equations (6); the right hand side of all these
equations is zero.

Thus, %k?® = ¢ , the vth diagonal element of the inverted matrix.
vV

il
and V[a I=c vsz; it is because of this that matrix inversion is used
for solvmg the normal equations.

13




To get the confidence limits on the difference of two a's, a, and a the
variance on the difference is requxred ie., V [a,-a,] Now
Via,6-al]aV[a ]+ V[a ]J- 2 Cov [a , al ], where Cov[a , a:] is
the covarxance of a,, av (for proof see Appendlx B). By an analysis .
similar to that given for V [a ] it can be shown that
Cov [av, a\’, 1= szc’w )
i.e., the product of the variance of the errors and the element of the
inverse matrix that lies at the intersection of the vth row and the vth
column (or vice versa - the two elements c_,, and c s, are equal because
the inverse matrix is also symmetrical).

The variance of the differences of two a’s is then given by

V[a -a’las®(c +c¢c -2c ).
v v G Y. vv’)

The 95% confidence limits of a_ - a! is then ¢/V [a, - all.

Confidence limits on MBAR, (I), B(J) and on the differences ;
between each pair of explosion terms (B(J’s)), are calculated by the '
methods outlined above. As the M(I,J)’s are only relative values the
confidence limits on the absolute values of MBAR, ) and B(J) have
little meaning. The confidence limits on the differences of the explosion
terms are however valuable as they are confidence limits on the
absolute differences between the seismic sizes of pairs of explosions.

6. WEIGHTING

So far it has been assumed that the errors in the dependent variables
all have the same variance 02, This may not be so; some measurements
may be known with greater (absolute) accuracy. To get the best estimate
of the regression coefficients, i.e. the one with minimum variance, each

1
equation of condition should be weighted by a factor Nw, where w= pe o

o‘ is the variance of the ith measurement (for a discussion of weighting .

see reference [1]) A facxhty for weighting any equation of cond1t1on
has therefore been included in the LSMF program, although 6 will

usually be difficult to estimate.

7. THE PROGRAM

The program will accept data for up to 60 explosions recorded at
a maximum of 200 stations. The input to the program is:-

(1) Students t tables for the 95% probability level.

2 A title for the data being processed and any number of
comment cards.

1. E. Whittaker and G, Robinson: (1944) “The Calculus of Observations:
A Treatise on Numerical Mathematics”. Fourth Edition, Blackie,
London and Glasgow
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(3) An identification code for each station.
(4) An identification code for each explosion.

(5) Cards with station code, event code, M(1,J) and the
weight to be assigned to M(L,J). If the weight is left blank it

is taken to be unity.

The matrix of coefficients of the normal equations (the X matrix)
are then set up. This could be done as outlined in Section 4, i.e., by
setting up all the equations of condition then multiplying each equation
by the coefficient of each unknown in turn and summing. This would need
a large amount of storage space in the machine to little purpose as most
of the terms in the equations of condition are zero (cf, the example given
in Section 4). A method of constructing the matrix of coefficients directly
has therefore been devised. As a result of this a far larger number of
unknowns (260) can be handled by the program than would be possible
if the equations of condition had to be stored in their entirety.

The X matrix is set up as follows: first the whole matrix is
zeroed. Each non-zero element of the X matrix is now computed from
the input data and stored in its appropriate place in the matrix. As
the resultant matrix is symmetrical about the diagonal only the upper
triangular matrix and the diagonal elements have to be computed. The
upper triangular elements, X,.» are then repeated in the lower triangular

position in' For the purposes of construction the matrix can be divided

into 7 parts (see Figure 1). The equivalent 7 parts are shown in dotted
outline in equation (9)).

FIGURE 1

If t is the number of explosions read in and r the number of
stations, part 1 is an r X r matrix, part 3 a t X t matrix, parts 2 and 4 are
r X t matrices, part 2 having t columns and r rows and part 4, r columns
and t rows, parts 5 and 6 are (r + t) X 1 matrices and part 7 is a single

element.
15




Matrix 2 is constructed first. The first element in the first row
of this matrix is unity if §(1) is recorded at station B(1), the second
element is unity if §(1) recorded B(2) and so on to B(t), Similarly in
the second row the first element is unity if §(2) recorded B(1), the
second element if §(2) recorded B(2) and so on. Rows 3, 4, . ...t
of matrix 2 are constructed in a similar way. Matrix 4 is now constructed
by reflecting matrix 2 in the diagonal.

The diagonal elements of matrix | are now formed by summing the
corresponding row of matrix 2 and the diagonal elements of matrix 3 by
summing the corresponding rows of matrix 4. The diagonal elements
of 1 and 3 are now repeated in order in the column matrix 5 and the row
matrix 6. Element 7 is half the sum of the elements in the column
matrix 5. Finally 1 is added to each element of matrices 1 and 3.

The above somewhat involved process produces the correct
matrix of normal equations with (r + t + 1 elements.

The first element of the right hand side of equation (5) is formed
by summing all M(1,J) (it is assumed that M(L,J) = 0 if station I did not
record explosion J), the second element by summing all M(2,J) and so
on. Element r of the right hand side is then % M(r,J). Element r + 1

is ZM(I,I) element r + 2 iszI: M(1,2) and so on. Element r +t + 1 is
ZZM(L D).
1J

The setting up of the normal equations has been described assuming
all the data were to be given equal weight. If the weights are not unity
(but w) the elements of parts 2 and 4 of the matrix are now replaced by
the weights, w, and the setting up of the matrix then proceeds as before.

To take account of weighting when setting up the right hand side
of equation (5) each M(1,J) is multiplied by its weight and then summed
as before.

The matrix of the coefficients of the normal equations is now
inverted using a subroutine from the Harwell Program Library (No.
MBO1A). This subroutine uses the so called triangular decomposition
method of matrix inversion [1].

Both the original matrix and the inverted matrix are stored
on disk.

Using the inverted matrix S(I), B(J) and MBAR are computed.
Subtracting these values from the original M(1,J) gives the error
term ¢(1,J) and hence s? the estimate of the variance of the errors
can be found. From s? and the elements of the inverted matrix the

1. HMSO: (1961) “Modern Computing Methods”. National Physical
Laboratory. HMSO, London
16




confidence limits on S(I), B(J) and MBAR and on the differences
between pairs of B(J) are computed.

The output from the progfam is:-

(1) Tables showing stations and events used and input data,
M(LJ), with weights.,

(2 Tables showing the residuals €(1,J).

(3) Tables showing best estimates of S(I), B(J) an MBAR their
variances and 95% confidence limits.

(4) Tables showing differences between each pair of B(J) and the
95% confidence limits of these differences.

(5) Table showing variables used in the calculations.

Although the program described here has been written to solve a
particular problem the program could equally well be used for any problem
that can be expressed in terms of the model given in Section 2; this is
the familiar two way analysis of variance model.

To carry out a two way analysis of variance using the usual
techniques the values of all the elements in the analysis of variance
table must be known (one or two missing values can be tolerated). No
such restriction applies to this program.

17




APPENDIX A

MATRICES AND MATRIX INVERSION

A matrix is an array of numbers of the form

a
11 812

a a
21 22

.

iy %ia

a L]
am1 m2

a,1 j

alJ

a3

a

a

mn
-l

1N

in

Unlike determina: e matrices cannot be evaluated to give a single
value. They can however be represented by a single quantity, say A,
and as such used in many algebraic operations just as if A were a single

number,

For example the addition of the matrices A and B means summing
corresponding elements of the two matrices. Thus if

and B

At B

a ]
12

a
2

b |
12

¥

Multiplication of two matrices is more complicated. Thus,

a b T
11 11

AB
a b t
21 11

a b ,
12 21

a b ,
22 21

18

a b
11 12

a b
21 12

+t a

t a

b
12 22

b
22 22




Each element of the new matrix is formed by multiplying each
element in a row of the first matrix by the corresponding element in the
column of the second matrix and summing. For multiplication to be
possible the second matrix (matrix B) must have the same number of
rows as the first matrix has columns.

Matrices find their widest application in the solution of linear
equations,

Consider the equations

a x Tt a x T g x ‘ . . . a x_ = .

11 1 12 2 13 3 1N’ n yl

a x t a x T a x . . . a =

211 22 2 25 4 an’n ~ Y,

) . . e (A1)
a x t a x T a x . . . a =

nig i ng’ g ns g nn*n Yn*

These equations can be represented in matrix for as

) a a .« .+ a .+. . . a % ] v ]
: rll 12 1] inj . 1 7y
a a o . . . b'e
21 “22 2 Yo
.o . . . = . e... (A2)
.a. - « s e . . . .
31, % 353 %in
. .. . . . a a y
) ni n nn n n
j n] RJ el

Ax = vy.

Strictly the term matrix is applied only to A; the column matrices
x and y are called vectors.

The solution of (A2) can be represented symbolically as
it
7 x= Ay, ceeees (A3

where A™" is called the inverse matrix of A.
Now just as in ordinary algebra

-1

aa =1,

so a unit matrix | can be defined such that

-1

AA™" =1, ceeee (AB)

19




where

1 0 o 0]

O 1 O 0
I = |0 . 1

0 0o 0o . . 1]

all the elements of I are zero except the diagonal elements which are
unity. Operating on a matrix with I leaves the matrix unchanged,
i.e., Al= A.

Equation (A4) provides a way of determining A™". Let C.. be the element
of the inverse matrix; then writing out (A4) in full ]

~ I [ T [~ -
e e . c C . .. 1 . .
3,y %12 3n 11 12 “in 0 0 0 O
a a_,. . . a . . . C = o 1t oo . . O
21 22 2N C21 sz an
0 0 1 . '
3 . . . a c N o .. . . o1
| ®ns “n2 nn [“ni ne nn | __(_) M

Carrying out the multiplication of the left hand side. The result of
multiplying the ai]. matrix by the first column of the C matrix is

a ¢ T a c . . . . a ¢ =1

11 11 12 21 1N ni

a c ¥ a ¢ . . . . a _c =0

21 11 22 21 2N ni

a_ ¢ T a_ ¢ . . . . a__¢c =

ni 11 Na 21 nn ni
“hi i n unknowns ¢ c c . . C .
This group of n equations has 41’ Sar’ S i

the elements of the first column of the C matrix, Cy»Cor v - S can

therefore be obtained by solving this set of equations.
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A similar group of equations can be obtained by multiplying the A
matrix and the second column of the C matrix. The elements in each

column of the C matrix can therefore be evaluated in turn; this results
in the inverse matrix.

The right hand side of equation (A2) can then be operated on with
the inverse matrix to give x as shown in equation (A3).

Writing out (A3) in full

r e = — r -ny
C C . . . C y
*y 11 12 in
C C . C y
X, 21 22 2N 2
X ¢ “nn Yn
S n— o ni nz2 L wndi
1.64
- . . c.Y
X, = C y T c y vc ¥y - - n'n
1 1171 1272 13°'3 L (A%)
= T C t+ C Y . . . . C Y
Xg “217y 222 23’3 2N’ n

As the ¢’s are known and the y’'s are known the equations (A5) give
X 5 Xy ey X the solutions of (Al).

Shorter methods of solving linear equations are available, e.g.,
Gaussian elimination but matrix inversion has advantages if several sets
of equations have to be solved with the same left hand side but different
right hand side. Once the inverse of a particular left hand side has been
computed it can be used to solve any number of sets of equations simply
by operating on the y matrices. Another advantage of the inverse matrix
is that it allows the confidence limits of the unknowns to be computed
easily in least squares problems (see Section 5). '
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APPENDIX B
SOME STATISTICAL CONCEPTS AND PROOFS

B1l. EXPECTATION

The expectation of a random variable x, usually written E [X], is
defined as

E[X] = J'xp(x)dx,
where p(x) is the probability that the random variable will take the
particular value x. The expectation corresponds to the mean of the
whole population of x. Means determined from a set of sample valu=s
of x will not usually coincide with E[X] but will approach E[X] as the

sample size increases.

The expectation of a constant is the constant, since the constant
can take only one value. The expectation of an expected value, E[E[X]],
is simply E [ X] since E[X] is a constant and as shown above this
only has one value.

B2. VARIANCE

Variance measures the spread of a distribution and can be defined
on terms of expectation thus,

VIX] = E[X - E[IXD?], ... (B1)

or in words the variance is the expected value (average value) of the
squared deviation of a random variable from its expectation.

An alternative form of (Bl) is
VIX] = E[X?] - (E[x])2. .. (B2)

If a and b are constants the variance of a linear function of

X, say a + bX, is

]

E[((a + bX) - (E[a * bX]))?]

E[a2] + 2abE[X] * b2E[X®] - a® - 2abE[X]
- b2(E[Xx])®

b2{E[x]% - (E[X])?}

b2V X].

vlia * bx]

22




If Z is the difference of two random variables X and Y, i.e.,, Z=X - Y

E[z2] - (E[Zz])2 using (B2)
E[(x - Y)I® - (E[x - Y])?
e[ (x® - xy + Y?)] - (e[x])2 + 2E{xJELY]
- (ElY])?®
E[x]2 - (E[x])® + E[Y?] - (E[Y])?
- 2(E[x Y] - E [xJE[Y])
v[x] + vlY] - 2 cov [X,Y].

viz]

Cov [X,Y] is called the covariance of X and Y and is defined as E[XY] -
E[X]E[Y].

The results given above can be generalised for any linear combination
of random variables. Thus, if

= raX + .. .. aX
Z 4 171 nn

n ¢ nn
. - 2
v(zZ) ? afv [xi] + §§ a;a; Cov [xi,ij

id 3.

If the random variables are uncorrelated their covariances are zero,

Ifalso V [Xi] is constant and equal to 02 for all i then

v(z) = 0'22.ai2 .
i
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APPENDIX C
PROGRAM LISTING

Jos, LSMF PROGRAM
TYPRCOMPILGOFb
SUSTYPE,FIOD

9100, 018K

N0
SUBTYPE, FORTRAN,LMAP, LSTRAP

RAIN LENF
snascseee

FINCS DATE AND SETS UP NUMBER ARRAY NUM AND STUDENTS T TABLE FROM CARDS

CoONnoN DATE WEAD () (NUM( B0} ¢ ANT (601 4N NR,DISK,
1 RMEANsCLM+ VARM(RSQD s RBAR, ISTAN,STAN
COMMON /MTRCES/ A1261,261),8(261)y P(60,200)

COMRON  /ARRAYS/ X(261),Y(460),NRS(200),NRB(40),D(261),

1 CLX{261),CLY(80) ¢VARX(261) VARY{60)
CONMON  /CODES/ STN(200),SNAME+NST, EVENT(80) +ECODE,NBT
CoMmON  /STUDT/ $TL(ST), T, IDF,NDF

INTRSER OISK

CALL BOUMP
CALL SDATE(DATE)

048K s 9
00 810 1=1,60
NUM{ 1)t
CONT INUE

READ 408, (ST(1)yl=1,87)

PRINT 809, (STU1),1=1,37)

FORMAT( 1X, 15F5.2)

READ 404

PRINT 40N

PORMAT{ 35H !

READ STUDENTS T TABLE

CALL LSMF
RETURN
END
SUBTYPE, FORTRAN,LMAP L STRAP
LEAST SQUARES MATRIX FACTORISATION PROGRAM (LSMF)

(X2 YRR Z2IATTIIALL L2222 IR 2 22 2222221 )

THIS PROGRAM SEPARATES THE MEASURED MAGNITUDES OF EXPLOSIONS
INTO TMREE QUANTITIES =~ AN EXPLOSION TERMy, A STATION TERM AND A
MEAN EXPLOSION-STATION TERM. IT IS ASSUMED TMAT THE MAGNITUODE,
MUT,J3y OF THE JTH EXPLOSION AT YHE ITH STATION CAN BE REPRESENTED
8Y THE EQUATION =~

SUL) & B(J) + MBAR o E(1,J) » NLl1,J) cscacal )

WHERE S(1) 1S THE STATION CORRECTION, B(J) THE EXPLOSION TERM,
MBAR THE MEAN EXPLOSION-STATION TERM AND E(l,J) [S AN ERROR.

S(I)y BUJ) AND MBAR ARE ESTIMATED BY LEAST SQUARES. TO DO THIS
IT IS NECESSARY TO MAKE THE FURTHER ASSUMPTIONS THAT THE SUM S(1)
IS ZERO AND THE SUM B(J) IS ZERO, OTHERWISE THME PROBLEM CANNOT
BE SOLVED.

THE PROGRAM ALSO DETERMINES THE CONFIDENCE LIMITS ON Sil1), B(J)
AND MBAR AND THE CONFIDENCE LIMITS ON THE DIFFERENCES BETWEEN EACH
PALIR OF EXPLOSIONS == ASSUMING THE ERRORS E(I1,J) ARE NORMALLY
DISTRIBUTED.

ESSENTIALLY THE PROGRAM CARRIES OUT A TWO WAY ANALYSIS OF VARIANCE.
IF ALL STATIONS RECORD ALL EXPLOSIONS THE
PROBLEM TO BE SOLVED IS [DENTICAL TO THAT OF THE ANALYSIS OF
VARTANCE AND COULD BE TREATED AS SUCH. THIS PROGARAM HOWEVER CAN
ALSO HANODLE THE SITUATION WHERE THE DATA 1S INCOMPLETE . E. SOME
STATIONS FAIL TO RECORD ALL EXPLOSIONS -- THIS CANNOT 8E ODEALT
WTH BY THE USUAL ANALYSES OF VARIANCE TECHNIQUES.

ALTHOUGH THE PROGRAM HAS BEEN WRLTTEN TO SOLVE A PARTICULAR
PROBLEM THE METHOD IS GENERAL AND THE PROGRAM CAN BE USED TO SOLVE
ANY PR?BLEH THAT CAN BE EXPRESSED AS A SERIES OF EQUATIONS OF
TYPE (1),

FOR DETAILS OF ANALYSIS OF VARIANCE TECHMIQUES SEE BROWNLEE K.A
STATISVICAL THEORY AND METHODOLOGY IN SCIENCE AND ENGINEERING, AND




c KEMPTHORNE O+ THE DESIGN AU ANALYSIS OF EXPERIMENTS. BLCTH BOOKS

[ ARE PUBLISHED IN THE WILEY SERIES [N STATISTICS.

C

4

[ Y Y Yy Y Yy Yy Yy Y R Y Y XYY Y Ty XY ]
(A I I T R Yy Y Y Yy Yy P Y Y Y Y Y YRRy YY)

NON-STANDARD L IBRARY SUBPROGKAMS USED

EDUMP DUMP ROUTINE

SDATE DATE IN ALPHANUMERIC FORM DD/MM/YY
SECCLK PICKS UP SECONDS CLOCK READING

EX1T ROUTINE TO BRANCH BACK TO MACHINE CONTROL

BESBRNBBARNEORNORERARGNTREREPRNARPRNBBNRNBRBPRBRNBNNNBENNNNOSNEOERGESTEIRERESS

VARIABLES USED

IS THE MATRIX.

IS THE SUM .OF MEASURED MAGNITUDES

IS THE DIAGONAL OF THE INVERTED MATRIX

ARRAY CONTAINS STATION (FOLLOWED BY.EVENT) CORRECTIONS
ARRAY CONTAINS EVENT CORRECTIONS

cLx CONFIDENCE LIMITS OF X

cLY CONF IDENCE LIMITS OF Y

VARX VARIANCE OF X

VARY VARIANCE OF Y

< XX >

NST = TOTAL NUMBER OF STATIONS
NBT = TOTAL NUMBER OF EVENTS
NR = TOTAL NUMBER OF READINGS
NRS = NUMBER OF EVENTS PER STATION
NRB = NUMBER OF STATIONS PER EVENT
NS = STATION COUNT
NB = EVENT COUNT
J = COLUMN COUNT
1 =  ROW COUNT
N = SIZE OF MATRIX
MAXIMUM NUMBER OF STATIONS = 200
MAX IMUM NUMBER Of EVENTS = 60

[a X s N e R o R ol o s N o N o N o R o Na N u N ol o R o N o N s R N o N o R o N o N o R o R u NN o N o NN ol a N o Nal ol o ¥ o)

Co RN s N E R ARG R R R R RN SRR RN GR RN RN RN RRNR AR RPN RN AR NERARRRNERRERRNRRER
cI..Q....Q........l.QG...O..Q.QI'.I'0.QI.......'.Q....'...Q....Q...Q'..0

THE DATA DECK SHOULD BE MADE UP AS FOLLOWS -~
1) HEADING CARD WHICH WILL BE REPRINTED AT THE TOP OF EACH PAGE

FOLLOWED BY AMY NUMBER OF COMMENT CARDS
TILL A ZERDO IS ENCOUNTERED IN THE LAST COLUMN

2) STATIONS IN ORDER KEQUIRED IN MATRIX
STATION CARDS ARE READY-PUNCHED
FOLOWED BY END STATIONS CARD

3) EVENT CODES IN ORDER REQUIRED IN MATRIX
EVENT CODE (8 CHARS.) = START PUNCHING IN COLUMN 7
EVENT DATA AND COMMENTS ~ START PUNCHING IN COLUMN 20
FOLLOWED BY EMD EVENTS CARD

4) MAGNITUDE DATA
STATION CODE COLUMNS  2-6
EVENT CODE COLUMNS 7-14
MAGNITUDE DECIMAL POINT (.} IN COLUMN 20 (3 DP)
WEIGHTING FACTOR IN COLUMN 30
IF WEIGHTING FACTOR ZERO ASSUMED TO BE 1
FOLLOWED BY END MAGNITUDES CARD

OPTION IF THIS LAST CARD IS BLANK NO COMPUTATION WILL BE DONE
AND ONLY THE INPUT DATA PRINTED

5) END OF JOB CARD FOR NORMAL END OF JOB
MORMAL END OF JOB WILL ALSO OCCUR IF NO MORE DATA

REPEAT 1)} TO 4) FOR ANY NUMBER OF MATRICES
L Yy Yy Yy Y Y YTy Yy Yy Y Yy Y Yy Y Y Yy YT YT YYY YY)

THE I[NFORMATION S PRIMTED AS FOLLOWS -~

PUNCH THE FIRST 72 COLUMNS ONLY COLS.73-80 FOR CONTINUATION COUNT

THE MAGNITUDE DATA WILL BE READ IN FASTER IF ARRANGED IN STATION CRDER

skalakakakakalsXakalaRalalaRalaNakalakaNaRaRa ol ool s N ol ol sl o e oo N RalainNaRalaRaNalalal

TAGLE ) SETUP DATA
TABLE 1.1 STATIONS {uP TO S PAGES)
TABLE 1.2 EVENTS ) (UP TO 2 PAGES)
TABLE 2 INPUT MATRIX WITH WEIGHTS
PRINTS ALL STATIONS WITH EVEMTS IN SETS OF 10 (UP TO 30 PAGES)
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TAGLE 3 MATRIX CH KESTDUALS OF MAGHITUDES

PRIMNTS OHT COMPUTED YALUESs STAKS SMALLLST VALUE,
NUMBER [N EACH ROW OF PESIDUALS,
95 PERCENT COMFLIDEMCE LIMITS, AND VARIANCE
tup
TABLE 4,72 BEST FSTIMATE OF MASNITUDES WITH 95 PERCENT
PRINT OUT CUMPUTED VALUES,
NUMBER 14 EACH COLUMN OF RESIDUALS,
95 PERLENT CONFIDEMCE LIMITS, AND VARIANCE
(urp

TABLE 5 TRIANGULAR MATRIX OF OUIFFERENCES OF MAGNITUDES
PRINTS GUT DIFFERENCES WITH 95 PERCENT CONFIDENCE LIMITS
(up

TapLt 6 VARTABLES USED DURIMG THE COMPUTATION

aNaNalaNaNalaslaNala el aNaNalaN ol o N el a¥ o Na o Wa el ol

SUBROUTIME LSMF

COMMON DATE, HEAD(9) 4 NUM(60) s AWT(50) 4Ny NRyDISK,
1 XMEAN 3 CLMyVARM,RSQD,RBAR, I STAN,STAN
COMMON  /MTRCES/  AL261,261),B(261), P{60,200)

COMMON  JARRAYS/  X(261),Y(60)4NRS(200) +NRB(60) D(261),

1 CLXE2611,CLYL60),VARX(261) VARY{60)
COMMON  /LODES/ STM{200), SNAME NST, tVENT(60),ECODE+NBT
COMMON  /STUDT/ STUST) T4 IDFNDF

INTEGER 0OISK

PRINTED AS FABLE 2 TRUE RESTODUALS ARE STARRED (UP TO 30 PAGES)
TARLE & AMSYERS
TABLE b, STATION CORRECTIONS wITH 95 PERCENT CONFIDEMCE LIMITS

T0O 5 PAGES)
CONFIUEMNCE
(LLIMITS

TO 2 PAGES)

TO 42 PAGES)

(1 PAGE)

A R R R R R R R R R Y R A R L R R R R R R RS NS RS L RS RS S NN T YY)

C
CATA  EMDIBHFND M )y BLANK(8H )
C
C READ HEADING CARD AND ANY COQMMENTS

10 CALL SECCLK(TS)
CALL HEADER
C ZERQ MATRICES
29 Lo 40 J=1,261
Do 30 1=1,261
Al1,3)=0,
30 CONT INUE

B{J)=Q.
40 CONMTINUE
DO 60 J=1,200
DN 50 1=1,60
P{I+4)=1000,
50 CONTINUE
NRS{J)=N
60 CONT INUE
DO Tu I=1,60
NRB(1)=0
70 CONT INUE
C SETUP STATIONS AND EVENTS
CALL SETUP
N=NST+NBT
C FORM MATRICES
NR=0
NS= 1
100 IND=1}
REAC 105y SNAME,ECODE ¢ AMAG NWT
105 FORMAT(1X,A5,A8,2XyF13.9,11)
NR=NR+1
IF(NWT) 11041104120
10 NWT=]
120 WT=NWT
IFISNAMELEQLSTNINS)) GO TO 210
IF(SNAMELEQ.STN(NS+1)) GO TO 200
IF(SNAME.EQ.END) GO TO 300
150 DO 160 J=1,NST
IFISNAME ,EQ.STN(J)) GC TO 180
160 CONTINUE
IF{SNAMELEQ.BLANK) GO TO 290
PRINT 175, SNAME
175 FORMAT(2TH1#e UNKNOKN STATION NAME - ,A8//7)
GO TO 280
180 00 190 [=1,nET
IF{ECODE.EQ.EVENT{ 1)) GO YO 250
190 CONTINUE
GO TO 230
200 NS=uS+)
210 DO 220 NB=1,NBT
IF{ECUDELENLEVENTINE)Y) GO TO 240
220 CONTINUE
230 IF{ECODE.CQ.BLANK)Y 6N TN 290
PRINT 235, ECOLE
235  FORMAT({295HV1es UNKMOVN EVENT CODE = ,AE8//)
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GO TO 280
240 J=NS
I=NB
250 PUL1,J)=AMAG
NRB{I)aNPB(T)+]
NRS({J)EeNRS(J)+]
Te [ #4NST
260 Al(LyJ)=wT
BlJ)=B(JI+AMAGeNWT
GO TO (2704 100)4IND
270 IND=2
NB= |
[=J
JsNB
GO TO 260
280 PRINT 285
285 FORMAT(24H THE INCORRECT CARD IS =)
PRINT 105, SNAME,ECODE,AMAG NWT

RETURN

290 CALL INPUT
PRINT 295

295 FORMAT{30Hles ONLY INPUT PRINT REQUESTED///12H NO SOLUTION)
GO TO0 10

300 NR=NR-1
LS=NST+ 1
DO 320 J=1,NST
AD=0.
D0 310 I=LS,N
ADsAD+A( Iy J)
310 CONTINUE
AtJ,d4)=AD
AlLJyN+1)=AD
AIN+1,J)=AD
320 CONTINUE
D0 340 J=LS4N
AD=0Q.
B0 330 1=1,NST
AD=AU+A{1,J)
330 CONTINUE
AlJyJi=AD
A{JyN+1)=AD
AIN+1,J)=AD
340 CONTINUE
AC=0.

AMAG=0.
DO 350 J=1,N
AD=AD+A{J,Jd)
AMAG=AMAG+B{J)
350 CONTINUE
A(N+1,N+1)=AD/2.
BIN+1)=AMAG/2.
DO 370 J=1,NST
DO 360 [=1,NST
AlTyd)=AlL,4)410,
360 CONTINUE
370 CONTINUE
DO 390 J=LS,N
DO 380 I=LSN
AllyJ)=Allyd) 4],
380 CONTINUE )
390 CONTINUE
PRINT INPUT
CALL INPUT
: SOLVE MATRIX
N=aN+ )
DO 420 J=1,N
IFIA(S,J)=1.)U20,410,420
410 PRINT 415, J
415 FORMAT({20H1## DIAGOMAL ELEMENT,1Uy6H ZERO///12H NO- SOLUTION)
GO TO 10
420 CONTINUE
WRITE (DISK) ((A(LyJ)a1=1,N)gJd=14N)
CALL SOLVE(ByXyNsD}
WRITE (DISK) ((A(T1,J)yI21,N)gd=l,N)
REWIND DISK .
READ (DISK) ((ALI,J)s1=1N)eJ=1,N)
SETUP STATION AND EVENT ARKAYS
XMEAN=X(N)
00 470 I=1,NBT
J=[#NST
Y =x{J)
470 CONTINUE
STAN=AHS(X{ 1))
ISTAN=)
DO 490 J=2,MST
IF{STAN-ABS(X{J)}ILIQ, 490,480
480 STAN=ADBS(X(J))
[STAN=J
490 CONTINUE
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OO0 O -

620
630

640
650

660
670

680

690

710

720

730
40

885

886

10
20

1

DN E LN -

PRINT KESIDUALS
CALL OUTPUT
REAC (DISK) ((ACTI,J)sI=14N), U=]1,N)
REWIND DISK
WORK OUT STUDENIS T
T=0.
NDF=NR-N+2
IFINDF) 675,675,620
IFINDF~30)630,6u40,680
IDF=NDF
GO TO 470
IFINDF~1300)650,660,560
IOF=NDF/ 10427
GO TO 670
IDF=57
T=ST(1DF)

COMPUTE VARJANCES AND CONFIDENCE LIMITS

RBAR=0.

RSQD=0.

DO 690 J=14NST

D0 680 1=t NBT
AD=P(14J)

RBAR=RBAR+AD
RSQDsHSQD+AD®AD
CONTINUE

CONTINUE

IF{NDF.GT.0) RSUD=RSQD/FLOAT(NODF)
DO 710 K=1,N
VARX{K)}=RSQDeDIK)
CLX(K)=T#SQRT{VARXIK))
CONTINUE

DO 720 [s1,NBT

J= I eNST
VARY(1)=VARX(J)
CLy(I)=CLx{J)

CONTINUE

VARMaVARX(N) .
CLM=CLX(N)

DO 740 I=1,nNBT

J= [ +NST

DO 730 LS=1,!

K=LS+NST
PULS,1)=TaSORT{RSQD*ABS{A(K,K)}+A(J,yJ)}-2.4A(K,J)))
CONTINUE

CONTINUE

IF{NDF.GT.0) RSUD=RSQD*FLOAT{NDF)
PRINT ANSWERS
CALL TABLE
CALL TRIANG
CALL SECCLK(TF)
TS=TF-TS
PRINT 885, HEAD,DATE
FORMAT{55HITABLE 6 VARTABLES USED DURING COMPUTATION
9A8/ 113X, 6HDATE ,AB////)
PRINT 886, NRyN,RSQD,RBAR, T NDF,XMEAN,CLM, TS
FORMAT({

33n NUMBER OF 'READINGS = , 16 1/

33H NUMBER OF UNKNOWNS = , 16 111/

33K SUM OF SQUARES OF RESIDUALS = , F10.6 1

33H SUM OF RESIDUALS = , EV10.4 1117

334 STUDENTS T = , Fb.2 1/

334 NUMBER OF DEGREES OF FREEDOM = , 16 11

33K MEAN STATION-EVENT EFFECT = 4, FT43,5H +¢/-4F7.5
334 TIME TAKEN TO SOLVE MATRIX = , FT7.3, 8H SECONDS)

LOOP FOR NEW MATRIX

G0 TO 10

END

SUBTYPEC, FORTRAN, LMAP,LSTRAP
LSMF HEADING PRINT ROUTINE
BERRRRRBNUERREBRNANSNRERNSS

11111114

THIS ROUTINE READS AND PRINTS HEADING CARDS TILL IT FINOS A ZERO IN COL.80
THE CONTENTS OF THE FIRST CARD IS STORED IN ARRAY HEAD N.B. COLS.1-72 ONLY

SUBKOUTINE HEADER
COMMON DATE,HEADI(9)
CATA ENDI{BH EN},END2(8BHD JOB )

READ 1, HEAD,IT

FORMAT{ 9AB, TX,11)

IFLHEADU V) . EQ.ENDVANDSHEAD(2) . EQ.END2) CALL EXIT
PRINT 2, DATE,HEAD

FORMAT( 1M1/ 113Xy 6HDATE  4AB////725%,9A87777)
[F(IT) 20,30,20

READ 3, IT

PRINT 3

FORMAT [ 79Hm == e m e e e e e e e e o mm———— ————— e
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CPEOCANEOO -

30

20
21
22
23

24
25

26
27

28

29

30
31
32

33

34
35

36
37

38

39

40

4\

420

430
LT]

" RETURN

END
SUBTYPE,FORTKAN,LMAP,LSTRAP

LSMF SETUP ROUTINE

tesscnssannasnasne

THIS ROUTINE SETS UP ANU PRINTS STATIONS AND EVENTS

SUBROUT INE SETUP

COMMON DATE,HEAD(9)

COMMON  /CODES/ STN(200), SNAME,NST, EVENT(60),ECOUF,iIBT
CATA ENDV{BHEND S }o END2{BHEND EVEN)

SETUP STATIONS
NST=0
LINE=Y40
READ 22, SNAME
FORMAT [ 1Xy A5y THH= == m o m o o o o e e e e e e e e oo

[F{SNAME-END1)23, 30,23

NST=NST+}

IFINST-200)264 24,24

PRINT 25

FORMAT(21H1#e TOO MANY STATIONS)

GO TC 41

IF(LINE-40)29,27,27

LINE=0

PRINT 28, HEAD,DATE

FORMAT{SSHITABLE 1.1 STATIONS ’
1 9A8/113X,6HDATE ,A8/
2 80H CODE STATION REGION LATITULE LONGITUDE
3 CCRRECTIONS /)

PRINT 22, SNAME

LINE=L INE+]

STNINST)=SNAME

GO 10 21}

SETUP EVENTS

NBT=0

LINE=40

REAC 32, ECODE

FORMAT [6XyABy bbH~~mm - mmm e e e e mmmc e s c s cm e e ittt

)
[F{ECODE-END2) 33, 40,33
NBTaNBT+1
IFINBT~-60)36, 34, 34

PRINT 35

FORMAT ( 19H1## TOO MANY EVENTS)

GO TO U1

[F(LINE-40) 39, 37,37

LINE=0

PRINT 38, HEAD,DATE

FORMAT {5SHITABLE 1.2 EVENTS v
1 9A8/ 113X, 6HDATE ,A8/
2 80H COOE EVENT DATA AND COMMENTS
/)

W

PRINT 32, ECODE
LINE=L INE+)
EVENT(NBT }=ECODE
Go TO 31

RETURN .
FINISH FOR ERROR
CALL EXIT
END
SUBTYPE, FORTRANLMAP 4L STRAP
LSMF INPUT PRINT ROUTINE

RABBRBERARAERRBRRBEINNRDRS

THIS SUBROUTIME PRINTS OUT THE MATRIX OF MAGNITUDES (P)
WITH 1) ALL STATIONS
2) EVENTS IN SETS OF TEN (10)

PRINTS THE WEIGHT BY EACH MAGNITUDE READ IN
ZERD AND BLANK INDICATE NO VALUE

SUBROUT INE INPUT

COMMON DATE+HEAD(9) ,NUM(60) ,AWT (60)

COMMON  /MTRCES/ A(261,261),81261), P(60,200)

CCMMON  /CODES/ STM(200), SNAME,NST, EVENT{60),ECODE,NBT
DIMENS10M FCHAR(10)

CATA (FCHAR(1),1=1,10) (BOM * .2 3 ol
1 5 .6 7 L3 ] .9 )y ANUM(BHEVENT }

4=0

J=J+10

NB=J-~9
IF(J-NBTIULO, W40, 43N
J=NBT

LINE=UO
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450
(11

455
w60

%70
475
480

100

ow

1
17

10

m
65

43

42
141
41

40
140

DO 480 NSa)NST

[F{LINE-4O0)U60,450,u450

LINE=0O

PRINT LS4, HEAD DATE, (ANUMyNUMIL) , 1=2NB,yJ)
FORMAT(SSHITABLE 2 MATRIX OF MAGNITUDES WITH WEIGHTS
! 9AB/113X,6HDATE ,AB/

2 9H  STATION MX,AS,13,9(4XeA5,13))

PRUINT 455, (EVENT(1),1aNB,J)
FORMAT({ 13x,A8,9(4X,AB))
DO 470 I=NB,J
INSTS#NST
WTeA{INST(NS)
INSTaIFIX(WT+0.5)¢1
AWT (1) =FCHAR( INST)
CONT INUE
PRINT LTS5, NSySTNUINSY(PUI,NS) AWT(I),[=NByJ)
FORMATL 1X, [3,2X4A6,F6.34A3,9(3X,Fb6.3,A3))
LINE=L INE+1
CONT INUE
IFtJ.NE.NBT) GO TO 420
RETURN
END
SUBTYPE, FORTRAN, LMAP L STRAP
LSMF MATRIX INVERSION ROUTINE

AERUABENTVBOBANRINOBRBBSRNR RS

THE METHOD USED IS CALLED TRIANGULAR DECOMPOSITION
FROM N.P.L. MODERN COMPUTING METHODS

BASED ON L IBRARY SUBROUTINE MBOIA

SUBROUT INE SOLVE(By,XyM,D)

COMMON /MTRCES/ A{261,261)

COMMON  /ARRAYS/ QQQ(902),C1261),IND(26)
DIMENSION BI(M),X(M)yD(M)

AMAX=0,0

DO 2 I=1,M

IND(1)=]

IF{ABS (A(1,1))~AMAX)2,2,3
AMAX=ABS (A(I,1))

[u=]

CONTINUE

MMM~

00 111 J=l,MM

TF(Tu=9)6,06,4
ISTO=IND(J)
IND(JI=IND(IN)
INDI [W)=[STO

DO 5 K=1,M
STO=A(IU,K)
ALTU,K)=A(J,K)
AlJyK)=STO

CONT INUE

AMAX=0,0

JIsJg+|

DO 11 I=J1,M
Al1,4)=A{1,J)/A04,0)
DO 10 K=J1,M
ALTeKISACT KI=A(T,J)RA(JyK)
IF (K=d41) 14, 04,100
{F(ABS (A{I+K})-AMAX)1Q,10,17
AMAX=ABS (A(I,K))
{us]

CONT INUE

CONT INUE

CONTINUE

DO 140 [1=],MM
l[aMei-11

12s1-]

DO 41 Jl=1,12
Jel2+1-41

J2=g+1

Wis-Al1,4)
IF{12-02)141,43,43
00 42 K=J2,12
WisW1-A(KyJ)®C(K)
CONT INUE

Cldy=wl

CONT INUE

D0 40 K=1,12
All.K)aC(K)

CONT INUE

CONTINUE

DO 150 11=1,M
=M+ 1-11)

[2=]+)

W=All,1)

DO 56 J=1,Mm

IF (1-0152453,54

30

MBO1AD03
MBO1A004
MBOtAQOS
MBO1A006
MBO1A0O7
MB0tA008
MBO1A009
MBO1ACQ YO
MBO1AOYE

MBO1AD Y12
MBO1AQ13
MBOV1AOTH
MBO1A015
MBO1AO16
MBO1AO017
MBO1AO 18
MBO1AO19
mMB014020
MB014A02!
MBO 14022
MB80O1A023
MBO 1AG24
MBO1A025
MBO1AG26
MBO1AL27
MBOVAO28
MBO 14029
MB0O1A030
MBOYAD 31
MBO1A032
MBO1A013
MBO1AO3Y
MBO 1A035
MBO1A036
MBO1A037
MB801a038
MBOTAQ39
MBO 1A040
MBO1AOUT
MBOYAQL2
MBOV1AOM3
MBO1AOLY
MBOJAOMS
MBOVAOMS
MBO1AONT
MBOYAOUB
MBO1AOLY
MBO1A0S0
MBO1A0S1
MBO1A0S52
MBO1A0S53
MBO1AOSK
MBO1AOSS
MBO1ADS6

~




52
53
Su

58
156
56

50
150

83
61

62

60

64

67

66
68

OO0 -

[a X aNaKala

420

430
440
450
ush

455
460

462

Wbl
470
urs

480

Wi=0.0

GO T0 55

Wi=1,0

GO T0 55

Wisall. )
IF{11=-0)156,156,57
DO 58 K=12,M
WiaW1=A(T4K)eA(Ky )
CONTINUE

Cly)=wl

CONT INUE

00 50 Jsl,M
A(1yJ)=ClI) /W

CONT INUVE

CONT INUE

00 60 I=1,M
IFLINDLIN-1161,6040!0
JsIND( 1) i

00 62 K=1,M
STO=A(K, 1)
AlKy1)=A(K,J)
AlKyJ)=STO

CONT INVE
ISTO=IND{J)
IND{ ) =)
IND{1)=1STO

GO TO 63

CONT INVE

D0 66 J=i,yM

STO=0.

DO 67 I=1,M :
STO=STO+A(T,J)eB( ]}
CONT INUE

X{J)=2STO
O(J)=A(dd)

CONT INUE

RETURN

€ND

MBO 1AOS7
MBO 1ALSB
MBO1A0SY
MBO A0S0
MBO1AGS Y
MBO 1AUS2
MB014063
MBO1AQLY
MBO1A065
MBO1A066
MBO 1ACGT
MBOIADGS
MBO1A069
MBO1A070
MBOIAOT
MBOT1AOT2
MBO1AD73
MBO1AOTY
MBO1AOTS
MBO1AOTS
MBOIAOTT
MBO1AQT78
MBO1A079
MBO1A080
MBO 14081
MBO1AQ82
MBO1A0B3
MBO1ADBY

SUBTYPE+FORTRAN, LMAP,LSTRAP
LSMF OUTPUT PRINT ROUTINE

(X221 Z 2222222322222 222

WITH 1

THIS ROUTINE COMPUTES AND PRINTS OUT THE MATRIX OF RESIDUALS OF MAGNITUDES P
ALL STATIONS

2) EVENTS IN SETS OF TEN (10)

N.B. THE TRUE RESIDUALS ARE PRINTED OUT
BUT WEIGHTED RESIDUALS ARE RETURNED TO LSMF

SUBROUTINE OUTPUT
COMMON .

DATE,HEAD(9) 4 NUM(60) yANT(60) yNINRyDISK,

1 XMEANCLMyVARM,RSQD+RBARy ISTAN,STAN

COMMON  /MTRCES/
COMMON  /ARRAYS/
COMMON . /CODES/

INTEGER DISK
CATA ANUM{BHEVENT
J=0

J=J+10
NB=J=-9

A(261,261)4B(261),
X1261),Y(60)
STN{200) , SNAME ,NST,

P160,200)
EVENT(60),ECODE,NBT

Ve STAR{BHe Yy BLANK(8M )

IF(J-NBTIUUO, k4O, 430

J=NeT
LINE=UO
00 490 NS=1,NST

JF(LINE-U40) 460,450,150

LINEs=Q i

PRINT 4SL, HEADyDATE,(ANUMJNUM{1),1sNByJ)

FORMATUSSHITABLE 3
1 948/ 113X, 6HDATE

MATRIX OF RESIDUALS OF MAGNITUDES
1AB/

2 9H  STATION,UX,AS, 13,9(4X¢A5,13))

PRINT 455, (EVENT(1)

1 1=NB,J)

FORMAT( 13Xy AB,9{lX,AB8))

0O 4TO 1=NByJ .

IF(P{1,NS)-1000.)46k,462,46U4

ANT(1)=BLANK
PLIyNS)=0,
GO TO 470
AWT ( | )=STAR

PLTINS)sPLTIoNS)=X(NS)=Y(1)-XMEAN

CONTINUE

PRINT 475, NSySTNINS) s (PIT NS) +AWTI1)I=NB,J)
FORMAT( 1X,13,2X,A64F8.5,A1,9(3X,FB.5,AT))

LINEsL INE+]

DO 480 1=NB,J
INST=[+NST
PLIANS)=PLT4NS)e
CONTINUVE

A{INST4NS))

31




490

OO0«

310
315

320
325

330
340

3uS

OO0~

350

360
365

370
375

380

420

430
440

us0
Sy

CONT INUE
IF(J.NE.NBT) GO TO W20
RETURN
END
SUBTYPE, FORTRAN,LMAP,L STRAP
LSMF TABLE PRINT SUBROUTINE

S0000SR000GRNIRRNRENARREN S
THIS SUBROUTINE PRINTS OUT TABLES OF STATION AND EVENT CORRECTIONS

THE NUMBER, 95 PERCENT CONFIDENCE LIMITS, AND VARIANCE
ARE PRINTED OQUT FOR EACH NUMBER

SUBROUT INE TABLE

COMMON DATE +HEAD (9) yNUMI60) ,ANT(60) Ny NRDISK,
1 XMEAN,CLMy VARM,RSQDRBAR, ISTAN,STAN
COMMON /MTRCES/ A1261,261}),8(261), P(60,200)

COMMON  /ARRAYS/ X{261),Y(60)NRS{200),NRB(60),0(261),

1 CLX1261),CLY(60),VARX(2461),VARY(60}
COMMON  /CODES/ STN(200), SNAME {NSTy, EVENT(60) +£COULE,NHT
COMMON  /STUDT/ ST(57),T,LDF,NOF

INTEGER DISK

CATA STAR(BH wee )y BLANK(BH }

PRINT OUT STATION CORRECTION
LINE=40
DO 350 NS=1,NST
IF(LINE~-40) 320,310,310

LINE=O

PRINT 315, HEAD4DATE

FORMAT {55HITABLE M4.1 STATION CORRECTIONS '
1 9AB/ 113X, 6HDATE A8/
2 1194  STATION COMPUTED NUMBER 95 PERCENT
3 VARIANCE
4 119H VALUE IN ROW CONFIDENCE LIMITS
S )
IF(NS-I1STAN) 330, 325,330

DIAG=STAR

GO TO 340

OIAG=BLANK

PRINT 3459 NS»STHINS) 4X{NS)sDIAGINRSINS)yCLXINS), VARXINS)
FORMAT (1X, 134 2XA516%1F6.3,A6,15,6X,3H4/~,FB.5,6XyF8.6)
LINE=L INE+]

CONT INVE

PRINT OUT EVENT CORRECTION
LINE=ULO
00 380 NB=x1,NBT
IF(LINE-40) 370,360,360

LINE=0

PRINT 365, HEAD,DATE

FORMAT(S55HITABLE 4.2 BEST ESTIMATE OF MAGNITUODES '
1 9AB/ 113X, 6HDATE ,AB/

2 119H  EVENT COMPUTED NUMBER 95 PERCENT

3 VARIANCE /
4 119+ ) VALUE IN COL. CONFIDEMCE LIMITS
5 )

PRINT 375, NBEVENTINB),Y(NB)sNRB{NB) CLY{(NB)VARY{NB)
FORMAT{ I1Xp1292X A8y WX Fbe346Xy15, 6X,3H0/-,F8.5.6X.F8.6)
LINEsLINE#]

CONT INUE

RETURN
END
SUBTYPE,FORTRAN)LMAP L STRAP
LSMF TRIANGULAR MATRIX PRINT ROUTINE

(IE XA RSS2SR RS R222 X2 2 X2 222 )

PRINTS THE LOWER TRIANGULAR MATRIX (P) IN SETS OF 5 EVENTS
FOR ALL EVENTS FROM THL START OF THE SET

SUBROUTINE TRIANG

COMMON DATEsHEAD(9) 4 NUM(60) »ANT60)

COMMON /MTRCES/ A{261,261),B(261), P(60,200)

COMMON  /ARRAYS/ X(261),Y(60)

COMMON /CODES/ STN(200), SNAMENST, EVENT(60),ECODEJNBT
DATA  ANUM{ BHEVENT ) '

J=0

J=J+5

MNB=J-4

[F(J-NBTILUO, 440, 430

J=NBT

LINEsUO

DO 490 NA=MbyNBT

IF(LINE-B0YUS0,450,u50

LINE=0

PRINT U454, HEAD DATE, (ANUM,NUM{1), [=Nk,J)
FORMATISSHITABLE & MATRIX OF DIFFERENCES OF MAGNITUDES
! 9A8/113x, 6HDATE 4AB/ 52




u55
460

470
482

L1 T
u8s

T

2 9H

EVENT
PRINT LS55,

FORMAT( 17Xy AB, L 15X, A8))

DO 470 1=NB,J

ANT{1)=Y(NAY-Y{])

CONTINUE

IF{NA-J)UB82,u482,484

NC=NA
PRINT 489,

LINEsLINE+]
CONT INUE
IF(J.NEJHBT)
RETURN

END

SUBTYPE, DATA
12.70 4.30 3.18 2.78 2.57

GO TO K20

2 BXGAS TSy i 152,A5,17))
(EVENTETN W I=NR v J)

+/=4FT7.51)

MAYEVENTINA) » (AWTUL) 9P U] o NA) o 1=NBNC)
FORMAT U IX, [242X4 AR, S5(F11.5,5H

2,45 2436 2.31 2,26 2.23 2.20

2012 2411 2410 2,09 24,09 2.08 2,07 2.07 2.06 2,06 2.06
2.02 2.0t 2,00 2,00 1.99 1.99 1.99 1,98 1,98 1,98 1.98
Vo097 1297 1,97 1,97 1.727 1,97 1,97 1.97 1.96 1,96 1.96
START 408 .
RUSSIAN LOG AMPLITUDE A/T K1 ONLY 12701766
STU STUTTGART# GERMANY 48 U6 15.0M 9 16
802 BOZEMANe MONTANA 45 36 00.0N V1Y 38
SCP STATE COLLEGEs PEMMSYLVANIA B0 48 35.5N 77 52
PRE PRETOR]IAe SOUTH AFRICA 25 45 00.0S 28 15
NUR NURMIJARV]# F INLAND 60 30 32.4N 24 39
NALl NAIROBI# KENYA ) 16 26.2S 36 48
MAN MANILA» PHIL IPP INES ‘4 4C 00.0N 121 05
KON KONCSHBERGs NORWAY 59 38 5T.0N 9 37
KEV KEVQe FINLAND 69 45 21.2N 2T 00
IST ISTANBULe TURKEY 41 02 36.0N 28 59
GOL GOLDENe COLORADO 39 42 01.0N 105 22
GEO GEORGETOWNSe WASHINGTON DC 38 5% 00.0N 77 04
FLO FLORISSANTs MISSOUR] 38 48 06.0N 90 22
DAL DALLAS» TEXAS 32 50 4L6.0N 96 47
COL COLLEGE OUTPOST ALASKA 64 Sk 00,0N Y47 u7
BUL BULAWAYOe RHODESI A 20 08 36.0S 28 36
ALQ ALBUQUERQUE NEW MEXICO 34 56 30.0N 106 27
SHI SHIRAZ» IRAM 29 38 u0.2N 52 31
AAM ANN ARBORs MICHIGAN 42 17 59.0N 83 39
MUN  MUNDARING# AUSTRAL 1A 31 58 30.08 116 12
BAG BAGUIO CITYw PHILIPPINES 16 24 39.0N 120 34
NOR NORCe GREENLAND 81 36 Q0.0N 16 41
ATL ATLANTAs GEORGIA 33 26 00.0N 84 20
MAL MALAGAe SPAIN 36 43 39.0N 424
TOL TOLEDO# SPAIN 39 52 53.0N » 02
ESK ESKDALEMUIR® SCOTLAND 55 19 00.0N 3 12
TRI TRIESTEw ITALY 45 42 32.0N 13 45
COP COPENHAGEN® DENMARK 55 41 00.0N 12 26
BLA BLACKSBURG# VIRGINIA 37 12 40,0N 80 25
ATU ATHENS UNIV.# GREECE 37 58 22.0N 23 43
AKU  AKUREYRI» ICELAND 65 41 12.0N 18 06
KOD KODAIKAMAL# INDIA 10 1% 00.0N 77 28
LON LONGMIRE® WASHINGTON 46 45 00.ON 121 u8
NDI NEW DELHI# INDIA 28 41 00.ON 77 13
POO POONAw INDIA 18 32 00.0N 73 51
SEO0 SEOUL# KOREA 37 34 00.ON 126 S8
WIN WINCHOEK® SOUTH AFRICA 22 34 00.0S 17 06
COR CORVALLIS#» ORCGON 4y 35 08B.6N 123 18
PEL PELCEMUESs CHILE 33 08 37.0S 70 W
ANT ANTOFAGASTAw CHILE 23 42 18.0S 70 24
ARE AREQUIPAw PERU 16 27 43.5S 71 29
LPB LA PAL» goLIVIA 16 31 57.6S 68 05
RCD RAPID CITYe SOUTH DAKOTA hh O4% 30.0N 103 12
TAU TASMANIA UNIV.# TASMANIA 42 54 35.7S 147 19
MNN  MINNEAPOLIS» MINNESOTA 4u 5S4 52.0N 93 11
PMG PORT MORESBY# NEW GUINEA 9 24 33,08 147 09
AQU AQUILA# ITALY 42 21 14,.0N 13 24
BKS BYERLY» CALIFORNTA 37 52 36.0N 122 14
GOH GODHAVN® GREENLAND 69 15 00.0N 53 32
CHG CHIENGMAI» THAILAND 18 47 24.0M 98 58
CTA CHARTERS TOWERS#AUSTRALIA 20 05 18,08 146 15
QUE QUETTA# PAKISTAN 30 11 18.0N 66 57
KTG KAP TOBIN= GREENLAND 70 25 00.0N 21 59
END STATIONS
R115036u
R1160564
R1190764
R1161164
R1040265
R1030365
R1110565
END EVENTS
STU R1030365 2.20
STU  R1150364 2.30
STU R1160U56M 2.20
STU R1190T64 2,00
STU RUIS1164 2430
STU RICu0265 2421

33

2.18
2405
1.98
1.96

1.98

Wh$SS
36.0E
00.0W
09.8wW
00.0€
05.1¢€
13.2¢
00.0E
55.0E
45. 1t
06.0E
16.0W
00.0W
12.0W
02.0m
36.0W
48.0E
30.0W
34.0E
22.0w
24, 0E
47.0¢t
00.0¥
15.0mW

40.0W
$5.0w
18.0W
51.0€
00.0E
14.0W
00.0€
24. 0N
00.0E
36.0W
00.0€&
00.0E
00.0E
00.0E
11.5wW
07.0¥
55.0¢
28.6¥¢
She W
30.0¥
13.5€
24.0W
14,0€
11.0E
06.0M
00.0W
37.0E
16.0E
00.0E
00.0M

2.16 2,14 2,13
2.05 2,05 2,04

1.97 1.97



802
801
801
801
801
801
scP
scp
PRE
PRE
PRE
PRE
PRE
NUR
NUR
NUR
NAL
NA I
NAL
NAT
MAN
MAN
MAN
MAN
MAN
KON
KON
KON
KEV
KEV
ISV
157
IST
Is7
IST
GOL
GOL
GOL
GOL
GOL
GEO
GEO
FLO
FLO
FLO

DAL
DAL
cot
coL
CcoL
cot
coL
coL
BuUL
suL
BUL
BUL
BUL
BUL
ALQ
ALQ
ALQ
ALQ
SHI
SHI
SHI
SHI
SHI
AAM
AAM
AAM
AAM
MUN
MUN
MUN
BAG
BAG
BAG
NOR
NOR
ATL
ATL
MAL
MAL
MAL
TOL
ToL
TOL
ESK
ESK

R1030365
R115036u
R1160564
R1190764
RIV61164
R1110565
R1150364
R116116L
R1030365
R1150364
R1160564
R11907684
LSBT 3N Y]
RY150364
R1160564
R1190764
R1030365
R1150364
R1160564
R10L0265
R1030365
R1150364
R1190764
RI161164
RI040265
R1030365
R1160564
R1110565
R1150364
R1160564
R1030365
R1150364
R1160564
R1190764
R1V6TIG6L
R1030365
R1150364
R1160564
R119076Y4
R1V61164
R1150364
R1160564
R1150364
R1160564
R1161164

RY150364
RI16) 164
R1030365
R1150364
R1160564
RI190764
RI161164
R1110565
k1030365
RY15034M4
R11460564
R1190764
RI16)164
RI0U0265
R1030365
R1150364
R116056u
R1190764
R1030365
R1160564
R1190764
RIY61164
R1110565
R1030365
R1160564
R1190764
RI116V16L
R116056Y4
R1190764
R11461164
R1150364
R1160564
RY190T64
R1190764
R1161164
R1160564
R1161164
R116056M
R1190764
R116V164
R1160564
R119076U4
RI161164
R1030365
R1160564

1.58
1.70
1.70
1.5
1.76
0.78
1,30
1.60
1.19
1.08
1.00
0.80
1.1
1.60
1.70
1.50
1.58
1.30
1.40
1.30
2.09
2.20
2,00
2.20
2.20
1.67
1.90
1.00
1.70
1.60
1,62
1.80
1.70
1.70
1.84
1.18
1.08
1.08
0.90
1.36
1.20
1.30
1.08
1.08
1.23

1.08
Tell
1.85
1.90
2.00
1.80
1.97
1.18
1.30
1.50
1.50
1ol
V.37
.48
0.70
0.90
0.90
0.80
1.81
1.90
1.80
1.9
0.81
1.30
1.50
1.56
1.55
1.50
1.40
1.53
1.77
1.80
1.60
1.73
t.73
1,08
1415
1.80
1.60
1.74
2.09
1,99
2.00
1.23
2.00

kL



ESK
ESK
TRI
TR
cop
cop
BL A
ATU
ATU
AK U
AK U
KOD
KOD
LON
LON
LON
ND I
NI
POO
POO
POO
SEO
WIN
COR
PEL
ANT
ANT
ARE
LPH
RCD
TAU
MN N
PMG
PMG
PMG
PMG
AQU
BK S
GDH
CHG
CTA
QUE
KTG
END

RIT6TT164
R1T1U565
R116056M4
R1190T6U
R11907 64
R1040265
R1161164
R10DUWOD265
R1101164
R1G3U365
R1161164
R1030365
R1I16114N
R1030365
R1161164
R1110565
R1110565
R10303%65
R1030365
R1161164
R10UG265
R1161164L
RY1146114h
R1161164
R1161164
R10LGL26D
R1030365
R1CG30365
R11611604L
R1D030365
K116116M0
R1161160
R10L0265
R1030365
R1150364
R1161164
RI1161164
R1161164
R10u40265
R10303%65
R103046H
R10303%365
R1030365

MAGNITUDES

tMD JOB

].9]
0.9V
1.60
1.70
1.70
2.06
1.18
1.90
1.7¢
1.9G
1.95
1.L2
1.94

«53
lo()i)
0.81
1.84
2.71
,060
1.60
1.70
1.34
1.30
1.95
1.40
1.52
148
0.96
0.60
1.30
1.30
2.11
1.82
1.60
1.68
1.78
1.48
1.55
1.72
1.70
1.23
2.06
1.50

35
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