UNCLASSIFIED

United Kingdom Atomic Energy Authority

ATOMIC WEAPONS RESEARCH ESTABLISHMENT

AWRE REPORT NO. 0-54/66

A Special Purpose Least Squares Program

A. Douglas

Recommended for issue by

H. I. S. Thirlaway, Group Leader

Approved by

K. D. Bomford, Deputy Chief of Applied Physics

C13

550.34:519.281 519.281:550.34 681.3:550.34 623.454.8

TABLE OF CONTENTS

		PAGE
	SUMMARY	3
1.	INTRODUCTION	. 3
2.	THE MODEL	4
3.	THE ANALYSIS OF VARIANCE APPROACH	5
4.	THE METHOD OF LEAST SQUARES	5
5.	CONFIDENCE LIMITS	11
6.	WEIGHTING	14
7.	THE PROGRAM	14
	APPENDIX A: MATRICES AND MATRIX INVERSION	18
	APPENDIX B: SOME STATISTICAL CONCEPTS AND PROOFS	22
	APPENDIX C: PROGRAM LISTING	24

SUMMARY

The relative size, M(I,J), of the seismic signal recorded at station I from the Jth explosion at a particular firing site is assumed to be given by the equation

$$M(I,J) = B(J) + S(I) + \varepsilon(I,J),$$

where B(J) depends on the size of the explosion and S(I) is a station term dependent mainly on the distance of the Ith station from the firing site. M(I,J) is measured from seismic records and will usually be in error; $\varepsilon(I,J)$ is the error term.

A least squares program is described for estimating: (1) B(J) and S(I), (2) the confidence limits on these quantities, and (3) the differences, and confidence limits on the differences, between all possible pairs of B(J).

Although written for a specific purpose the method is general and can be used to estimate any quantities that can be expressed as equations of the above type.

1. INTRODUCTION

A seismic event radiates elastic waves through the body of the earth. The relative amplitude of these waves as measured at distant recording stations will be determined by two main effects: (1) the size of the event, and (2) the distance of the recording station from the event. The recording instruments and the geology of the recording station and firing site will also have an effect but for explosions from the same firing site these effects will be constant.

If M(I,J) is a measure of the size of the signal (defined as proportional to the log of the measured amplitude) for the Jth explosion at the Ith station, M(I,J) is given by the equation

$$M(I,J) = B(J) + S(I) + \epsilon (I,J),$$
(1)

where B(J) depends on the seismic size of the explosion and S(I) is a station term dependent mainly on the distance of the Ith station from the firing site, but including any effects due to recording instruments and geology of the recording station. M(I,J) is measured from seismic records and will usually be in error; ε (I,J) is the error term.

The problem is to estimate (1) B(J) and S(I) (none of which are known), (2) the confidence limits of these quantities, and (3) the differences, and confidence limits on the differences, between the explosion terms. This report describes a computer program for solving this problem by least squares. The program was written by Mr. J. B. Young and is currently in use at Blacknest; it has been given the name LSMF - Least Squares Matrix Factorisation - for historical reasons. The program has developed from others designed to solve the same problem; all these have been titled LSMF. This name has therefore been retained even though "least squares matrix factorisation" is not a very informative title.

2. THE MODEL

Consider t explosions (fired at one test site) and r recording stations. For every station that records one of these explosions there will be an equation of type (1). If all stations record all explosions this results in rt equations. The system is apparently over-determined as there are only r + t unknowns; this however is not so. Each equation only defines S(I) + B(J); there are no equations relating two or more station terms or two or more explosion terms. There is then no unique solution; whatever value is given to one station term, S(K) say, can be allowed for by adjustments to each of the remaining S(I) and B(J) - equation (1) can always be satisfied.

Further assumptions must then be made. The simplest of these is to give one station term a fixed value. As only the relative size of S(I) and B(J) are really important, M(I,J) being a relative value, this would be acceptable except that confidence limits cannot be determined for the S(I) that is assigned the particular value.

To overcome this difficulty equation (1) is rewritten as

$$M(I,J) = B(J) + S(I) + MBAR + \varepsilon(I,J), \qquad \dots (2)$$

where MBAR is a constant. As M(I,J) is a purely relative value, the addition of this constant does not materially affect the model. The further assumption is now made that $\sum_{J} B(J) = 0$ and $\sum_{I} S(I) = 0$. MBAR can be thought of as the size of the average explosion at the average station; B(J) and S(I) then become corrections to this average for the particular explosion J and station I.

If it is assumed that the errors $\epsilon(I,J)$ are normally distributed with zero mean and variance σ^2 , this model is the same as the widely used analysis of variance model.

3. THE ANALYSIS OF VARIANCE APPROACH

The model described above is simply that of a two way analysis of variance. The data displayed in the usual analysis of variance table are:-

	¹ B(1)	B(2)	B(t)
S(1)	M(1,1)	M(1,2)	M(1,t)
S(2)	M(2,1)	M(2,2)	M(2,t)
S(3)	•		
•	•		•
S(r)	M(r,1)		M(r,t)

Now as $\Sigma(I)=0$ and $\Sigma(I)=0$ and the expectation of $\varepsilon(I,J)=0$, the average of each column is an estimate of B(J) and the average of each row is an estimate of S(I). The mean value over all M(I,J) gives the value of MBAR. Substituting for S(I), B(J) and MBAR in equation (2) gives the errors $\varepsilon(I,J)$; from these errors σ^2 can be estimated and hence the confidence limits obtained.

Unfortunately this method cannot be applied directly because not all M(I,J) are known - stations of low sensitivity fail to record the smaller events and some records are simply not available. The method of least squares however does not require that all M(I,J) be known.

4. THE METHOD OF LEAST SQUARES

Consider the equation

$$y = a_1 x_1 + a_2 x_2 + a_3 x_3 + a_4 x_4 + \dots a_n x_n, \dots (3)$$

where x_1x_n are independant variables; a_1 , a_2 , a_3 a_n are unknown coefficients, called the regression coefficients, and y is the dependent variable determined experimentally. Ideally a_1 , a_2 a_n can be found simply by observing n values of y for different values of the independent variables and solving the resulting equations.

Usually, however, the measured value of y will be in error and the problem becomes one of estimating the most probable values of a_1 , $a_2 \ldots a_n$ given m > n values of y. This can be done using the principle of least squares which states: if ϵ_1 , $\epsilon_2 \ldots \epsilon_n$ are the errors in m

different equations of type (3) the most probable values of a_1 , a_2 , a_3 a_n can be found by making $\epsilon_1^2 + \epsilon_2^2 + \dots + \epsilon_m^2$ (i.e., the sum of the squared errors) a minimum,

or $\frac{\delta \sum_{i=1}^{m} \epsilon_{i}^{2}}{\delta a_{j}} = 0$ for j = 1, n.

If n = 2 and x_1 is held constant at 1 the problem reduces to the familiar fitting of the "best" straight line.

Suppose that the m equations of type (3) are as follows:-

$$y_{1} - a_{1}x_{11} + a_{2}x_{12} + a_{3}x_{13} + \dots + a_{n}x_{1n} + \epsilon_{1}$$

$$y_2 = a_1 x_1 + a_2 x_2 + a_3 x_3 + \dots a_n x_{2n} + \epsilon_2$$

$$y_m = a_1 x_{m_1} + a_2 x_{m_2} + a_3 x_{m_3} + \cdots + a_n x_{m_n} + \varepsilon_m$$

These equations are called the equations of condition.

Now
$$\sum_{i} \varepsilon_{i}^{2} = (a_{1}x_{11} + a_{2}x_{12} + a_{3}x_{13} + \dots a_{n}x_{1n} - y_{1})^{2}$$

$$+ (a_1 x_{21} + a_2 x_{22} + \dots a_n x_{2n} - y_2)^2$$

+
$$(a_1 x_{m_1} + a_2 x_{m_2} + a_3 x_{m_3} + \dots + a_n x_{m_n} - y_m)^2$$

and
$$\frac{\partial \sum \epsilon_{i}^{2}}{\partial a_{i}} = 2\{(x_{11}x_{11} + x_{21}x_{21} + x_{31}x_{31} + \dots x_{m_{1}}x_{m_{1}})a_{1}\}$$

+
$$(x_{11}x_{12} + x_{21}x_{22} + \dots x_{m_1}x_{m_2})a_2$$

+
$$(x_{11}x_{1n} + x_{21}x_{2n} + \dots x_{m1}x_{mn})a_n$$

-
$$(x_{11}y_1 + x_{21}y_2 + \dots x_{m_1}y_m)$$

For the best estimate of a $\frac{\partial \Sigma \epsilon_{i}^{2}}{\partial a} = 0$,

i.e.,
$$a_{1} \sum_{i} (x_{i1})^{2} + a_{2} \sum_{i} x_{i1} x_{i2} + \dots + a_{n} \sum_{i} x_{i1} x_{in} = \sum_{i} x_{i1} y_{i}$$
. ...(4)

The process of deriving equation (4) is equivalent to multiplying each equation of condition by its own coefficient of a_j ; the coefficient of a_j in equation (4) is then the sum of the coefficients of a_j in these new equations. Similar equations are obtained (equivalent to equating $\frac{\partial \sum_{i=1}^{2}}{\partial a_{i}}$ to zero for j=2,n) by multiplying each equation of condition by its own coefficient of a_j and summing coefficients. This produces n_j equations,

called the normal equations, with n unknowns. In matrix form the normal equations are

or XA = Y; the X matrix being symmetrical about the diagonal.

The normal equations can usually be solved uniquely. Any of the usual methods can be used, but one method, matrix inversion, has advantages if the confidence limits of the unknowns are required. Matrix inversion is therefore used in the LSMF program.

If the inverse of matrix X is the matrix C

X and C are related by the equation

$$\begin{bmatrix} x_{11} & x_{1j} & x_{1n} & x_{1n} \\ x_{21} & x_{22} & x_{22} & x_{22} \\ x_{21} & x_{22} & x_{22} & x_{22} \\ x_{22} & x_{22} & x_{22} &$$

The elements of the inverse matrix can be found by expanding to give a series of linear equations.

Thus, the result of multiplying the X matrix by the vth row of the inverse matrix (see also Appendix A) is

Solving this set of equations for c_{v1} , c_{v2} , c_{vn} gives the elements of the vth row of the inverse matrix.

Multiplying equation (5) by C gives

or
$$\begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}$$
 = $\begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & \cdots & \cdots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ c_{n_1} & \cdots & c_{n_n} \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$ (8)

each of the elements of the matrix can then be evaluated as both C and Y are known. The part played by the inverse matrix in determining the confidence limits will be discussed in the next section.

Equation (2) can be put in a form similar to equation (3) as follows:-

$$M(I,J) = 1 \text{ MBAR} + 0 S(1) + \dots 1 S(I) + \dots 0 S(r) + 0 B(1) + \dots 1 B(J) + \dots 0 B(t) + \varepsilon(I,J),$$

M(I,J) is now equivalent to y, the dependent variable, MBAR to a_1 , S(I) and B(J) to the remaining a's up to a_n and the independent variables are all either 1 to 0.

To include the assumptions $\sum_{I}^{r} S(I) = 0$ and $\sum_{J}^{t} B(J) = 0$ two further equations of conditions have to be added:

$$0 = 0 \text{ MBAR} + 1 \text{ S}(1) + 1 \text{ S}(2) + \dots 1 \text{ S}(1) + \dots 1 \text{ S}(r)$$

+ $0 \text{ B}(1) + \dots 0 \text{ B}(J) \dots + 0 \text{ B}(t)$

and

$$0 = 0 \text{ MBAR} + 0 S(1) + 0 S(2) + \dots 0 S(J) + \dots 0 S(r)$$

+ 1 B(1) + \dots 1 B(J) \dots 1 B(t).

Using these equations of condition the normal equations can be derived in exactly the same way as described above.

As an example consider the following set of equations of condition:

1001001	S(1)	2.0
0 1 0 1 0 0 1	S(2)	3.0
0 0 1 1 0 0 1	S(3)	4.0
1000101	B(1)	= 4.0
0 0 1 0 1 0 1	B(2)	4.0
1000011	B(3)	4.0
0 1 0 0 0 1 1	MBAR	5.0
0010011		7.0
0001110		0.0
1 1 1 0 0 0 0		0.0

In this example it is assumed that station S(2) did not record explosion B(2).

Multiplying each equation of condition by its own coefficient of S(1) and summing coefficients gives the first normal equation

$$4 S(1) + S(2) + 1 S(3) + 1 B(1) + 1 B(2) + 1 B(3) + 3 MBAR = 10.0.$$

Multiplying each equation of condition by its own coefficient of S(2) and summing gives

$$1 S(1) + 3 S(2) + 1 S(3) + 1 B(1) + 0 B(2) + 1 B(3) + 2 MBAR = 8.00.$$

Similar normal equations can be obtained for S(3), B(1), B(2), B(3) and MBAR.

In matrix form the equations are

4 1 1 . 1 1 1 . 3	S(1)	10.0	
1 3 1 . 1 0 1 . 2	S(2)	8.0	
1 1 4 . 1 1 1 . 3	S(3)	15.0	/9 \
		. =	(9)
1 1 1 . 4 1 1 . 3	B(1)	9.0	
101.131.2	B(2)	8.0	
1 1 1 . 1 1 4 . 3	B(3)	16.0	
3 2 3 3 2 3 . 8	MBAR	33.0	

A series of linear equations has a unique solution if the determinant of the coefficients of the unknowns is not zero. The determinant of the matrix of coefficients in equation (9) is non-zero, but if equation (1) is

used as the model it can easily be shown that the determinant of coefficients is zero. Thus, the normal equations now become

[3	3	0	0	1	1	1	S(1)	10.0
)	2	0	1	0	1	S(2)	8.0
C)	0	3	1	1	1	S(3)	15.0
1		1	1	3	0	0	B(1)	9.0
1		0	1	О	2	0	B(2)	8.0
		1	1	0	0	3	B(3)	16.0

Adding row 2 and 3 to row 1 and rows 5 and 6 to row 4 makes the new rows 1 and 4 identical. Subtracting row 4 from row 1 makes all row 1 zero; hence the determinant is zero. This is true of any matrix based on equation (1).

5. CONFIDENCE LIMITS

Estimates of the regression coefficients can be found by solving the normal equations. As a measure of the reliability of these estimates it is useful to compute the limits, called confidence limits, of the range within which the true value of the regression coefficients can be expected to lie with a given probability. The smaller this range turns out to be the more reliable are the estimates.

Consider the simple case of a random variable normally distributed with variance σ^2 and mean ξ , then it is easily shown that any item picked at random from such a population will lie between $\xi + 1.96\sigma$ and $\xi - 1.96\sigma$ (or in words within roughly two standard deviations of the mean) with a 95% probability, i.e., 19 times in 20.

Confidence limits are arrived at in a similar way; the main difference is that ξ and σ are not known and have to be estimated.

The estimates of the regression coefficients are analogous to the mean in the above simple example. To estimate the variance requires a more detailed study of equation (8). Expanding equation (8)

$$a_{1} = c_{11} \sum_{i}^{m} x_{i_{1}} y_{i} + c_{12} \sum_{i}^{m} x_{i_{2}} y_{i} + \cdots + c_{1n} \sum_{i}^{m} x_{i_{n}} y_{i}$$

$$a_{2} = c_{21} \sum_{i}^{m} x_{i_{1}} y_{i} + c_{22} \sum_{i}^{m} x_{i_{2}} y_{i} + \cdots + c_{2n} \sum_{i}^{m} x_{i_{n}} y_{i}$$

$$\vdots$$

$$a_{v} = c_{v_{1}} \sum_{i}^{m} x_{i_{1}} y_{i} + c_{v_{2}} \sum_{i}^{m} x_{i_{2}} y_{i} + \cdots + c_{v_{n}} \sum_{i}^{m} x_{i_{n}} y_{i} +$$

Now the quantity in square brackets in equation (11) is solely a function of the independent variables and can be represented by a single quantity, say $k_{\rm vi}$.

Then

$$a_{v} = \sum_{i}^{m} y_{i} k_{vi}$$

and (using equation (B3), Appendix B)

$$V \left[a_{\nu}\right] = \sum_{i}^{m} k_{\nu i}^{2} V \left[y_{i}\right] = \sigma^{2} \sum_{j}^{m} k_{\nu i}^{2},$$

where $V[a_y]$ is understood to mean the variance of a_y and σ^2 is the variance of y_i , i.e., the variance of the errors ε_i . It can also be shown that, because a_y is a linear function of y_i which is normally distributed, a_y will also be normally distributed [1].

Now σ^2 is not known, so V [a_v] cannot be determined. An estimate of σ^2 , s² say, can however be obtained. Thus,

$$s^2 = \frac{\sum (\epsilon_{i'})^2}{m - n},$$

where m is the number of equations of condition and n is the number of

^{1.} K. A. Brownlee: (1965) "Statistical Theory and Methodology in Science and Engineering". John Wiley and Sons Incorporated, New York.

unknowns (regression coefficients). The quantity m - n is called the number of degrees of freedom. An estimate of the errors ϵ_i' is obtained by substituting the regression coefficients in the equations of condition.

As a_v is normally distributed with variance $s^2 \sum_{i=1}^{m} k^2$, the 95% confidence limits should then be $a_v \pm 1.96 \sqrt{s^2 \sum_{i=1}^{m} k^2}$. This is only true if the degrees of freedom D is very large. For small D, s^2 is a less reliable estimate of σ^2 ; to allow for this the confidence limits become $a_v \pm t \sqrt{\frac{m}{s^2 \sum_{i=1}^{m} k^2}}$, where t (called Students t) depends on the degrees of freedom

i vi
and is > 1.96. (Tables of Students t for various degrees of freedom and level of probability are given in most books on statistics.)

To determine the confidence limits $\sum_{i}^{\infty} k^2$ must be evaluated. At i vi first sight this appears a formidable task; it can however be shown that m $\sum_{i}^{\infty} k^2$ is simply $c_{\nu\nu}$; the vth diagonal element in the inverted matrix.

This can be demonstrated as follows:-

$$\sum_{i}^{m} k_{vi}^{2} = \sum_{i}^{m} k_{vi}k_{vi}$$

$$= \sum_{i}^{m} k_{vi}[c_{vi}x_{i1} + c_{v2}x_{i2} +c_{vn}x_{in}]$$

$$= c_{v1} \sum_{i}^{m} k_{vi}x_{i1} + c_{v2} \sum_{i}^{m} k_{vi}x_{i2} +c_{vn} \sum_{i}^{m} k_{vi}x_{in}.$$

Considering now only the cyh term of the right hand side,

$$c_{vh} \sum_{i}^{m} k_{vi}x_{ih} = c_{vh} \sum_{i}^{m} [c_{vi}x_{i1} + \dots c_{vn}x_{in}]x_{ih}$$

$$= c_{vh} [c_{vi}\Sigma x_{i1}x_{ih} + c_{v2}\Sigma x_{i2}x_{ih} + \dots c_{vn}\Sigma x_{in}x_{ih}].$$

When h = v the quantity in the square brackets is identical to the left hand side of an equation formed by multiplying the vth row of the C matrix by the vth column of the X matrix; from (6) this is equal to 1. For $h \neq v$ the quantity in square brackets is identical to the left hand side of one of the other equations (6); the right hand side of all these equations is zero.

Thus, $\sum_{i} k^2 = c_{yy}$, the vth diagonal element of the inverted matrix. and $V[a_y] = c_{yy} s^2$; it is because of this that matrix inversion is used for solving the normal equations.

To get the confidence limits on the difference of two a's, a_v and a'_v the variance on the difference is required, i.e., $V[a_v - a'_v]$. Now $V[a_v - a'_v] = V[a_v] + V[a'_v] - 2 \text{ Cov}[a_v, a'_v]$, where $\text{Cov}[a_v, a'_v]$ is the covariance of a_v , a'_v (for proof see Appendix B). By an analysis similar to that given for $V[a_v]$ it can be shown that

Cov
$$[a_{v}, a'_{v}] = s^{2}c'_{vv}$$

i.e., the product of the variance of the errors and the element of the inverse matrix that lies at the intersection of the vth row and the vth column (or vice versa - the two elements $c_{\nu\nu}$, and $c_{\nu'\nu}$ are equal because the inverse matrix is also symmetrical).

The variance of the differences of two a's is then given by

$$V[a_v - a_v'] = s^2(c_{vv} + c_{vv'} - 2c_{vv'}).$$

The 95% confidence limits of $a_v - a_v'$ is then $t\sqrt{V[a_v - a_v']}$.

Confidence limits on MBAR, S(I), B(J) and on the differences between each pair of explosion terms (B(J's)), are calculated by the methods outlined above. As the M(I,J)'s are only relative values the confidence limits on the absolute values of MBAR, S(I) and B(J) have little meaning. The confidence limits on the differences of the explosion terms are however valuable as they are confidence limits on the absolute differences between the seismic sizes of pairs of explosions.

6. WEIGHTING

So far it has been assumed that the errors in the dependent variables all have the same variance σ^2 . This may not be so; some measurements may be known with greater (absolute) accuracy. To get the best estimate of the regression coefficients, i.e. the one with minimum variance, each equation of condition should be weighted by a factor \sqrt{w} , where $w = \frac{1}{\sigma_i^2}$; is the variance of the ith measurement (for a discussion of weighting see reference [1]). A facility for weighting any equation of condition has therefore been included in the LSMF program, although σ_i^2 will usually be difficult to estimate.

7. THE PROGRAM

The program will accept data for up to 60 explosions recorded at a maximum of 200 stations. The input to the program is:-

- (1) Students t tables for the 95% probability level.
- (2) A title for the data being processed and any number of comment cards.

^{1.} E. Whittaker and G. Robinson: (1944) "The Calculus of Observations: A Treatise on Numerical Mathematics". Fourth Edition, Blackie, London and Glasgow

- (3) An identification code for each station.
- (4) An identification code for each explosion.
- (5) Cards with station code, event code, M(I,J) and the weight to be assigned to M(I,J). If the weight is left blank it is taken to be unity.

The matrix of coefficients of the normal equations (the X matrix) are then set up. This could be done as outlined in Section 4, i.e., by setting up all the equations of condition then multiplying each equation by the coefficient of each unknown in turn and summing. This would need a large amount of storage space in the machine to little purpose as most of the terms in the equations of condition are zero (cf, the example given in Section 4). A method of constructing the matrix of coefficients directly has therefore been devised. As a result of this a far larger number of unknowns (260) can be handled by the program than would be possible if the equations of condition had to be stored in their entirety.

The X matrix is set up as follows: first the whole matrix is zeroed. Each non-zero element of the X matrix is now computed from the input data and stored in its appropriate place in the matrix. As the resultant matrix is symmetrical about the diagonal only the upper triangular matrix and the diagonal elements have to be computed. The upper triangular elements, X;, are then repeated in the lower triangular position X;. For the purposes of construction the matrix can be divided into 7 parts (see Figure 1). The equivalent 7 parts are shown in dotted

outline in equation (9)).

FIGURE 1

If t is the number of explosions read in and r the number of stations, part 1 is an $r \times r$ matrix, part 3 a t \times t matrix, parts 2 and 4 are $r \times t$ matrices, part 2 having t columns and r rows and part 4, r columns and t rows, parts 5 and 6 are $(r + t) \times 1$ matrices and part 7 is a single element.

Matrix 2 is constructed first. The first element in the first row of this matrix is unity if S(1) is recorded at station B(1), the second element is unity if S(1) recorded B(2) and so on to B(t). Similarly in the second row the first element is unity if S(2) recorded B(1), the second element if S(2) recorded B(2) and so on. Rows 3, 4, t of matrix 2 are constructed in a similar way. Matrix 4 is now constructed by reflecting matrix 2 in the diagonal.

The diagonal elements of matrix 1 are now formed by summing the corresponding row of matrix 2 and the diagonal elements of matrix 3 by summing the corresponding rows of matrix 4. The diagonal elements of 1 and 3 are now repeated in order in the column matrix 5 and the row matrix 6. Element 7 is half the sum of the elements in the column matrix 5. Finally 1 is added to each element of matrices 1 and 3.

The above somewhat involved process produces the correct matrix of normal equations with $(r + t + 1)^2$ elements.

The first element of the right hand side of equation (5) is formed by summing all M(1,J) (it is assumed that M(I,J)=0 if station I did not record explosion J), the second element by summing all M(2,J) and so on. Element r of the right hand side is then $\sum M(r,J)$. Element r+1 is $\sum M(I,1)$ element r+2 is $\sum M(I,2)$ and so on. Element r+1 is $\sum M(I,J)$. IJ

The setting up of the normal equations has been described assuming all the data were to be given equal weight. If the weights are not unity (but w) the elements of parts 2 and 4 of the matrix are now replaced by the weights, w, and the setting up of the matrix then proceeds as before.

To take account of weighting when setting up the right hand side of equation (5) each M(I,J) is multiplied by its weight and then summed as before.

The matrix of the coefficients of the normal equations is now inverted using a subroutine from the Harwell Program Library (No. MB01A). This subroutine uses the so called triangular decomposition method of matrix inversion [1].

Both the original matrix and the inverted matrix are stored on disk.

Using the inverted matrix S(I), B(J) and MBAR are computed. Subtracting these values from the original M(I,J) gives the error term $\varepsilon(I,J)$ and hence s^2 the estimate of the variance of the errors can be found. From s^2 and the elements of the inverted matrix the

^{1.} HMSO: (1961) "Modern Computing Methods". National Physical Laboratory. HMSO, London

confidence limits on S(I), B(J) and MBAR and on the differences between pairs of B(J) are computed.

The output from the program is:-

- (1) Tables showing stations and events used and input data, M(I, J), with weights.
- (2) Tables showing the residuals $\varepsilon(I,J)$.
- (3) Tables showing best estimates of S(I), B(J) an MBAR their variances and 95% confidence limits.
- (4) Tables showing differences between each pair of B(J) and the 95% confidence limits of these differences.
- (5) Table showing variables used in the calculations.

Although the program described here has been written to solve a particular problem the program could equally well be used for any problem that can be expressed in terms of the model given in Section 2; this is the familiar two way analysis of variance model.

To carry out a two way analysis of variance using the usual techniques the values of all the elements in the analysis of variance table must be known (one or two missing values can be tolerated). No such restriction applies to this program.

APPENDIX A

MATRICES AND MATRIX INVERSION

A matrix is an array of numbers of the form

a ₁₁ a ₁₂	•	•	•	a _{,1} j	•	•	•	a 1 n
a ₂₁ a ₂₂				•				
				•				•
· ·				•				•
a _{iı} a _{i2}	•	•	•	^a ij	•	•	•	^a in
				•				
				•				•
a _{m1} a _{m2}	•	•	•	a _{mj}	•	•	•	a _{mn}

Unlike determina: s matrices cannot be evaluated to give a single value. They can however be represented by a single quantity, say A, and as such used in many algebraic operations just as if A were a single number.

For example the addition of the matrices A and B means summing corresponding elements of the two matrices. Thus if

and
$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

$$B = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}$$

$$A + B = \begin{bmatrix} a_{11} & a_{12} \\ a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

Multiplication of two matrices is more complicated. Thus,

AB =
$$\begin{bmatrix} a_{11}b_{11} + a_{12}b_{21}, & a_{11}b_{12} + a_{12}b_{22} \\ a_{21}b_{11} + a_{22}b_{21}, & a_{21}b_{12} + a_{22}b_{22} \end{bmatrix}$$

Each element of the new matrix is formed by multiplying each element in a row of the first matrix by the corresponding element in the column of the second matrix and summing. For multiplication to be possible the second matrix (matrix B) must have the same number of rows as the first matrix has columns.

Matrices find their widest application in the solution of linear equations.

Consider the equations

These equations can be represented in matrix for as

Strictly the term matrix is applied only to A; the column matrices x and y are called vectors.

The solution of (A2) can be represented symbolically as

$$x = A^{-1}y$$
, (A3)

where A⁻¹ is called the inverse matrix of A.

Now just as in ordinary algebra

$$aa^{-1} = 1$$
,

so a unit matrix I can be defined such that

$$AA^{-1} = I,$$
 (A4)

where

$$I = \begin{bmatrix} 1 & 0 & 0 & . & . & 0 \\ 0 & 1 & 0 & . & . & 0 \\ 0 & . & 1 & & . & . \\ . & . & . & . & . & . \\ 0 & 0 & 0 & . & . & 1 \end{bmatrix}$$

all the elements of I are zero except the diagonal elements which are unity. Operating on a matrix with I leaves the matrix unchanged, i.e., AI = A.

Equation (A4) provides a way of determining A⁻¹. Let c_{ij} be the element of the inverse matrix; then writing out (A4) in full

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ c_{n1} & c_{n2} & \cdots & c_{nn} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & \cdots & \cdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \cdots & 1 \end{bmatrix}$$

Carrying out the multiplication of the left hand side. The result of multiplying the a. matrix by the first column of the C matrix is

$$a_{11}^{C}_{11}^{T}_{11}^{T}_{12}^{T}_{21}^{C}_{21}^{T}_{11}^{C}_{11}^{T}_{12}^{T}_{21}^{T}_{11}^{T}_{12}^{T}_{21}^{T}_{11}^{T}_{12}^{T}_{21}^{T}_{11}^{T}_{12}^{T}_{11}^{T}_{12}^{T}_{11}^{T}_{12}^{T}_{12}^{T}_{11}^{T}_{12}^{T}_{12}^{T}_{11}^{T}_{12}^{T}$$

This group of n equations has n unknowns c_{11} , c_{21} , c_{31} . c_{n1} : the elements of the first column of the C matrix, c_{11} , c_{21} , . . c_{n1} can therefore be obtained by solving this set of equations.

A similar group of equations can be obtained by multiplying the Λ matrix and the second column of the C matrix. The elements in each column of the C matrix can therefore be evaluated in turn; this results in the inverse matrix.

The right hand side of equation (A2) can then be operated on with the inverse matrix to give x as shown in equation (A3).

Writing out (A3) in full

i.e.,

$$\begin{bmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_n \end{bmatrix}
 \begin{bmatrix}
 c_{11} & c_{12} & \cdots & c_{1n} \\
 c_{21} & c_{22} & \cdots & c_{2n} \\
 \vdots & \ddots & \ddots & \ddots \\
 \vdots & \ddots & \ddots & \ddots$$

$$x_{1} = c_{11}y_{1} + c_{12}y_{2} + c_{13}y_{3} \cdot \cdot \cdot \cdot c_{n}y_{n}$$

$$x_{2} = c_{21}y_{1} + c_{22}y_{2} + c_{23}y_{3} \cdot \cdot \cdot \cdot c_{2n}y_{n} \cdot \cdot \cdot \cdot c_{2n}y_{n}$$
....(A5)

As the c's are known and the y's are known the equations (A5) give x_1, x_2, \dots, x_n the solutions of (A1).

Shorter methods of solving linear equations are available, e.g., Gaussian elimination but matrix inversion has advantages if several sets of equations have to be solved with the same left hand side but different right hand side. Once the inverse of a particular left hand side has been computed it can be used to solve any number of sets of equations simply by operating on the y matrices. Another advantage of the inverse matrix is that it allows the confidence limits of the unknowns to be computed easily in least squares problems (see Section 5).

APPENDIX B

SOME STATISTICAL CONCEPTS AND PROOFS

B1. EXPECTATION

The expectation of a random variable x, usually written E [X], is defined as

$$E[X] = \int_{-\infty}^{\infty} xp(x)dx,$$

where p(x) is the probability that the random variable will take the particular value x. The expectation corresponds to the mean of the whole population of x. Means determined from a set of sample values of x will not usually coincide with E[X] but will approach E[X] as the sample size increases.

The expectation of a constant is the constant, since the constant can take only one value. The expectation of an expected value, E[E[X]], is simply E[X] since E[X] is a constant and as shown above this only has one value.

B2. VARIANCE

Variance measures the spread of a distribution and can be defined on terms of expectation thus,

$$V[X] = E[(X - E[X])^2],$$
 (B1)

or in words the variance is the expected value (average value) of the squared deviation of a random variable from its expectation.

An alternative form of (B1) is

$$V[X] = E[X^2] - (E[X])^2$$
. (B2)

If a and b are constants the variance of a linear function of X, say a + bX, is

$$V[a + bX] = E[((a + bX) - (E[a + bX]))^{2}]$$

$$= E[a^{2}] + 2abE[X] + b^{2}E[X^{2}] - a^{2} - 2abE[X]$$

$$- b^{2}(E[X])^{2}$$

$$= b^{2}\{E[X]^{2} - (E[X])^{2}\}$$

$$= b^{2}V[X].$$

If Z is the difference of two random variables X and Y, i.e., Z = X - Y

$$V[Z] = E[Z^{2}] - (E[Z])^{2} \text{ using } (B2)$$

$$= E[(X - Y)]^{2} - (E[X - Y])^{2}$$

$$= E[(X^{2} - XY + Y^{2})] - (E[X])^{2} + 2E[X]E[Y]$$

$$- (E[Y])^{2}$$

$$= E[X]^{2} - (E[X])^{2} + E[Y^{2}] - (E[Y])^{2}$$

$$- 2(E[X Y] - E[X]E[Y])$$

$$= V[X] + V[Y] - 2 Cov [X,Y].$$

Cov [X,Y] is called the covariance of X and Y and is defined as E[XY] - E[X]E[Y].

The results given above can be generalised for any linear combination of random variables. Thus, if

$$Z = a_0 + a_1 X_1 + \dots + a_n X_n$$

$$V(Z) = \sum_{i}^{n} a_i^2 V [X_i] + \sum_{ij}^{nn} a_i a_j Cov [X_i, X_j]$$

$$i \neq j.$$

If the random variables are uncorrelated their covariances are zero. If also V $[X_i]$ is constant and equal to σ^2 for all i then

$$V(Z) = \sigma^2 \sum_{i=1}^{n} i^2 . \qquad(B3)$$

APPENDIX C PROGRAM LISTING

JOB, TYPE, COMPILGO, F4 SUBTYPE, FIOD LSMF PROGRAM 9100. DISK SUSTYPE, FORTRAN, LMAP, LSTRAP MAIN LIMF FINDS DATE AND SETS UP NUMBER ARRAY NUM AND STUDENTS T TABLE FROM CARDS DATE, MEAD(9), NUM(60), ANT(60), N,NR,DISK,
XMEAN,CLM, VARM,RSQD, RBAR, ISTAN,STAN
A(261,261),B(261), P(60,200)
X(261),Y(60),NRS(200),NRB(60),D(261),
CLX(261),CLY(60),VARX(261),VARY(60)
STN(200),SNAME,NST, EVENT(60),ECODE,NBT COMMON COMMON /MTRCES/ COMMON /ARRAYS/ COMMON /CODES/ COMMON /STUDT/ INTESER DISK ST(57), T, IDF, NDF C CALL SDATE(DATE) C DESK = 9 DO 419 1=1,60 NUM(1)=1 410 CONTINUE C READ STUDENTS T TABLE READ 405, (\$T(1), 1=1,57) PRINT 409, (\$T(1), 1=1,57) FORMAT(1X, 15F5-2) READ 404 PRINT 404 404 FORMAT (55H----C CALL LSMF RETURN END SUBTYPE, FORTRAN, LMAP, LSTRAP LEAST SQUARES MATRIX FACTORISATION PROGRAM (LSMF) THIS PROGRAM SEPARATES THE MEASURED MAGNITUDES OF EXPLOSIONS INTO THREE QUANTITIES TO AN EXPLOSION TERM, A STATION TERM AND A MEAN EXPLOSION—STATION TERM. IT IS ASSUMED THAT THE MAGNITUDE, MII, J), OF THE JTH EXPLOSION AT THE ITH STATION CAN BE REPRESENTED BY THE EQUATION --S(1) + B(J) + MBAR + E(I,J) = M(I,J) -(1)WHERE S(1) IS THE STATION CORRECTION, B(J) THE EXPLOSION TERM. MBAR THE MEAN EXPLOSION-STATION TERM AND E(1,J) IS AN ERROR. S(I), B(J) AND MBAR ARE ESTIMATED BY LEAST SQUARES. TO DO THIS IT IS NECESSARY TO MAKE THE FURTHER ASSUMPTIONS THAT THE SUM S(I) IS ZERO AND THE SUM B(J) IS ZERO, OTHERWISE THE PROBLEM CANNOT THE PROGRAM ALSO DETERMINES THE CONFIDENCE LIMITS ON S(I), B(J) AND MBAR AND THE CONFIDENCE LIMITS ON THE DIFFERENCES BETWEEN EACH PAIR OF EXPLOSIONS — ASSUMING THE ERRORS E(I,J) ARE NORMALLY DISTRIBUTED. ESSENTIALLY THE PROGRAM CARRIES OUT A TWO MAY ANALYSIS OF VARIANCE.

IF ALL STATIONS RECORD ALL EXPLOSIONS THE
PROBLEM TO BE SOLVED IS IDENTICAL TO THAT OF THE ANALYSIS OF
VARIANCE AND COULD BE TREATED AS SUCH. THIS PROGRAM HOWEVER CAN
ALSO HANDLE THE SITUATION WHERE THE DATA IS INCOMPLETE I. E. SOME
STATIONS FAIL TO RECORD ALL EXPLOSIONS -- THIS CANNOT BE DEALT
WITH BY THE USUAL ANALYSIS OF VARIANCE TECHNIQUES. ALTHOUGH THE PROGRAM HAS BEEN MRITTEN TO SOLVE A PARTICULAR PROBLEM THE METHOD IS GENERAL AND THE PROGRAM CAN BE USED TO SOLVE ANY PROBLEM THAT CAN BE EXPRESSED AS A SERIES OF EQUATIONS OF

FOR DETAILS OF ANALYSIS OF VARIANCE TECHNIQUES SEE BROWNLEE K.A STATISTICAL THEORY AND METHODOLOGY IN SCIENCE AND ENGINEERING, AND

TYPE (1).

C

```
ARE PUBLISHED IN THE WILEY SERIES IN STATISTICS.
NON-STANDARD LIBRARY SUBPROGRAMS USED
        FOLIMP
                 DUMP ROUTINE
       SDATE DATE IN ALPHANUMERIC FORM DD/MM/YY
SECCLK PICKS UP SECONDS CLOCK READING
EXIT ROUTINE TO BRANCH BACK TO MACHINE CONTROL
C
   VARIABLES USED
                IS THE MATRIX

IS THE SUM OF MEASURED MAGNITUDES

IS THE DIAGONAL OF THE INVERTED MATRIX

ARRAY CONTAINS STATION (FOLLOWED BY EVENT) CORRECTIONS

ARRAY CONTAINS EVENT CORRECTIONS

CONFIDENCE LIMITS OF X

CONFIDENCE LIMITS OF Y
        CLX
         CLY
                VARIANCE OF X
       VARX
       VARY
           NST = TOTAL NUMBER OF STATIONS
NBT = TOTAL NUMBER OF EVENTS
NR = TOTAL NUMBER OF READINGS
C
                   NUMBER OF EVENTS PER STATION
NUMBER OF STATIONS PER EVENT
STATION COUNT
           NRS =
C
           NRR #
C
           NS =
                    EVENT COUNT
           NB =
                    COLUMN COUNT
                    ROW COUNT
                . SIZE OF MATRIX
r
       MAXIMUM NUMBER OF STATIONS = 200
MAXIMUM NUMBER OF EVENTS = 60
THE DATA DECK SHOULD BE MADE UP AS FOLLOWS --
        1) HEADING CARD WHICH WILL BE REPRINTED AT THE TOP OF EACH PAGE
            PUNCH THE FIRST 72 COLUMNS ONLY COLS. 73-80 FOR CONTINUATION COUNT FOLLOWED BY ANY NUMBER OF COMMENT CARDS
TILL A ZERO IS ENCOUNTERED IN THE LAST COLUMN
C
C
       2) STATIONS IN ORDER REQUIRED IN MATRIX
                  STATION CARDS ARE READY-PUNCHED
WED BY END STATIONS CARD
            FOLOWED BY
                 IT CODES: IN ORDER REQUIRED IN MATRIX
EVENT CODE: (8 CHARS.) - START PUNCHING IN COLUMN 7
EVENT DATA AND COMMENTS - START PUNCHING IN COLUMN 20
       3) EVENT CODES
            FOLLOWED BY
                             END EVENTS CARD
       4) MAGNITUDE DATA
C
                                   COLUMNS 2-6
COLUMNS 7-14
                  STATION CODE
                  EVENT CODE
                                    DECIMAL POINT (.) IN COLUMN 20 (3 DP)
                 WEIGHTING FACTOR IN COLUMN 30
IF WEIGHTING FACTOR ZERO ASSUMED TO BE 1
OWED BY END MAGNITUDES CARD
C
            FOLLOWED BY
                   IF THIS LAST CARD IS BLANK NO COMPUTATION WILL BE DONE
                   AND ONLY THE INPUT DATA PRINTED
        THE MAGNITUDE DATA WILL BE READ IN FASTER IF ARRANGED IN STATION CROER
                           CARD FOR NORMAL END OF JOB
       5) END OF JOB
                  NORMAL END OF JOB WILL ALSO OCCUR IF NO MORE DATA
        REPEAT 1) TO 4) FOR ANY NUMBER OF MATRICES
C
    THE INFORMATION IS PRINTED AS FOLLOWS --
        TABLE 1
                     SETUP DATA
            TABLE 1.1 STATIONS
TABLE 1.2 EVENTS
                                                                               (UP TO 5 PAGES)
        TABLE 2
                     INPUT MATRIX WITH WEIGHTS
            PRINTS ALL STATIONS WITH EVENTS IN SETS OF 10
                                                                              (UP TO 30 PAGES)
C
```

KEMPTHORNE O. THE DESIGN AND ANALYSIS OF EXPERIMENTS. BOTH BOOKS

C

```
0000
            E 3 MATRIX OF RESIDUALS OF MAGNITUDES
PRINTED AS TABLE 2 TRUE RESIDUALS ARE STARRED (UP TO 30 PAGES)
       TABLE 3
       TABLE 4
             E 4 ANSWERS TABLE 4.1 STATION CORRECTIONS WITH 95 PERCENT CONFIDENCE LIMITS
C
            PRINTS OUT COMPUTED VALUES, STARS SMALLEST VALUE, NUMBER IN EACH ROW OF RESIDUALS, 93 PERCENT CONFIDENCE LIMITS, AND VARIANCE
C
C
C
                                                                               (UP TO 5 PAGES)
                          BEST ESTIMATE OF MAGNITUDES WITH 95 PERCENT CONFIDENCE
            TABLE 4.2
            PRINT OUT COMPUTED VALUES.

NUMBER IN EACH COLUMN OF RESIDUALS.
                                                                                           CLLIMITS
                           95 PERCENT CONFIDENCE LIMITS, AND VARIANCE
                                                                               (UP TO 2 PAGES)
C
       TABLE 5 TRIANGULAR MATRIX OF DIFFERENCES OF MAGNITUDES PRINTS OUT DIFFERENCES WITH 95 PERCENT CONFIDENCE LIMITS
                                                                               (UP TO 42 PAGES)
                  VARIABLES USED DURING THE COMPUTATION
C.
       TABLE 6
                                                                                        (1 PAGE)
C
       SUBROUTINE LISHE
                              DATE, HEAD(9), NUM(60), AWT(60), N. NR.DISK.
       COMMON
                              XMEAN, CLM, VARM, RSQD, RHAR, ISTAN, STAN
A(261, 261), B(261), P(60, 200)
       COMMON /MTRCES/
COMMON /ARRAYS/
                              X(261), Y(60), NRS(200), NRB(60), D(261),
                              CLX(261), CLY(60), VARX(261), VARY(60)
       COMMON /CODES/
COMMON /STUDT/
                              STN(200), SNAME, NST, EVENT(60), ECODE, NBT ST(57), T, IDF, NDF
       INTEGER DISK
٤
       CATA END(8HEND M ), BLANK(8H
                                                       )
C.
                                                 READ HEADING CARD AND ANY COMMENTS
C
 10
       CALL SECCEM(TS)
       CALL HEADER
C.
                                                 ZERO MATRICES
       UO 40 J=1,261
DO 30 I=1,261
 20
       A(1,J)=0.
 30
       CONTINUE
       B(.1) = 0.4
 40
       CONTINUE
       DO 60 J=1,200
DO 50 I=1,60
       P(1,J)=1000.
 50
       CONTINUE
       NRS(J)=0
       CONT INUE
 60
       DO 70 1=1,60
NRB(1)=0
 70
       CONT INUE
C
                                                 SETUP STATIONS AND EVENTS
       CALL SETUP
       N=NST+NBT
C.
                                                 FORM MATRICES
       NR = 0
       NS=1
       IND=1
READ 105, SNAME, ECODE, AMAG, NWT
 100
 105
       FORMAT(1X, A5, A8, 2X, F13, 9, I1)
       NR=NR+1
        IE(NWT) 110.110.120
 110
       NWT=1
       WT=NWT
        IF(SNAME.EQ.STN(NS)) GO TO 210
       IF(SNAME.EQ.STN(NS+1)) GO TO 200 IF(SNAME.EQ.END) GO TO 300
       DO 160 J=1,NST
 150
        IF(SNAME.EQ.STN(J)) GC TO 180
 160
       CONTINUE
        IF(SNAME.EQ.BLANK) GO TO 290
       PRINT 175, SNAME
FORMAT(27H1** UNKNOWN STATION NAME - ,A8//)
 175
       GO TO 280
 180
       DO 190 I=1,NBT
        IF(ECODE.EQ.EVENT(1)) GO TO 250
 190
       CONTINUE
       GO TO 230
 200
       NS=NS+1
 210
       DO 220 NB=1,NBT
        IF(ECODE.EP.EVENT(NR)) GO TO 240
 220
       CONTINUE.
       IF(ECODE.EQ.BLANK) OF TO 290
       PRINT 235, ECODE
FORMAT(25H1** UNKNOWN EVENT CODE - ,AS//)
 235
```

```
GO TO 280
   240
          J=NS
          I=NB
   250
          P(I,J) = AMAG
          NRB( I ) = NPB( I ) + 1
          NRS(J)=NRS(J)+1
          I#I+NST
        A([,J)=WT
B(J)=B(J)+AMAG+WT
          GO TO (270, 100), IND IND=2
   270
          NB = I
          [=J
          J=NB
          GO TO 260
PRINT 285
FORMAT(24H THE INCORRECT CARD IS -)
PRINT 105, SNAME, ECODE, AMAG, NHT
   280
285
          RETURN
          CALL INPUT
PRINT 295
FORMAT(30HI++ ONLY INPUT PRINT REQUESTED///12H NO SOLUTION)
   290
   295
          GO TO 10
 C
   300
          LS=NST+1
          DO 320 J=1,NST
AD=0.
DO 310 I=LS,N
AD=AD+A(I,J)
   310
          CONTINUE
          DA=(L,L)A
DA=(I+M,L)A
DA=(L,f+M)A
          CONTINUE
          DO 340 J=LS1N
          AD=0.
          DO 330 I=1, NST
AD=AU+A(I,J)
          CONT INUE
          A(J, J) = AD
          A(J,N+1)=AD
          A(N+1,J)=AD
          CONT INUE
   340
          AD=0.
1
          AMAG=0.
DO 350 J=1,N
AD=AD+A(J,J)
          AMAG=AMAG+B(J)
         CONTINUE
A(N+1)+1)=AD/2.
B(N+1)=AMAG/2.
DO 370 J=1,NST
DO 360 I=1,NST
   350
          A(1,J)=A(1,J)+1.
   360
          CONTINUE
          CONTINUE
DO 390 J=LS,N
DO 380 I=LS,N
   370
          . (+(L,I)A=(L,I)A
   380
          CONTINUE
   390
          CONTINUE
 Ç
                                                          PRINT INPUT
          CALL INPUT
 C
                                                           SOLVE MATRIX
          N=N+1
          DO 420 J=1,N
IF(A(J,J)-1.)420,410,420
PRINT 415, J
          FORMATI 20H1** DIAGONAL ELEMENT, 14,6H ZERO///12H NO SOLUTION)
   415
          GO TO 10
CONTINUE
   420
          WRITE (DISK) ((A(I,J),I=1,N),J=1,N)
CALL SOLVE(B,X,N,D)
WRITE (DISK) ((A(I,J),I=1,N),J=1,N)
           REWIND DISK
          READ (DISK) ((A(I,J),I=1,N),J=1,N)
                                                           SETUP STATION AND EVENT ARKAYS
  C
          XMEAN=X(N)
          DO 470 I=1, MBT
           (L)X=(1)Y
   470
          CONTINUE
           STAN=ABS(X(1))
           ISTAN= 1
          DO 490 J=2,MST
IF(STAN-ABS(X(J)))490,490,480
STAN=ABS(X(J))
   480
           LEVATEL
   490 CONTINUE
```

```
C
                                                 PRINT RESIDUALS
       CALL OUTPUT
       READ (DISK) ((A(I,J),I=1,N),J=1,N)
REWIND DISK
                                                 WORK OUT STUDENIS T
C
        T=0.
       NDF=NR-N+2
        IFINDF) 675,675,620
        IF (NDF-30)630,640,640
 620
       IDF=NDF
 630
       GO TO 670
IFINDE-3001650,660,660
        IDF = NDF / 10+27
 650
        GO TO 670
 660
        IDF=57
       T=ST(IDF)
 670
C
                                                 COMPUTE VARIANCES AND CONFIDENCE LIMITS
 675
       RBAR=0.
        RSQD=0.
       DO 690 J=1,NST
DO 680 I=1,NBT
AD=P(I,J)
        RBAR=RBAR+AU
        RSQD=RSQD+AD+AD
 680
       CONTINUE
 690
       CONTINUE
       IF(NDF.GT.O) RSQD=RSQD/FLOAT(NDF)
DO 710 K=1,N
        VARXIK)=RSQD+D(K)
        CLX(K)=T+SQRT(VARX(K))
 710
       CONTINUE
       DO 720 [=1,NBT
J=I+NST
        VARY(I)=VARX(J)
        CLY(I)=CLX(J)
 720
       CONTINUE
        VARM=VARX(N)
        CLM=CLX(N)
        DO 740 I=1,NBT
        12N+1=L
        DO 730 LS=1,1
        K=LS+NST
        P(LS,1)=T+SORT(RSQD+ABS(A(K,K)+A(J,J)-2.+A(K,J)))
       CONTINUE
       CONTINUE
        IF(NDF.GT.O) RSQD=RSQD+FLOAT(NDF)
                                                 PRINT ANSWERS
C
        CALL TABLE
        CALL TRIANG
       CALL SECCLK(TF)
TS#TF-TS
        PRINT 885, HEAD, DATE
       FORMAT(55H)TABLE 6 VARIABLES USED DURING (1 9A8/1)3X,6HDATE ,A8///)
PRINT 886, NR,N,RSQD,RBAR,T,NDF,XMEAN,CLM,TS
 885
                                  VARIABLES USED DURING COMPUTATION
 886
      FORMATI
              NUMBER OF READINGS = , 16
NUMBER OF UNKNOWNS = , 16
SUM OF SQUARES OF RESIDUALS = , E10.4
SUM OF RESIDUALS = , E10.4
      1 33H
2 33H
                                                                    1111
      3 33H
                                                                    1111
      4 33H
5 33H
                                                  = , F6.2
= , I6
                                    STUDENTS T
                                                                    11
      6 33H NUMBER OF DEGREES OF FREEDOM
7 33H MEAN STATION-EVENT EFFECT
                                                                    1111
                                                  = , F7.3,5H +/+,F7.5
= , F7.3, 8H SECONDS)
                                                                    +/-,F7.5
      8 33H
                TIME TAKEN TO SOLVE MATRIX
C
                                                 LOOP FOR NEW MATRIX
        GO TO 10
       END
t
           SUBTYPE, FORTRAN, LMAP, LSTRAP
C
        LSMF HEADING PRINT ROUTINE
C
        THIS ROUTINE READS AND PRINTS HEADING CARDS TILL IT FINDS A ZERO IN COL.80
        THE CONTENTS OF THE FIRST CARD IS STORED IN ARRAY HEAD N.B. COLS. 1-72 ONLY
C
        SUBROUTINE HEADER
       COMMON
                              DATE HEAD(9)
        CATA ENDI(8H
                               EN1, END2 (8HD JOB
C
       READ 1, HEAD, IT FORMAT(9A8, 7X, II) IF(HEAD(1).EQ.END1.AND.HEAD(2).EQ.END2) CALL EXIT
 1
        PRINT 2, DATE, HEAD
        FORMAT(1H1/113X,6HDATE ,A8////25X,9A8////)
  10
        IF(IT) 20,30,20
        READ 3, IT
PRINT 3
 20
        FORMAT ( 79H-----
        GO TO 10
```

ł

```
30
       RETURN
       END
       SUBTYPE, FORTKAN, LMAP, LSTRAP
LSMF SETUP ROUTINE
C
C
           THIS ROUTINE SETS UP AND PRINTS STATIONS AND EVENTS
C
       SUBROUTINE SETUP
       COMMON DATE, HEAD(9)
COMMON /CODES/ STN(200), SNAME, NST, EVENT(60), ECODE, NBT
        CATA ENDICATEND S ), END2(8HEND EVEN)
C
                                                  SETUP STATIONS
 20
       NST=0
L1NE=40
READ 22, SNAME
        FORMAT ( 1X, A5, 74H-----
       IF($NAME-END1)23,30,23
 23
       NST=NST+1
       IF(NST-200)26,24,24
 24
 25
        FORMATI21H1** TOO MANY STATIONS)
       GO TO 41
1F(LINE-40)29,27,27
 26
 27
       1.1NE=0
        PRINT 28, HEAD, DATE
                                      STATIONS
 28
       FORMATISSHITABLE 1.1
       1 9A8/113X,6HDATE ,A8/
2 80H CODE STATION
3 CORRECTIONS /)
PRINT 22, SNAME
LINE=LINE+1
                                           REGION
                                                              LATITUDE
                                                                               LONGITUDE
 29
        STN(NST)=SNAME
        GO TO 21
                                                  SETUP EVENTS
C
 30
       NBT=0
       LINE=40
REAC 32, ECODE
 32
       FORMATIOX, A8, 66H--
        IF(ECODE-END2)33,40,33
 33
       NBT=NBT+1
        IFINBT-60136, 34, 34
       PRINT 35
 34
 35
       FORMAT(19H1** TOO MANY EVENTS)
       GO TO 41
 36
        IF(LINE-40)39,37,37
 37
       LINE=0
       PRINT 38, HEAD, DATE
FORMAT (55H1TABLE 1.2
 38
                                      EVENTS
           9A8/113X,6HDATE ,A8/
           80H
                       CODE
                                       EVENT DATA AND COMMENTS
                                 1)
       PRINT 32, ECODE
LINE=LINE+1
 39
        EVENT(NBT) = ECODE
        GO TO 31
C
 40
        RETURN
                                                  FINISH FOR ERROR
C
 41
        CALL EXIT
        END
           SUBTYPE, FORTKAN, LMAP, LSTRAP
C
        LSMF INPUT PRINT ROUTINE
C
C
C
            THIS SUBROUTINE PRINTS OUT THE MATRIX OF MAGNITUDES (P)
                 WITH 1) ALL STATIONS
2) EVENTS IN SETS OF TEN (10)
C
                PRINTS THE WEIGHT BY EACH MAGNITUDE READ IN ZERO AND BLANK INDICATE NO VALUE
C
        SUBROUTINE INPUT
        COMMON DATE, HEAD(9), NUM(60), AWT(60)
COMMON /MTPCES/ A(261,261), B(261), P(60,200)
CCMMON /CODES/ STN(200), SNAME, NST, EVENT(60), ECODE, NBT
        DIMENSION FCHAR(10)
C
        CATA (FCHAR(I), I=1, 10) (80H
85 86 87 85
                                                                  • 2
                                                             ), ANUM (SHEVENT
       1 +5
                                          * 3
C
        J=0
  420
        J=J+10
        NB=J-9
IF(J-VBT)440,440,430
        J=NBT
  430
        LINE=40
```

1

```
DO 480 NS=1,NST
IFILINE-40)460,450,450
 450 LINE=0
        PRINT 454, HEAD, DATE, (ANUM, NUM(1), I=NB, J)
      FORMAT(55H)TABLE 2 MATRIX OF MAGNITUDES WITH WEIGHTS
1 9A8/113X,6HDATE ,A8/
2 9M STATION NY AS 13.9(hx.A5.13)
 454
       PR(NT 455, (EVENT(1), I=NB, J)
FORMAT(13x, A8, 9(4x, A8))
 455
        DO 470 1=NB.J
        INST=I+NST
       WT=A(INST:NS)
INST=IFIX(WT+0.5)+1
        AWT(1)=FCHAR(INST)
 470
       CONTINUE
        PRINT 475, NS,STN(NS),(P(I,NS),AWT(I),I=NB,J)
       FORMAT( 1X, 13, 2X, A6, F6. 3, A3, 9( 3X, F6. 3, A3))
 475
        I INE=LINE+1
 480
       CONT INUE
        IF(J.NE.NBT) GO TO 420
        RETURN
        END
       SUBTYPE, FORTRAN, LMAP, LSTRAP
LSMF MATRIX INVERSION ROUTINE
C
000000
       THE METHOD USED IS CALLED TRIANGULAR DECOMPOSITION FROM N.P.L. MODERN COMPUTING METHODS
           BASED ON LIBRARY SUBROUTINE MBOTA
        SUBROUTINE SOLVE(B, X, M, D)
       COMMON /MTRCES/ A(261,261)
COMMON /ARRAYS/ QQQ(902),C(261),IND(261)
DIMENSION B(M),X(M),D(M)
Ç
  100 AMAX=0.0
                                                                                                MB01A003
        DO 2 I=1,M
IND(1)=I
                                                                                                M801A004
                                                                                                MB014005
     IF(ABS (A(1,1))-AMAX12,2,3
3 AMAX=ABS (A(1,1))
                                                                                                MB01A006
                                                                                                MB01A007
        [4 = [
                                                                                                MB01A008
     2 CONTINUE
                                                                                                MB0 1A009
       MM=M-1
DO 111 J=1,MM
                                                                                                MB01A010
                                                                                                MBO 1AU 11
       IF(14-J)6,6,4
                                                                                                MB01A012
     4 ISTO=IND(J)
                                                                                                MB01A013
        IND(J) = IND(I4)
                                                                                                MB01A014
        IND(14)=(STO
                                                                                                MB01A015
        DO 5 K=1,M
                                                                                                MB01A016
        STO=A(14,K)
                                                                                                MB0 1 A0 17
        A(I4,K)=A(J,K)
                                                                                                MB01A018
     A(J,K)=STO
5 CONTINUE
                                                                                                MB01A019
                                                                                                MB01A020
     6 AMAX=0.0
                                                                                                MB01A021
                                                                                                MB01A022
       DO 11 I=J1, M
                                                                                                MB0 1A023
   DO 11 [=J],M
A(I,J)=A(I,J)/A(J,J)
DO 10 K=J],M
A(I,K)=A(I,K)-A(I,J)*A(J,K)
IF (K-J1)14,14,10
14 IF(ABS (A(I,K))-AMAX)10,10,17
17 AMAX=ABS (A(I,K))
                                                                                                MB01A024
                                                                                                MB01A025
                                                                                                MBO1AU26
                                                                                                MBO 1AU27
                                                                                                MB01A028
                                                                                                MB01A029
        14=1
                                                                                                MB01A030
    10 CONTINUE
                                                                                                MB01A031
    11 CONTINUE
                                                                                                MB01A032
  111 CONTINUE
                                                                                                MB01A033
   65 DO 140 I1=1,MM
I=M+1-I1
                                                                                                MB01A034
                                                                                                MB0 140 35
        12=1-1
                                                                                                MB01A036
        DO 41 J1=1,12
                                                                                                MB0 1A0 37
        J=12+1-J1
                                                                                                MB01A038
        J2=J+1
                                                                                                MB01A039
       W1=-A(1,J)
                                                                                                MB0 1A040
        IF(12-J2)141,43,43
                                                                                                MB01A041
    43 DO 42 K=J2, 12
                                                                                                MB01A042
       W1=W1-A(K,J)+C(K)
                                                                                                MB01A043
    42 CONTINUE
                                                                                                MB01A044
  141 C(J)=W1
                                                                                                MB01A045
   41 CONTINUE
                                                                                                MB014046
       DO 40 K=1,12
                                                                                                MB01A047
        A(1,K)=C(K)
                                                                                                MBO1A048
   40 CONTINUE
                                                                                                MB01A049
  140 CONTINUE
DO 150 11=1,M
I=M+1-11
                                                                                                MB01A050
                                                                                                MB01A051
                                                                                                MB01A052
        12=1+1
                                                                                                MB01A053
       W=A([,[)
                                                                                                MB01A054
       DO 56 J=1,M
IF (I-J)52,53,54
                                                                                                MB01A055
                                                                                                MB0 1A056
```

```
MBO IAOST
   52 W1=0.0
   GO TO 55
                                                                                         MBO 1AG5B
                                                                                         MB01A059
                                                                                         MBO 1AU60
       GO TO 55
    54 W1=A(1,J)
                                                                                         MBD 1AU61
    55 [F([1-1)156,156,57
                                                                                         MBO 1AU62
    57 DO 58 K=12,M
                                                                                         MBO LAGA 3
       W1=W1-A(I,K)+A(K,J)
                                                                                         MB0 1A064
    58 CONTINUE
                                                                                         MB0 1A065
  156 C(J)=#1
                                                                                         MB01A066
    56 CONTINUE
                                                                                         MB0 14067
       DO 50 J=1,M
                                                                                         MBO 1A068
   A(I,J)=C(J)/W
50 CONTINUE
                                                                                         MB01A069
                                                                                         MB01A070
  150 CONTINUE
                                                                                         MB01A071
        DO 60 1=1,M
                                                                                         MB01A072
    63 IF(IND(1)-1)61,60,61
                                                                                         MB01A073
    61 J=IND(1)
                                                                                         MB01A074
       DO 62 K=1.M
                                                                                         MB01A075
       STO=A(K, I)
A(K, I)=A(K, J)
A(K, J)=STO
                                                                                         MH014076
                                                                                         MB01A077
                                                                                         MB01A078
    62 CONTINUE
                                                                                         MB01A079
        ISTO=IND(J)
                                                                                         MRO 14080
        IND(J)=J
                                                                                         M8014081
        IND(1)=ISTO
                                                                                         MB01A082
                                                                                         MB01A083
   60 CONTINUE
                                                                                         MB01A084
C
       DO 66 J=1,M
 64
       STO=0.
DO 67 I=1.M
        STO=STO+A(I,J)+B(I)
 67
       CONT INUE
       OT2=(L)X
D(J)=A(J,J)
       CONTINUE
 66
 68
       RETURN
       END
       SUBTYPE, FORTRAN, LMAP, LSTRAP
LSMF OUTPUT PRINT ROUTINE
T
   THIS ROUTINE COMPUTES AND PRINTS OUT THE MATRIX OF RESIDUALS OF MAGNITUDES P
C
                WITH 1) ALL STATIONS
                       2) EVENTS IN SETS OF TEN (10)
        I.B. THE TRUE RESIDUALS ARE PRINTED OUT BUT WEIGHTED RESIDUALS ARE RETURNED TO LSMF
C
       N.B.
        SUBROUTINE OUTPUT
        COMMON
                             DATE, HEAD(9), NUM(60), AWT(60), N, NR, DISK,
                             XMEAN, CLM, VARM, RSQD, RBAR, ISTAN, STAN
                             A(261,261),B(261), P(60,200)
X(261),Y(60)
       COMMON
                /MTRCES/
       COMMON /ARRAYS/
                 /CODES/
                              STN(200), SNAME, NST, EVENT(60), ECODE, NBT
        INTEGER DISK
C
       CATA ANUMI SHEVENT ) . STAR(8H+
                                                       ) . BLANK (8H
                                                                               )
C
        J=0
 420
        J=J+10
       NB=J-9
        IF(J-NBT)440,440,430
 430
       J=NBT
 440
       LINE=40
        DO 490 NS=1,NST
        IF(LINE-40)460,450,450
       LINE=0
 450
       PRINT 454, HEAD, DATE, (ANUM, NUM(I), I=NB, J)
FORMAT(55H1TABLE 3 MATRIX OF RESIDUALS OF MAGNITUDES
9A8/113X, 6HDATE , AB/
 454
       9H STATION, 4X, A5, 13, 9(4X, A5, 13))
PRINT 455, (EVENT(1), I=NB, J)
FORMAT(13X, A8, 9(4X, A8))
       DO 470 1=NB,J
IF(P(I,NS)-1000.)464,462,464
 460
 462
        AWT(I)=BLANK
        P(I,NS)=0.
        GO TO 470
 464
        AWT( I) = STAR
        P[1,NS]=P(1,NS)-X(NS)-Y(1)-XMEAN
        CONTINUE
 470
        PRINT 475, NS, STN(NS), (P(I,NS), AWT(I), I=NB, J)
       FORMAT(1X,13,2X,A6,F8.5,A1,9(3X,F8.5,A1))
 475
        LINE=LINE+1
        DO 480 1=NB.J
        INST=I+NST
        P(I,NS)=P(I+NS)+
                                 A(INST,NS))
 480
       CONTINUE
```

```
190
       CONTINUE
        IFIJ.NE.NBT) GO TO 420
       RETURN
       END
           SUBTYPE, FORTRAN, LMAP, LSTRAP
0000000
       LSMF TABLE PRINT SUBROUTINE
           THIS SUBROUTINE PRINTS OUT TABLES OF STATION AND EVENT CORRECTIONS
           THE NUMBER, 95 PERCENT CONFIDENCE LIMITS, AND VARIANCE
           ARE PRINTED OUT FOR EACH NUMBER
       SUBROUTINE TABLE
                              DATE . HEAD (9) , NUM(60) , AWT(60) , N. NR, DISK.
       COMMON
                              XHEAN, CLM, VARM, RSQD, RBAR, ISTAN, STAN
A(26), 261), B(261), P(60, 200)
X(261), Y(60), NRS(200), NRB(60), D(261),
       COMMON
                  /MTRCES/
       COMMON
                              CLX/261), CLY(60), VARX(261), VARY(60)
                 /CODES/
/STUDT/
                              STN(200), SNAME , NST, EVENT(60) , ECODE , NBT
       COMMON
       COMMON
                              ST(57), T, IDF, NDF
       INTEGER DISK
C
       CATA STARIBH ***
                                  ), BLANK(8H
                                                         )
Ç
                                                 PRINT OUT STATION CORRECTION
       LINE=40
       DO 350 NS=1,NST
       IF(LINE-40) 320, 310, 310
 310
       LINE=0
       PRINT 315, HEAD, DATE
       FORMAT (55HITABLE 4.1
 315
                                     STATION CORRECTIONS
           9A8/113X,6HDATE
                                .48/
                119H STATION
                                        COMPUTED
                                                        NUMBER
                                                                         95 PERCENT
         VARIANCE
                119H
                                            VALUE
                                                        IN ROW
                                                                     CONFIDENCE LIMITS
 320
       IF(NS-1STAN)330,325,330
       DIAG=STAR
       GO TO 340
       DIAG=BLANK
PRINT 345, NS,STN(NS),X(NS),DIAG,NRS(NS),CLX(NS),VARX(NS)
FORMAT(1X,13,2X,A5,6X,F6.3,A6,15,6X,3H+/-,F8.5,6X,F8.6)
 330
 340
 345
        LINE=LINE+1
 350
       CONTINUE
                                                PRINT OUT EVENT CORRECTION
C
       LINE=40
       DO 380 NB=1,NBT
        IF(LINE-40)370,360,360
 360
       LINE=0
       PRINT 365. HEAD. DATE
       FORMAT (55H1TABLE 4.2
                                     BEST ESTIMATE OF MAGNITUDES
           9A8/113X,6HDATE ,A8/
                119H EVENT
                                        COMPUTED
                                                        NUMBER
                                                                        95 PERCENT
         VARIANCE
                119H
                                                                     CONFIDENCE LIMITS
                                            VALUE
                                                        IN COL.
 370
       PRINT 375, NB, EVENT(NB), Y(NB), NRB(NB), CLY(NB), VARY(NB)
 375
       FORMAT(1X, 12, 2X, A8, 4X, F6. 3, 6X, I5, 6X, 3H+/-, F8.5, 6X, F8.6)
       LINE=LINE+1
 380
       CONTINUE
C
       RETURN
           SUBTYPE, FORTHAN, LMAP, LSTRAP
       LSMF TRIANGULAR MATRIX PRINT ROUTINE
       PRINTS THE LOWER TRIANGULAR MATRIX (P) IN SETS OF 5 EVENTS FOR ALL EVENTS FROM THE START OF THE SET
       SUBROUTINE TRIANG
                              DATE + HEAD (9) + NUM (60) + AWT (60)
                 /MTRCES/ A(261,261),B(261), P(60,200)
/ARRAYS/ X(261),Y(60)
/CODES/ STN(200),SNAME,NST, EVENT(60),ECODE,NBT
        COMMON
        COMMON
       COMMON
        DATA ANUMI SHEVENT
        J=0
 420
       J=J+5
       NR=J-L
        IF(J-NBT)440,440,430
 430
       J=NBT
       LINE=40
        DO 490 NA=NB, NBT
        IF(LINE-40)460,450,450
 450
       LINE = 0
       PRINT 454, HEAD, DATE, (ANUM, NUM(1), [=Nb, J)
FORMAT(55HITABLE 5 MATRIX OF DIFFERENCE
1 988/113x, 6HDATE , 88/
                                  MATRIX OF DIFFERENCES OF MAGNITUDES
```

32

1

```
2 9H EVENT ,8x,45,13,4(15x,45,13)) PRINT 455, (EVENT(I),I=NR,J)
      FORMAT(17X, A8, 4(15X, A81)
460
     DO 470 1=NB.J
      AWT(1)=Y(NA)-Y(1)
      CONTINUE
      IF(NA-J)482,482,484
484
      PRINT 485, NA, EVENT(NA), (AWT(I), P(I, NA), I=NB, NC)
      FORMAT(1x, [2,2x,48,5(F11.5,5H +/-,F7.51)
485
      LINE#LINE#1
     CONTINUE
      IF(J.NE.NBT) GO TO 420
      RETURN
      END
         SUBTYPE, DATA
START JOB
RUSSIAN LOG AMPLITUDE A/T
STU STUTTGART+ GERMANY
                                                12/01/66
                                   R1 ONLY
                                                                      WWSSS
                         GERMANY
                                           48 46 15.0N
                                                             9 16 36.0E
                         MONTANA
                                           45 36 00.0N
                                                           111 38 00.0W
BOZ
      BOZEMAN*
SCP
      STATE COLLEGE*
                         PENNSYLVANIA
                                           40 48 35.5N
                                                            77 52 09.8W
     PRETORIA*
NURMIJARVI*
                         SOUTH AFRICA
                                           25 45 00.0S
60 30 32.4N
1 16 26.2S
                                                            28 15 00.0E
PRE
                                                            24 39 05.1E
36 48 13.2E
NIIR
      NAIROBI*
                         KENYA
NA I
MAN
     MANILA#
                         PHIL IPP INES
                                            14 4C 00.0N
                                                           121 05 00.0E
                         NORWAY
                                                             9 37 55.0E
     KONGSBERG#
                                           59 38 57.0N
KON
                                                            27 00 45.1E
                         FINLAND
     KEVO*
                                           69 45 21.2N
KEV
      ISTANBUL .
                                           41 02 36.0N
                                                           28 59 06.0E
105 22 16.0W
77 04 00.0W
IST
                         TURKEY
                         COLORADO
                                           39 42 01.0N
      GOLDEN*
GOL
      GEORGETOWN*
                         WASHINGTON DC
                                           38 54 00.0N
GE O
                                                           90 22 12.0W
96 47 02.0W
147 47 36.0W
FL 0
      FLORISSANT*
                         MISSOURI
                                           38 48 06.0N
                                           32 50 46.0N
64 54 00.0N
      DALLAS .
                         TEXAS
      COLLEGE OUTPOST ALASKA
COL
                                           20 08 36.0S
34 56 30.0N
                         RHODESIA
                                                           28 36 48.0E
106 27 30.0W
52 31 34.1E
      BUL AWAYO#
BUL
      AL BUQUERQUE *
                         NEW MEXICO
AL Q
SHI
      SHIRAZ .
                         IRAN
                                           29 38 40.2N
      ANN ARBOR#
                         MICHIGAN
                                           42 17 59.0N
                                                            83 39 22.0W
MAA
     MUNDARING*
                                                           116 12 24.0E
120 34 47.0E
MUN
                         AUSTRALIA
PHILIPPINES
                                           31 58 30.0S
                                           16 24 39.0N
81 36 00.0N
      BAGUIO CITY*
BAG
                                                            16 41 00.0H
     NORE *
                         GREENLAND
NOR
      ATLANTA*
                         GEORGIA
                                           33 26 00.0N
                                                            84 20 15.0W
ATL
                                                            4 24 40.0W
4 02 55.0W
3 12 18.0W
13 45 51.0E
12 26 00.0E
80 25 14.0W
23 43 00.0E
                                           36 43 39.0N
39 52 53.0N
     MAL AGA+
                         SPAIN
MAL
      TOLEDO*
                         SPAIN
TOL
                                           55 19 00.0N
45 42 32.0N
55 41 00.0N
37 12 40.0N
      ESKDALEMUIR*
                         SCOTLAND
ESK
TRI
      TRIESTE*
                         ITALY
      COPENHAGEN+
                         DENMARK
COP
      BL ACKS BURG#
                         VIRGINIA
BL A
                         GREECE
                                           37 58 22.0N
ATU
      ATHENS UNIV. .
      AKUREYRI*
                         ICELAND
                                           65 41 12.0N
                                                            18 06 24.0W
AKU
                                           10 14 00.0N
KOD
     KODA 1K ANAL #
                         INDIA
                                                            77 28 00.0E
                         WASHINGTON
                                           46 45 00.0N
                                                           121 48 36.0W
LON
      LONGMIRE*
                                           28 41 00.0N
18 32 00.0N
      NEW DELHI*
ND I
                         INDIA
                                                            77 13 00.0E
      POONA+
                                                            73 51 00.UE
POO
                         INDIA
SEO
     SEOUL*
                         KOREA
                                            37 34 00.0N
                                                           126 58 00.0E
                                                           17 06 00.0E
123 18 11.5W
70 41 07.0W
70 24 55.0W
71 29 28.6K
      WINCHOEK*
                         SOUTH AFRICA
                                           22 34 00.05
WIN
                                           44 35 08.6N
COR
      CORVALLIS*
                         OREGON
                                           33 08 37.0S
23 42 18.0S
PFL
      PELCEMUE*
                         CHILE
      ANTOFAGASTA*
                         CHILE
ANT
                                            16 27 43.55
      AREQUIPA+
                         PERU
ARE
                         BOLIVIA
                                            16 31 57.65
                                                            68 05 54.1W
LPB
      LA PAZ#
      RAPID CITY*
                                           44 04 30.0N
RCD
                         SOUTH DAKOTA
                                                           103 12 30.0F
      TASMANIA UNIV. TASMANIA
MINNEAPOLIS MINNESOTA
PORT MORESBY NEW GUINEA
                                                           147 19 13.5E
93 11 24.0W
                                            42 54 35.75
TAU
                                           44 54 52.0N
9 24 33.0S
MNN
                                                           147 09 14.0E
13 24 11.0E
PMG
      AQUILA+
                         I TAL Y
                                            42 21 14.0N
UPA
                         CAL IFORNIA
BKS
      BYERLY .
                                            37 52 36.0N
                                                           122 14 06.0W
                                           69 15 00.0N
18 47 24.0N
                                                            53 32 00.0W
98 58 37.0E
GDH
      GODHAVN+
                         GREENLAND
      CHIENGMAI *
                         THAILAND
CHG
      CHARTERS TOWERS + AUSTRALIA
                                           20 05 18.05
                                                           146 15 16.UE
CTA
                                                            66 57 00.0E
                                            30 11 18.0N
QUE
      QUETTA*
      KAP TOBIN+
                         GREENLAND
                                           70 25 00.0N
                                                            21 59 00.0M
END STATIONS
      R1150364
R1160564
      R1190764
      R1161164
      R1040265
      R1030365
      R1110565
      END EVENTS
      R1030365
                     2.20
STU
      R1150364
                     2.30
      R1160564
STU
STU
      R1190764
                     2.00
      R1161164
                     2.30
```

R1040265

2.21

BBBBBSSPPRREEERRRIIIINNNNNNVVVTTTTTLLLLL00000	R1150364 R1160564 R1190764 R1190764 R11103664 R116136365 R1161363664 R1190764 R1190764 R1190764 R1190764 R1190764 R1190764 R1190764 R1190764 R1190764 R1190365 R1150364 R1190365 R1150364 R1161164 R1161565 R1150364 R1160564	1.58 1.70 1.70 1.76 0.78 1.08 1.08 1.08 1.10 1.58 1.08 1.10 1.10 1.10 1.10 1.10 1.10 1.1
DDCCCCCBBBBBAAAAAAAAAAAAMMMMBBBBNNATTLLLLLKK	R1161164 R1030365 R1150364 R1160564 R1190764	1.450 1.900 1.871 1.900

BOZ R1030365

1.58

```
ESK
     R1161164
                    1.91
ESK
     R1110565
                   0.90
TRI
     K1160564
                    1.80
TRI
     K1190764
                    1.70
COP
     R1190764
                    1.70
COP
     R1040265
                    2.06
     R1161164
                    1.18
BL A
                    1.90
ATU
     R1040265
     R1161164
                    1.78
ATU
AK U
     R1030365
                    1.90
                    1.95
AK U
     K1161164
KOD
     R1030365
                    1.82
     R1161164
                    1.94
KOD
                    1.53
     R1030365
LON
                    1.65
LON
     R1161164
LON
     R1110565
                    0.81
ND I
     R1110565
                    1.84
                   2.71
NUI
     R1030365
P00
     R1030365
                    1.60
P00
     R1161164
                    1.60
P00
     R1040265
                    1.70
     R1161164
                    1.34
SEO
                    1.30
WIN
     R1161164
COR
     R1161164
                    1.95
     K1161164
                    1.40
PEL
                    1.52
ANT
     R1040265
                    1.48
ANT
     R1030365
                    0.96
ARE
     R1030365
LPB
     R1161164
                    0.60
RCD
     R1030365
                    1.30
                    1.30
TAU
     R1161164
                    2.11
MNN
     K1161164
                    1.82
PMG
     K1040265
PMG
     R1030365
                    1.60
PMC
     R1150364
                    1.68
PMG
     R1161164
                    1.78
AQU
     K1161164
                    1.48
BKS
     R1161164
                    1.55
     R1040265
CDH
                    1.72
CHG
                    1.70
     R1030365
CTA
      R1030365
                    1.23
QUE
      R1030365
                    2.06
                    1.50
KTG
      R1030365
END MAGNITUDES
      END JOB
```