United Kingdom Atomic Energy Authority

ATOMIC WEAPONS RESEARCH ESTABLISHMIENT

AWRE REPORT NO. 0-54/66

A Special Purpose Least Squares Program

A. Douglas

Recommended for issue by

> H. I. S. Thirlaway, Group Leader

Approved by
K. D. Bomford, Deputy Chief of Applied Physics

C13
550.34:519.281
519.281:550.34
681.3:550.34
623.454 .8

TABLJ: OF CONTENTS

PAGE
SUMMARY 3

1. INTRODUCTION 3
2. THI: MODEL 4
3. THE ANALYSIS OF VARIANCE APPROACH 5
4. THE METHOD OF LEAST SQUARES 5
5. CONFIDENCE LIMITS 11
6. WEIGHTING 14
7. THE PROGRAM 14
APPENDIX A: MATRICES AND MATRIX INVERSION 18
APPENDIX B: SOME STATISTICAL CONCEPTS AND PROOFS 22
APPENDIX C: PROGRAM LISTING 24

SUMMARY

The relative size, $M(I, J)$, of the seismic signal recorded at station I from the Jth explosion at a particular firing site is assumed to be given by the equation

$$
M(I, J)=B(J)+S(I)+\varepsilon(I, J),
$$

where $B(J)$ depends on the size of the explosion and $S(I)$ is a station term dependent mainly on the distance of the Ith station from the firing site. $\mathrm{M}(1, J)$ is measured from seismic records and will usually be in error; $\varepsilon(\mathrm{I}, \mathrm{J})$ is the error term.

A least squares program is described for estimating: (1) $B(J)$ and $S(1)$, (2) the confidence limits on these quantities, and (3) the differences, and confidence limits on the differences, between all possible pairs of B(J).

Although written for a specific purpose the method is general and can be used to estimate any quantities that can be expressed as equations of the above type.

1. INTRODUCTION

A seismic event radiates elastic waves through the body of the earth. The relative amplitude of these waves as measured at distant recording stations will be determined by two main effects: (1) the size of the event, and (2) the distance of the recording station from the event. The recording instruments and the geology of the recording station and firing site will also have an effect but for explosions from the same firing site these effects will be constant.

If $M(I, J)$ is a measure of the size of the signal (defined as proportional to the log of the measured amplitude) for the Jth explosion at the Ith station, $M(I, J)$ is given by the equation

$$
\begin{equation*}
\mathrm{M}(\mathrm{I}, \mathrm{~J})=\mathrm{B}(\mathrm{~J})+\mathrm{S}(\mathrm{I})+\varepsilon(\mathrm{I}, \mathrm{~J}) \tag{1}
\end{equation*}
$$

where $B(J)$ depends on the seismic size of the explosion and $S(I)$ is a station term dependent mainly on the distance of the Ith station from the firing site, but including any effects due to recording instruments and geology of the recording station. $M(I, J)$ is measured from seismic records and will usually be in error; $\varepsilon(I, J)$ is the error term.

The problem is to estimate (1) $B(J)$ and $S(D)$ (none of which are known), (2) the confidence limits of these quantities, and (3) the differences, and confidence limits on the differences, between the explosion terms. This report describes a computer program for solving this problem by least squares. The program was written by Mr. J. B. Young and is currently in use at Blacknest; it has been given the name LSMF - Least Squares Matrix Factorisation - for historical reasons. The program has developed from others designed to solve the same problem; all these have been titled LSMF. This name has therefore been retained even though "least squares matrix factorisation" is not a very informative title.

2. THE MODEL

Consider t explosions (fired at one test site) and recording stations. For every station that records one of these explosions there will be an equation of type (1). If all stations record all explosions this results in rt equations. The system is apparently over-determined as there are only $r+t$ unknowns; this however is not so. Each equation only defines $S(I)+B(J)$; there are no equations relating two or more station terms or two or more explosion terms. There is then no unique solution; whatever value is given to one station term, $S(K)$ say, can be allowed for by adjustments to each of the remaining $S(I)$ and $B(J)$ - equation (1) can always be satisfied.

Further assumptions must then be made. The simplest of these is to give one station term a fixed value. As only the relative size of $S(I)$ and $B(J)$ are really important, $M(I, J)$ being a relative value, this would be acceptable except that confidence limits cannot be determined for the $S(I)$ that is assigned the particular value.

To overcome this difficulty equation (1) is rewritten as

$$
\begin{equation*}
M(I, J)=B(J)+S(I)+M B A R+\varepsilon(I, J), \tag{2}
\end{equation*}
$$

where MBAR is a constant. As $M(I, J)$ is a purely relative value, the addition of this constant does not materially affect the model. The further assumption is now made that $\sum_{J} B(J)=0$ and $\sum_{I} S(I)=0$. MBAR can be thought of as the size of the average explosion at the average siation; $B(J)$ and $S(I)$ then become corrections to this average for the particular explosion J and station I .

If it is assumed that the errors $\varepsilon(I, J)$ are normally distributed with zero mean and variance σ^{2}, this model is the same as the widely used analysis of variance model.

3. THE ANALYSIS OF VARIANCE APPROACH

The model described above is simply that of a two way analysis of variance. The data displayed in the usual analysis of variance table are:-

Now as $\sum S(I)=0$ and $\xi B(J)=0$ and the expectation of $\varepsilon(1, J)=0$, the average of each column is an estimate of $\mathrm{B}(J)$ and the average of each row is an estimate of $S(1)$. The mean value over all $M(I, J)$, gives the value of MBAR. Substituting for $S(I), B(J)$ and MBAR in equation (2) gives the errors $\varepsilon(I, J)$; from these errors σ^{2} can be estimated and hence the confidence limits obtained.

Unfortunately this method cannot be applied directly because not all $M(I, J)$ are known - stations of low sensitivity fail to record the smaller events and some records are simply not available. The method of least squares however does not require that all $M(1, J)$ be known.

4. THE METHOD OF LEAST SQUARES

Consider the equation

$$
\begin{equation*}
y=a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}+a_{4} x_{4}+\ldots \ldots \ldots a_{n} x_{n} \tag{3}
\end{equation*}
$$

where $x_{1} \ldots \ldots x_{n}$ are independant variables; $a_{1}, a_{2}, a_{3} \ldots \ldots a_{n}$ are unknown coefficients, called the regression coefficients, and y is the dependent variable determined experimentally. Ideally $a_{1}, a_{2} \ldots \ldots a_{n}$ can be found simply by observing n values of y for different values of the independent variables and solving the resulting equations.

Usually, however, the measured value of y will be in error and the problem becomes one of estimating the most probable values of a_{1}, $a_{2} \ldots \ldots a_{n}$ given $m>n$ values of y. This can be done using the principle of least squares which states: if $\varepsilon_{1}, \varepsilon_{2} \ldots \ldots . \varepsilon_{n}$ are the errors in m
different equations of type (3) the most probable values of a_{1}, a_{2}, $a_{3} \ldots \ldots a_{n}$ can be found by making $\varepsilon_{1}^{2}+\varepsilon_{2}^{2}+\ldots \ldots \varepsilon_{m}^{2}$ (i.e., the sum of the squared errors) a minimum,

$$
\text { or } \frac{\partial \sum_{i}^{m} \varepsilon_{i}^{2}}{\partial a_{j}}=0 \text { for } \cdot j=1, n \text {. }
$$

If $n=2$ and x_{1} is held constant at 1 the problem reduces to the familiar fitting of the "best" straight line.

Suppose that the m equations of type (3) are as follows:-

$$
\begin{aligned}
& y_{1}-a_{1} x_{11}+a_{2} x_{12}+a_{3} x_{13}+\ldots \ldots a_{n} x_{1 n}+\varepsilon_{1} \\
& y_{2}=a_{2} x_{21}+a_{2} x_{22}+a_{3} x_{23}+\ldots \ldots a_{n} x_{2 n}+\varepsilon_{2} \\
& \cdot \\
& \cdot \\
& \cdot \\
& y_{m}=a_{1} x_{m_{1}}+a_{2} x_{m_{2}}+a_{3} x_{m_{3}} \ldots \ldots a_{n} x_{m n}+\varepsilon_{m} .
\end{aligned}
$$

These equations are called the equations of condition.

$$
\begin{aligned}
\text { Now } \sum_{i} \varepsilon_{i}^{2} & =\left(a_{1} x_{11}+a_{2} x_{12}+a_{3} x_{13}+\ldots \ldots a_{n} x_{1 n}-y_{1}\right)^{2} \\
& +\left(a_{1} x_{21}+a_{2} x_{22}+\ldots \ldots a_{n} x_{2 n}-y_{2}\right)^{2} \\
& +\ldots \ldots \ldots \\
& +\left(a_{1} x_{m_{1}}+a_{2} x_{m_{2}}+a_{3} x_{m_{3}} \ldots \ldots a_{n} x_{m n}-y_{m}\right)^{2}
\end{aligned}
$$

$$
\text { and } \frac{\partial \sum_{i} \varepsilon_{i}^{2}}{\partial a_{1}}=2\left\{\left(x_{11} x_{11}+x_{21} x_{21}+x_{3_{1} x_{31}}+\ldots \ldots x_{m_{1}} x_{m_{1}}\right) a_{1}\right.
$$

$$
+\left(x_{11} x_{12}+x_{21} x_{22}+\ldots \ldots x_{m_{1}} x_{m_{2}}\right) a_{2}
$$

$$
+\left(x_{11} x_{1 n}+x_{21} x_{2 n}+\ldots \ldots x_{m_{1}} x_{m n}\right) a_{n}
$$

$$
\left.-\left(x_{11} y_{1}+x_{21} y_{2}+\ldots \ldots x_{m_{1}} y_{m}\right)\right\}
$$

For the best estimate of $a_{1} \frac{\partial \varepsilon_{i}^{2}}{\partial a_{1}}=0$,
i.e., $a_{1} \sum_{i}\left(x_{i_{1}}\right)^{2}+a_{2} \sum_{i} x_{i_{1}} x_{i_{2}}+\ldots \ldots a_{n} \sum_{i} x_{i_{1}} x_{i n}=\sum_{i} x_{i_{1}} y_{i}$.

The process of deriving equation (4) is equivalent to multiplying each equation of condition by its own coefficient of a_{1}; the coefficient of a_{j} in equation (4) is then the sum of the coefficients of a_{j} in these new equations. Similar equations are obtained (equivalent to equating $\frac{a \sum_{i} \varepsilon_{i}^{2}}{3 a_{j}}$ to zero for $j=2, n$) by multiplying each equation of condition by its own coefficient of a_{j} and summing coefficients. This produces n equations, called the normal equations, with n unknowns. In matrix form the normal equations are

or $\mathrm{XA}=\mathrm{Y}$; the X matrix being symmetrical about the diagonal.
The normal equations can usually be solved uniquely. Any of the usual methods can be used, but one method, matrix inversion, has advantages if the confidence limits of the unknowns are required. Matrix inversion is therefore used in the LSMF program.

If the inverse of matrix X is the matrix C
$\left[\begin{array}{llllll}c_{11} & c_{12} & \cdot & \cdot & \cdot & c_{1 n} \\ c_{21} & \cdot & \cdot & \cdot & \cdot & \cdot \\ c_{31} & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ c_{n 1} & \cdot & \cdot & \cdot & \cdot & c_{n n}\end{array}\right]$
X and C are related by the equation

$$
\left[\begin{array}{cccccc}
a_{1} & \cdot & c_{1 j} & \cdot & \cdot & c_{1 n} \\
\therefore & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
c_{n_{1}} & \cdot & \cdot & \cdot & \cdot & c_{n n}
\end{array}\right]\left[\begin{array}{ccccc}
2\left(x_{i_{1}}\right)^{2} & \cdot & \cdot & 2 x_{i_{1}} x_{i n} \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
2 x_{i n} x_{i_{1}} & \cdot & \cdot & 2 x_{i n} x_{i n}
\end{array}\right]\left[\begin{array}{ccccc}
1 & 0 & \cdot & \cdot & \cdot \\
0 & 1 & 0 & \cdot & \cdot \\
0 & 0 & 0 \\
0 & 0 & 1 & \cdot & \cdot \\
0 & \cdot & \cdot & & \cdot \\
\cdot & \cdot & \cdot & & \\
0 & 0 & \cdot & \cdot & \cdot
\end{array}\right] \ldots(6)
$$

The elements of the inverse matrix can be found by expanding to give a series of linear equations.

Thus, the result of multiplying the X matrix by the vth row of the inverse matrix (see also Appendix A) is

$$
\begin{aligned}
& c_{v i} \sum x_{i_{1}} x_{i_{1}}+c_{v_{2}} \sum x_{i_{1}} x_{i_{2}} \cdot \text {. . } c_{v n} \sum x_{i_{1}} x_{i n}=0 \\
& c_{v_{1}} \sum x_{i v} x_{i_{1}}+c_{v_{2}} \sum x_{i v} x_{i 2} \cdot \text {. } \cdot c_{v n} \sum x_{i v} x_{i n}=1 \ldots(7)
\end{aligned}
$$

Solving this set of equations for $c_{v_{1}}, c_{v 2}, \ldots \ldots c_{v n}$ gives the elements of the v th row of the inverse matrix.

Multiplying equation (5) by C gives

$$
\text { or }\left[\begin{array}{l}
a_{1} \tag{8}\\
a_{2} \\
\cdot \\
\cdot \\
\cdot \\
a_{n}
\end{array}\right]=\left[\begin{array}{llllll}
c_{11} & c_{12} & \cdot & \cdot & \cdot & c_{1 n} \\
c_{21} \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
c_{n_{1}} \cdot & \cdot & \cdot & \cdot & c_{n n}
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
\cdot \\
\cdot \\
\cdot \\
y_{n}
\end{array}\right]
$$

each of the elements of the matrix can then be evaluated as both C and Y are known. The part played by the inverse matrix in determining the confidence limits will be discussed in the next section.

Equation (2) can be put in a form similar to equation (3) as follows:-

$$
\begin{aligned}
M(I, J)= & 1 M B A R+0 S(1)+\ldots \ldots 1 S(I)+\ldots \ldots 0 S(r)+ \\
& 0 B(1)+\ldots \ldots 1 B(J)+\ldots . .0 B(t)+\varepsilon(I, J),
\end{aligned}
$$

$M(I, J)$ is now equivalent to y, the dependent variable, MFiAR to ${ }_{1}, S(I)$ and $B(J)$ to the remaining a 's up to a_{n} and the independent variables are all either 1 to 0.

To include the assumptions $\sum_{\mathrm{I}}^{\mathbf{r}} S(I)=0$ and $\sum_{J}^{\mathbf{t}} B(J)=0$ two further equations of conditions have to be added:

$$
\begin{aligned}
0 & =0 \mathrm{MBAR}+1 \mathrm{~S}(1)+1 \mathrm{~S}(2)+\ldots \ldots 1 \mathrm{~S}(\mathrm{I})+\ldots \ldots 1 \mathrm{~S}(\mathrm{r}) \\
& +0 \mathrm{~B}(1)+\ldots \ldots 0 \mathrm{~B}(\mathrm{~J}) \ldots \ldots+0 \mathrm{~B}(\mathrm{t})
\end{aligned}
$$

and

$$
\begin{aligned}
0 & =0 \mathrm{MBAR}+0 \mathrm{~S}(1)+0 \mathrm{~S}(2)+\ldots \ldots 0 \mathrm{~S}(\mathrm{~J})+\ldots \ldots 0 \mathrm{~S}(\mathrm{r}) \\
& +1 \mathrm{~B}(1)+\ldots \ldots 1 \mathrm{~B}(\mathrm{~J}) \ldots \ldots 1 \mathrm{~B}(\mathrm{t}) .
\end{aligned}
$$

Using these equations of condition the normal equations can be derived in exactly the same way as described above.

As an example consider the following set of equations of condition:
$\left[\begin{array}{lllllll}1 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0\end{array}\right]=\left[\begin{array}{l}\mathrm{S}(1) \\ \mathrm{S}(2) \\ \mathrm{S}(3) \\ \mathrm{B}(1) \\ \mathrm{B}(2) \\ \mathrm{B}(3) \\ \mathrm{MBAR}\end{array}\right]=\left[\begin{array}{c}2.0 \\ 3.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 5.0 \\ 7.0 \\ 0.0 \\ 0.0\end{array}\right]$

In this example it is assumed that station $S(2)$ did not record explosion $B(2)$.

Multiplying each equation of condition by its own coefficient of $S(1)$ and summing coefficients gives the first normal equation

$$
4 S(1)+S(2)+1 S(3)+1 B(1)+1 B(2)+1 B(3)+3 M B A R=10.0
$$

Multiplying each equation of condition by its own coefficient of $S(2)$ and summing gives

$$
1 S(1)+3 S(2)+1 S(3)+1 B(1)+0 B(2)+1 B(3)+2 M B A R=8.00
$$

Similar normal equations can be obtained for $S(3), B(1), B(2), B(3)$ and MBAAR.

In matrix form the equations are

$\left[\begin{array}{llllllllll}4 & 1 & 1 & \cdot & 1 & 1 & 1 & . & 3\end{array}\right]$	S(1)	[10.0
131.101 .2	$S(2)$	8.0
114.111.3	S(3)	15.0
- -		
111.411 .3	$B(1)$	9.0
101.131 .2	B(2)	8.0
111.114 .3	$\mathrm{B}(3)$	16.0
$\begin{array}{lllllll}3 & 2 & 3 & 3 & 2 & 3\end{array}$	MBAR	33.0

A series of linear equations has a unique solution if the determinant of the coefficients of the unknowns is not zero. The determinant of the matrix of coefficients in equation (9) is non-zero, but if equation (1) is
used as the model it can easily be shown that the determinant of coefficients is zero. Thus, the normal equations now become
$\left[\begin{array}{llllll}3 & 0 & 0 & 1 & 1 & 1 \\ 0 & 2 & 0 & 1 & 0 & 1 \\ 0 & 0 & 3 & 1 & 1 & 1 \\ 1 & 1 & 1 & 3 & 0 & 0 \\ 1 & 0 & 1 & 0 & 2 & 0 \\ 1 & 1 & 1 & 0 & 0 & 3\end{array}\right]$
$\left[\begin{array}{l}S(1) \\ S(2) \\ S(3) \\ B(1) \\ B(2) \\ B(3)\end{array}\right]=\left[\begin{array}{r}10.0 \\ 8.0 \\ 15.0 \\ 9.0 \\ 8.0 \\ 16.0\end{array}\right]$

Adding row 2 and 3 to row 1 and rows 5 and 6 to row 4 makes the new rows 1 and 4 identical. Subtracting row 4 from row 1 makes all row 1 zero; hence the determinant is zero. This is true of any matrix based on equation (1).

5. CONFIDENCE LIMITS

Estimates of the regression coefficients can be found by solving the normal equations. As a measure of the reliability of these estimates it is useful to compute the limits, called confidence limits, of the range within which the true value of the regression coefficients can be expected to lie with a given probability. The smaller this range turns out to be the more reliable are the estimates.

Consider the simple case of a random variable normally distributed with variance σ^{2} and mean ξ, then it is easily shown that any item picked at random from such a population will lie between $\xi+1.960$ and $\xi-1.960$ (or in words within roughly two standard deviations of the mean) with a 95% probability, i.e., 19 times in 20.

Confidence limits are arrived at in a similar way; the main difference is that ξ and σ are not known and have to be estimated.

The estimates of the regression coefficients are analogous to the mean in the above simple example. To estimate the variance requires a more detailed study of equation (8). Expanding equation (8)

$$
\begin{align*}
& a_{i}=c_{12} \sum_{i}^{m} x_{i_{1}} y_{i}+c_{12} \sum_{i}^{m} x_{i_{2}} y_{i} \cdot \\
& a_{2}=c_{21} \sum_{i}^{m} x_{i_{1}} y_{i}+c_{22} \sum_{i}^{m} x_{i_{2}} y_{i} \\
& \cdot \tag{10}\\
& \text { • }
\end{align*}
$$

Now the quantity in square brackets in equation (11) is solely a function of the independent variables and can be represented by a single quantity, say $k_{v i}$.
Then

$$
a_{v}=\sum_{i}^{m} y_{i} k_{v i}
$$

and (using equation (B3), Appendix B)

$$
\left.V\left[a_{v}\right]=\sum_{i}^{m} k_{v i}^{2} V L y_{i}\right]=\sigma^{2} \sum_{i}^{m} k_{v_{i}}^{2},
$$

where $V\left[a_{y}\right]$ is understood to mean the variance of ${ }_{v}$ and σ^{2} is the variance of y_{i}, i.e., the variance of the errors ε_{i}. It can also be shown that, because a_{v} is a linear function of y_{i} which is normally distributed, a_{v} will also be normally distributed [1].

Now σ^{2} is not known, so $V\left[a_{v}\right]$ cannot be determined. An estimate of σ^{2}, s^{2} say, can however be obtained. Thus,

$$
s^{2}=\frac{\Sigma\left({ }^{\varepsilon} i^{\prime}\right)^{2}}{m-n},
$$

where m is the number of equations of condition and n is the number of

1. K. A. Brownlee: (1965) "Statistical Theory and Methodology in Science and Engineering". John Wiley and Sons Incorporated, New York.
unknowns (regression coefficients). The quantity $m-n$ is called the number of degrees of freedom. An estimate of the errors ε_{i}^{\prime} is obtained by substituting the regression coefficients in the equations of condition.

As a_{v} is normally distributed with variance $s^{2} \sum^{m} k^{2}$, the 95% confidence limits should then be $a_{v} \pm 1.96 \sqrt{s^{2} \sum_{i}^{m} k_{v i}^{2}}$. This is only true if the degrees of freedom D is very large. For small D, s^{2} is a less reliable estimate of σ^{2}; to allow for this the confidence limits become $a_{v} \pm t$ $\sqrt{\mathrm{s}^{2} \sum_{\mathrm{i}}^{\mathrm{m}} \mathrm{k}^{2}}$, where t (called Students t) depends on the degrees of freedom and is >1.96. (Tables of Students t for various degrees of freedom and level of probability are given in most books on statistics.)

To determine the confidence limits $\sum_{i} \mathrm{k}^{2}$ must be evaluated. At first sight this appears a formidable task; it can however be shown that m $\sum_{i} k_{v i}^{2}$ is simply $c_{v v}$; the v th diagonal element in the inverted matrix.

This can be demonstrated as follows:-

$$
\sum_{i}^{m} k_{v i}^{2}=\sum_{i}^{m} k_{v i} k_{v i}
$$

$$
=\sum_{i}^{m} k_{v i}\left[c_{v i} x_{i_{1}}+c_{v_{2}} x_{i_{2}}+\ldots . c_{v n} x_{i n}\right]
$$

$$
=c_{v 1} \sum_{i}^{m} k_{v_{i}} x_{i_{1}}+c_{v_{2}} \sum_{i}^{m} k_{v_{i}} x_{i_{2}}+\ldots . c_{v n} \sum_{i}^{m} k_{v i} x_{i n} .
$$

Considering now only the $c_{v h}$ term of the right hand side,

$$
\begin{aligned}
c_{v h} \sum_{i}^{m} k_{v i} x_{i h}= & c_{v h} \sum_{i}^{m}\left[c_{v i} x_{i_{1}}+\ldots \ldots c_{v n} x_{i n}\right] x_{i h} \\
= & c_{v h}\left[c_{v i} \sum x_{i_{1}} x_{i h}+c_{v_{2}} \sum x_{i_{2}} x_{i h}+\ldots \ldots\right. \\
& \left.\ldots \ldots c_{v n} \sum x_{i n} x_{i h}\right] .
\end{aligned}
$$

When $h=v$ the quantity in the square brackets is identical to the left hand side of an equation formed by multiplying the v th row of the C matrix by the v th column of the X matrix; from (6) this is equal to 1 . For $h \neq v$ the quantity in square brackets is identical to the left hand side of one of the other equations (6); the right hand side of all these equations is zero.

> m

Thus, $\quad \sum_{i} k_{v i}^{2}=c_{v \nu}$, the v th diagonal element of the inverted matrix. and $V\left[a_{v}\right]=c_{V V} s^{2}$; it is because of this that matrix inversion is used for solving the normal equations.

To get the confidence limits on the difference of two a's, a_{v} and a_{v}^{\prime} the variance on the difference is required, i.e., $V\left[a_{v}-a_{v}^{\prime}\right]$. Now $V\left[a_{v}-a_{v}^{\prime}\right]=V\left[a_{v}\right]+V\left[a_{v}^{\prime}\right]-2 \operatorname{Cov}\left[a_{v} a_{v}^{\prime}\right]$, where $\operatorname{Cov}\left[a_{v}, a_{v}^{\prime}\right]$ is the covariance of a_{v}, a_{v}^{\prime} (for proof see Appendix B). By an analysis similar to that given for $V\left[a_{v}\right]$ it can be shown that

$$
\operatorname{Cov}\left[a_{v}, a_{v}^{\prime}\right]=s^{2} c_{v v}^{\prime},
$$

i.e., the product of the variance of the errors and the element of the inverse matrix that lies at the intersection of the vth row and the v th column (or vice versa - the two elements $c_{v v^{\prime}}$, and $c_{v^{\prime} v}$ are equal because the inverse matrix is also symmetrical).

The variance of the differences of two a's is then given by

$$
v\left[a_{v}-a_{v}^{\prime}\right]=s^{2}\left(c_{v v}+c_{v^{\prime} v^{\prime}}^{-2} c_{v v^{\prime}}\right) .
$$

The 95% confidence limits of $a_{v}-a_{v}^{\prime}$ is then $\sqrt{V\left[a_{v}-a_{v}^{\prime}\right]}$.
Confidence limits on MBAR, $S(1), B(J)$ and on the differences between each pair of explosion terms $\left(B\left(J^{\prime} s\right)\right)$, are calculated by the methods outlined above. As the $M(I, J$'s are only relative values the confidence limits on the absolute values of MBAR, $S(I)$ and $B(J)$ have little meaning. The confidence limits on the differences of the explosion terms are however valuable as they are confidence limits on the absolute differences between the seismic sizes of pairs of explosions.

6. WEIGHTING

So far it has been assumed that the errors in the dependent variables all have the same variance σ^{2}. This may not be so; some measurements may be known with greater (absolute) accuracy. To get the best estimate of the regression coefficients, i.e. the one with minimum variance, each equation of condition should be weighted by a factor \sqrt{w}, where $w=\frac{1}{\sigma_{i}^{2}}$; σ_{i}^{2} is the variance of the ith measurement (for a discussion of weighting see reference [1]). A facility for weighting any equation of condition has therefore been included in the LSMF program, although σ_{i}^{2} will usually be difficult to estimate.

7. THE PROGRAM

The program will accept data for up to 60 explosions recorded at a maximum of 200 stations. The input to the program is:-
(1) Students \mathbf{t} tables for the 95% probability level.
(2) A title for the data being processed and any number of comment cards.

1. E. Whittaker and G. Robinson: (1944) "The Calculus of Observations: A Treatise on Numerical Mathematics". Fourth Edition, Blackie, London and Glasgow
(3) An identification code for each station.
(4) An identification code for each explosion.
(5) Cards with station code, event code, $M(I, J)$ and the weight to be assigned to $M(I, J)$. If the weight is left blank it is taken to be unity.

The matrix of coefficients of the normal equations (the X matrix) are then set up. This could be done as outlined in Section 4, i.e., by setting up all the equations of condition then multiplying each equation by the coefficient of each unknown in turn and summing. This would need a large amount of storage space in the machine to little purpose as most of the terms in the equations of condition are zero (cf, the example given in Section 4). A method of constructing the matrix of coefficients directly has therefore been devised. As a result of this a far larger number of unknowns (260) can be handled by the program than would be possible if the equations of condition had to be stored in their entirety.

The X matrix is set up as follows: first the whole matrix is zeroed. Each non-zero element of the X matrix is now computed from the input data and stored in its appropriate place in the matrix. As the resultant matrix is symmetrical about the diagonal only the upper triangular matrix and the diagonal elements have to be computed. The upper triangular elements, $X_{i j}$, are then repeated in the lower triangular position $X_{j i}$. For the purposes of construction the matrix can be divided into 7 parts (see Figure 1). The equivalent 7 parts are shown in dotted outline in equation (9)).

If t is the number of explosions read in and r the number of stations, part 1 is an $r \times r$ matrix, part 3 a $t \times t$ matrix, parts 2 and 4 are $r \times t$ matrices, part 2 having t columns and r rows and part $4, r$ columns and t rows, parts 5 and 6 are $(r+t) \times 1$ matrices and part 7 is a single element.

Matrix 2 is constructed first. The first element in the first row of this matrix is unity if $S(1)$ is recorded at station $B(1)$, the second element is unity if $S(1)$ recorded $B(2)$ and so on to $B(t)$. Similarly in the second row the first element is unity if $S(2)$ recorded $B(1)$, the second element if $S(2)$ recorded $B(2)$ and so on. Rows 3, 4, . . . t of matrix 2 are constructed in a similar way. Matrix 4 is now constructed by reflecting matrix 2 in the diagonal.

The diagonal elements of matrix 1 are now formed by summing the corresponding row of matrix 2 and the diagonal elements of matrix 3 by summing the corresponding rows of matrix 4 . The diagonal elements of 1 and 3 are now repeated in order in the column matrix 5 and the row matrix 6. Element 7 is half the sum of the elements in the column matrix 5. Finally 1 is added to each element of matrices 1 and 3.

The above somewhat involved process produces the correct matrix of normal equations with $(r+t+1)^{2}$ elements.

The first element of the right hand side of equation (5) is formed by summing all $M(1, J)$ (it is assumed that $M(I, J)=0$ if station I did not record explosion J, the second element by summing all $M(2, J)$ and so on. Element r of the right hand side is then $\sum_{J} M(r, J)$. Element $r+1$ is $\sum_{\mathrm{I}} \mathrm{M}(\mathrm{I}, 1)$ element $\mathrm{r}+2$ is $\sum_{\mathrm{I}} \mathrm{M}(\mathrm{I}, 2)$ and so on. Element $\mathrm{r}+\mathrm{t}+1$ is $\Sigma \Sigma M(1, J)$.
IJ
The setting up of the normal equations has been described assuming all the data were to be given equal weight. If the weights are not unity (but w) the elements of parts 2 and 4 of the matrix are now replaced by the weights, w, and the setting up of the matrix then proceeds as before.

To take account of weighting when setting up the right hand side of equation (5) each $M(I, J)$ is multiplied by its weight and then summed as before.

The matrix of the coefficients of the normal equations is now inverted using a subroutine from the Harwell Program Library (No. MB01A). This subroutine uses the so called triangular decomposition method of matrix inversion [1].

Both the original matrix and the inverted matrix are stored on disk.

Using the inverted matrix $S(I), B(J)$ and MBAR are computed. Subtracting these values from the original $M(I, J)$ gives the error term $\varepsilon(1, J)$ and hence s^{2} the estimate of the variance of the errors can be found. From s^{2} and the elements of the inverted matrix the

1. HMSO: (1961) "Modern Computing Methods". National Physical
Laboratory. HMSO, London
confidence limits on $S(D), B(J)$ and MBAR and on the differences between pairs of $B(J)$ are computed.

The output from the program is:-
(1) Tables showing stations and events used and input data, $M(1, J)$, with weights.
(2) Tables showing the residuals $\varepsilon(1, J)$.
(3) Tables showing best estimates of $S(1), B(J)$ an MBAR their variances and 95% confidence limits.
(4) Tables showing differences between each pair of $B(J)$ and the 95% confidence limits of these differences.
(5) Table showing variables used in the calculations.

Although the program described here has been written to solve a particular problem the program could equally well be used for any problem that can be expressed in terms of the model given in Section 2; this is the familiar two way analysis of variance model.

To carry out a two way analysis of variance using the usual techniques the values of all the elements in the analysis of variance table must be known (one or two missing values can be tolerated). No such restriction applies to this program.

APPENDIX A

MATRICES AND MATRIX INVERSION

A matrix is an array of numbers of the form

$$
\left[\begin{array}{lllllll}
a_{11} & a_{12} & \cdot & \cdot & a_{1 j} & \cdot & \cdot \\
a_{21} & a_{22} & & \cdot & & a_{1 n} \\
\cdot & \cdot & & \cdot & & \cdot \\
\cdot & \cdot & & \cdot & & \cdot \\
a_{i_{1}} & a_{i_{2}} & \cdot & \cdot & a_{i j} \cdot & \cdot & \cdot \\
\cdot & \cdot & & a_{i n} \\
\cdot & \cdot & & & \cdot & & \cdot \\
a_{m 1} & a_{m 2} & \cdot & \cdot & a_{m j} & \cdot & \cdot \\
a_{m n}
\end{array}\right]
$$

Unlike determina: s matrices cannot be evaluated to give a single value. They can however be represented by a single quantity, say A, and as such used in many algebraic operations just as if A were a single number.

For example the addition of the matrices A and B means summing corresponding elements of the two matrices. Thus if

$$
\begin{array}{rlrl}
A & =\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \\
\text { and } & & & =\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right] \\
A+B & =\left[\begin{array}{ll}
a_{11}+b_{11}, & a_{12}+b_{12} \\
a_{21}+b_{21}, & a_{22}+b_{22}
\end{array}\right]
\end{array}
$$

Multiplication of two matrices is more complicated. Thus,

$$
A B=\left[\begin{array}{l}
a_{11} b_{11}+a_{12} b_{21}, a_{11} b_{12}+a_{12} b_{22} \\
a_{21} b_{11}+a_{22} b_{21}, a_{21} b_{12}+a_{22} b_{22}
\end{array}\right]
$$

Each element of the new matrix is formed by multiplying each element in a row of the first matrix by the corresponding element in the column of the second matrix and summing. For multiplication to be possible the second matrix (matrix B) must have the same number of rows as the first matrix has columns.

Matrices find their widest application in the solution of linear equations.

Consider the equations

$$
\begin{align*}
& a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{j} \cdot \cdot \cdot a_{1 n} x_{n}=y_{i} \\
& a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3} \cdot \cdot \cdot a_{2 n} x_{n}=y_{2} \tag{A1}\\
& a_{n_{1}} x_{1}+a_{n_{2}} x_{2}+a_{n_{3} x_{3}} \cdot \text {. } a_{n n} x_{n}=y_{n} \text {. }
\end{align*}
$$

These equations can be represented in matrix for as

$$
\left[\begin{array}{cccccc}
a_{11} & a_{12} \cdot & \cdot & a_{1 j} \cdot & \cdot & a_{1 n} \tag{A2}\\
a_{21} & a_{22} \cdot & \cdot & \cdot & & \cdot \\
\cdot & \cdot & \cdot & & \cdot \\
\cdot & \cdot & \cdot & & \cdot \\
a_{i_{1}} & a_{i 2} \cdot & \cdot & a_{i j} \cdot \cdots & \cdot & a_{i n} \\
\cdot & & \cdot & \\
a_{n 1} \cdot & \cdot & \cdot & a_{n j} \cdot & \cdot & a_{n n}
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1} \\
x_{2} \\
\cdot \\
\cdot \\
\cdot \\
\cdot \\
a_{n}
\end{array}\right]=\left[\begin{array}{l}
y_{1} \\
y_{2} \\
\cdot \\
\cdot \\
\cdot \\
\cdot \\
y_{n}
\end{array}\right]
$$

Strictly the term matrix is applied only to A; the column matrices x and y are called vectors.

The solution of (A2) can be represented symbolically as

$$
\begin{equation*}
x=A^{-1} y \tag{A3}
\end{equation*}
$$

where A^{-1} is called the inverse matrix of A.
Now just as in ordinary algebra

$$
\mathrm{aa}^{-1}=1,
$$

so a unit matrix I can be defined such that

$$
\begin{equation*}
A A^{-1}=I, \tag{A4}
\end{equation*}
$$

where

$$
I=\left[\begin{array}{llllll}
1 & 0 & 0 & . & . & 0 \\
0 & 1 & 0 & . & . & 0 \\
0 & . & 1 & & & . \\
. & \cdot & \cdot & & & . \\
0 & 0 & 0 & . & . & 1
\end{array}\right]
$$

all the elements of I are zero except the diagonal elements which are unity. Operating on a matrix with I leaves the matrix unchanged, i.e., $A I=A$.

Equation (A4) provides a way of determining A^{-1}. Let $c_{i j}$ be the element
inverse matrix: then writing out (A4) in full of the inverse matrix: then writing out (A4) in full

$$
\left[\begin{array}{ccccc}
a_{11} & a_{12} \cdot & \cdot & \cdot & a_{1 n} \\
a_{21} & a_{22} \cdot & \cdot & \cdot & a_{2 n} \\
\cdot & \cdot & & \cdot \\
\cdot & \cdot & & \cdot \\
a_{n 1} & a_{n 2} \cdot & \cdot & \cdot & a_{n n}
\end{array}\right]\left[\begin{array}{lllll}
c_{11} & c_{12} & \cdot & \cdot & c_{1 n} \\
c_{21} & c_{22} & \cdot & \cdot & c_{2 n} \\
\cdot & \cdot & & & \cdot \\
\cdot & \cdot & & & \cdot \\
c_{n 1} & c_{n 2} \cdot & \cdot & \cdot & c_{n n}
\end{array}\right]=\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & \cdot & \cdot & 0 \\
0 & 1 & 0 & 0 & \cdot & \cdot & 0 \\
0 & 0 & 1 & \cdot & \cdot & \cdot & \cdot \\
\cdot & & & & & \cdot \\
0 & \cdot & \cdot & \cdot & \cdot & \cdot & 1
\end{array}\right]
$$

Carrying out the multiplication of the left hand side. The result of multiplying the a_{ij} matrix by the first column of the C matrix is

$$
\begin{aligned}
& a_{11} c_{11}+a_{12} c_{21} \cdot \cdot \cdot \cdot a_{1 n} c_{n_{1}}=1 \\
& a_{21} c_{11}+a_{22} c_{21} \cdot \cdot \cdot \\
& \cdot \\
& \cdot a_{2 n} c_{n_{1}}=0 \\
& a_{n_{1} c_{11}}+a_{n_{2} c_{21}} \cdot \cdot \cdot \cdot \\
& a_{n n} c_{n_{1}}=0 .
\end{aligned}
$$

This group of n equations has n unknowns $c_{11}, c_{21}, c_{31}, c_{n 1}$: the elements of the first column of the C matrix, $c_{11}, c_{21}, \ldots c_{n 1}$ can therefore be obtained by solving this set of equations.

A similar group of equations can be obtained by multiplying the A matrix and the second column of the C matrix. The elements in each column of the C matrix can therefore be evaluated in turn; this results in the inverse matrix.

The right hand side of equation (A2) can then be operated on with the inverse matrix to give \mathbf{x} as shown in equation (A3).

Writing out (A3) in full

$$
\begin{align*}
& {\left[\begin{array}{l}
x_{1} \\
x_{2} \\
\cdot \\
\cdot \\
x_{n}
\end{array}\right]=\left[\begin{array}{llll}
c_{11} & c_{12} & \cdot & \cdot \\
c_{21} & c_{22} & \cdot & \cdot \\
c_{2 n} \\
\cdot & \cdot & & c_{2 n} \\
\cdot & \cdot & \\
c_{n 1} & c_{n 2} & & \\
c_{n} & & c_{n n}
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
\cdot \\
y_{n}
\end{array}\right]} \\
& \text { i.e., } \\
& x_{1}=c_{11} y_{1}+c_{12} y_{2}+c_{13} y_{3} \cdot \cdot \cdot \cdot c_{n} y_{n} \tag{A5}\\
& x_{2}=c_{21} y_{1}+c_{22} y_{2}+c_{23} y_{3} \cdot \cdot \cdot c_{2 n} Y_{n}
\end{align*}
$$

As the c's are known and the y's are known the equations (A5) give $x_{1}, x_{2} \ldots, x_{n}$ the solutions of (A1).

Shorter methods of solving linear equations are available, e.g., Gaussian elimination but matrix inversion has advantages if several sets of equations have to be solved with the same left hand side but different right hand side. Once the inverse of a particular left hand side has been computed it can be used to solve any number of sets of equations simply by operating on the y matrices. Another advantage of the inverse matrix is that it allows the confidence limits of the unknowns to be computed easily in least squares problems (see Section 5).

APPENDIX B

SOME STATISTICAL CONCEPTS AND PROOFS

B1. EXPECTATION

The expectation of a random variable x, usually written $E[X]$, is defined as

$$
E[X]=\int_{-\infty}^{\infty} x p(x) d x,
$$

where $p(x)$ is the probability that the random variable will take the particular value x. The expectation corresponds to the mean of the whole population of x. Means determined from a set of sample values of x will not usually coincide with $E[X]$ but will approach $E[X]$ as the sample size increases.

The expectation of a constant is the constant, since the constant can take only one value. The expectation of an expected value, $E[E[X]]$, is simply $E[X]$ since $E[X]$ is a constant and as shown above this only has one value.

B2. VARIANCE

Variance measures the spread of a distribution and can be defined on terms of expectation thus,

$$
\begin{equation*}
V[X]=E\left[(X-E[X])^{2}\right], \tag{B1}
\end{equation*}
$$

or in words the variance is the expected value (average value) of the squared deviation of a random variable from its expectation.

An alternative form of (B1) is

$$
\begin{equation*}
V[X]=E\left[X^{2}\right]-(E[X])^{2} \tag{B2}
\end{equation*}
$$

If a and b are constants the variance of a linear function of X, say $a+b X$, is

$$
\begin{aligned}
V[a+b X]= & E\left[((a+b X)-(E[a+b X]))^{2}\right] \\
= & E\left[a^{2}\right]+2 a b E[X]+b^{2} E\left[X^{2}\right]-a^{2}-2 a b E[X] \\
& -b^{2}(E[X])^{2} \\
= & b^{2}\left\{E[X]^{2}-(E[X])^{2}\right\} \\
= & b^{2} V[X] .
\end{aligned}
$$

If Z is the difference of two random variables X and Y, ie., $Z=X-Y$

$$
\begin{aligned}
& V[Z]= E\left[Z^{2}\right]-(E[Z])^{2} \text { using }(B 2) \\
&= E[(X-Y)]^{2}-(E[X-Y])^{2} \\
&=E\left[\left(X^{2}-X Y+Y^{2}\right)\right]-(E[X])^{2}+2 E[X] E[Y] \\
&-(E[Y])^{2} \\
&= E[X]^{2}-(E[X])^{2}+E\left[Y^{2}\right]-(E[Y])^{2} \\
&-2(E[X Y]-E[X] E[Y]) \\
&= V[X]+V[Y]-2 \operatorname{Cov}[X, Y] .
\end{aligned}
$$

$\operatorname{Cov}[\mathrm{X}, \mathrm{Y}]$ is called the covariance of X and Y and is defined as $\mathrm{E}[\mathrm{XY}]-$ $\mathrm{E}[\mathrm{X}] \mathrm{E}[\mathrm{Y}]$.

The results given above can be generalised for any linear combination of random variables. Thus, if

$$
\begin{gathered}
z=a_{0}+a_{1} X_{i}+\ldots \cdot a_{n} X_{n} \\
\dot{V}(Z)=\sum_{i}^{n} a_{i}^{2} V\left[x_{i}\right]+\sum_{i j}^{n n} a_{i} a_{j} \operatorname{Cov}\left[x_{i}, x_{j}\right] \\
i \neq j .
\end{gathered}
$$

If the random variables are uncorrelated their covariances are zero. If also $V\left[X_{i}\right]$ is constant and equal to σ^{2} for all i then

$$
\begin{equation*}
v(z)=\sigma_{i}^{2 \sum_{i}^{n} a_{i}}{ }^{2} . \tag{BS}
\end{equation*}
$$

commow	
COmmon	/mtacess
COmmon	fmanays
1	
COMMOM	/CODES
Commen	/STUDT/
IMTHEEA	Disk

DATE, WEAD(9), NUM (60), AWT(60), N,NK, DISK, LMEAN,CLM, VARM, RSQO, RBAR, 1 STAN, STAN A1201,26i), B(26il P(60,200)
x(261), Y(60$)$, NAS (200), MRE $(60), 0(261)$, CLX(261), CLY(80), VARX(26I), VARV(60) STN(200), SNAME,NST, EVENTICOI, ECODE, NBT ST(ST), T, IDF, NDF

CALG EDUMP
CALL SDATE(DATEJ
OHEX - 9
00410 1-1.60
Mum11) 1
CONTIMUE

ENINT H09, (ST(II,1-1,57)
fonmatilx,15F5.2)
MEAO 404
PRINT 404

CALL LSMF
DETUAN
ENO
SUBTYPE, FORTRAN, LMAP, LSTRAP
LEAST SQUARES MATRIX FACTORISATION PROGRAM (LSMR)

THIS PROGRAM SEPARATES THE MEASURED MAGNITUDES OF EXPLOSIONS INTO TMREE QUANTITIES - AN EXPLOSION TERM, A STATION TERM AND A MEAN EXPLOSTON-STATION TERM. IT IS ASSUMED TMAT THE MAGNITUDE, MII,d), OF THE JTH EXPLOSION AT THE ITH STATION CAN DE REPRESENTED DY THE EQUATION --

WHERE SIII IS THE STATION CORRECTION, © (J) TME EXPLOSION TERM. MAAR THE MEAN EXPLOSION-STATION TERM AMD EII:JI IS AN ERROR.

SIII. B(J) AND MBAA MAE ESTIMATED BY LEAST SQUARES. TO DO THIS IT IS NECESSARY TO MAKE THE FURTHER ASSUMPTIONS THAT THE SUM SIII IS $2 E R O$ AND THE SUM $B(J)$ IS ZERO, OTMERHISE THE PROBLEM CANNOT BE SOLVED.

THE PROGRAM ALSO DETERMINES THE CONFIDENCE LIMITS ON S(I), BIJI AND MBAR AND THE CONFIDENCE LIMITS ON THE DIFFERENCES BETWEEN EACH PAIR OF EXPLOSIONS -- ASSUMING THE ERRORS E (I, J) ARE NORMALLY OISTRIBUTED.

ESSENTIALLY THE PROGRAM CARRIES OUT A TWO WAY ANALYSIS OF VARIANCE. IF ALL STATIONS RECORO ALL EXPLOSIONS THE PRORLEM TO BE SOLVED IS IDENTICAL TO THAT OF TME ANALYSIS OF VARIAMCE AND COULD BE TREATED AS SUCM. THIS PIOEMAM HOMEVER CAM ALSO HANDE THE SITUATION WHERE THE DATA IS INCOMPLETE I. E. SOME STATIONS FAIL TO RECORD ALL EXPLOSIONS -- THIS CANNOT BE DEALT MTM AV PME USUAL ANALYSIS OF VARIANCE TECMNIQUES.
altmough the phognam has been whltten to solve a panticular PROBLEM THE METHOD IS GENERAL AND THE PROGAAN CAN DE USED TO SOLVE ANY PROBLEM TMAT CAN BE EXPRESSED AS A SERIES OF EOUATIONS OF TVPE III.

FOR DETAILS OF ANALYSIS OF VARIANCE TECHNIOUES SEE BROWNLEE K.A STATISTICAL THEORY AND METHODOLOGY IN SCIENCE AND ENGINEERIVG, AND


```
tadle 3 matrix CP ktsinuals of magidituoEs
    PHIIITLGS IABI! ? TRUE RFSIUUALS ARE STARRELI (UP TO 3O PAGES)
    tarle 4 mNStERS
        TABLF 4.l STMTIOV CORRCGTIO:S bITH 95 PERCENT COHFIOFAGE LIMITS
        pMIMIFS OHT (OMPIOHFO YALUES, ¿TAKS ¿MALLLST VALUE,
            NUMGFR IN EACH ROW OF PESIDUALS,
```



```
                                    (UP TO 5 PAGES)
    IABLE 4.र. BE:ST FSTIMATE OF MAF,VITUDES WITH 95 PERCENT CONFIUENCE
    PRI:\T OUT CUMPUTEU VALUFS
        NUMBER: IV EACH IOLUMIN OF RESIDUALS,
        95 PEKLENT CONFIDENCF LIMITS, AND VARIANCE
                                    (UP TO 2 PAGES)
    TABLE 5 TRIAIGULAK MATRIX OF OIFFERENCES OF MAGNITHOES
    PRIMITS NUT DIFFEREVCES WITH 95 PERCENT CONFIUENCE LIMITS
                                    IUP TO 42 PAGESI
Tablif. & vakIABLI:S IJSED UURIMG THE COMPUTATION
                                    (| PAGE)
    SUBROITIME LSNF
    commo:V
    l
    COMMON XMLAN,CLM,VAKM,RSQD,RHAR,ISTAN,STAN
    COMMON IARRAYS/ X(261),Y(60),NRS(200),NRB(60),D(261),
    l COMMON /ARRAYSI
    COMMON /LOHES/ STY(200),SNAME,NST, EVENT(60),ECODE,NBT
    COMMON /STUOT/ ST(57),T,IDF,NOF
    INTEGEK DISK
    CALL SECCLK(TS)
        CALL HEADER
    LO 40 J=1,261
        00 30 1=1,261
        A( I, J)=0.
        CONTIVUE
!
A(J) \(=0\).
CONTINUE
vo \(60 \mathrm{~J}=1,200\)
DO \(50 \quad 1=1,60\)
\(P(I, J)=1000\).
contivue.
NRS(J) \(=0\)
CONTINUE
DO Tu \(1=1,60\)
\(\operatorname{NRB}(1)=0\)
continue
call setup
\(N=N S T+V B T\)
\(N R=0\)
\(N S=1\)
INO=1
REAC 105, SNAME, ECGLE, AMAG, VWT
FORMAT ( \(1 \mathrm{X}, \mathrm{A} 5, A 8,2 \mathrm{X}, \mathrm{F} 13.9,11\) )
\(N R=N R+1\)
lF(NWT) \(110,110,120\)
NWT \(=1\)
\(W T \neq N W T\)
IFISNAME.EC.STN(NSII GO TO 210
IF(SNAME.EQ.STN(NS+1)) GO TO 200
IF (SINAME.EQ.END) GO TO 300
DO \(160 \mathrm{~J}=1\),NST
IFISNAME.EQ.STN(J)) GC TO 180
CONTINUF
IF(SVAME.EQ.BLANK) roo TO 290
PRINT 175, SNAME
FORMAT(27HI** UNKNOH'V STATION NAME - ,A8//)
GO TO 280
        OO 190 I= 1, HBT
        IF(ECODE.EG.EVENT(1)) GO TO 250
        CONTIVUE
        GO TO 230
        NS =NS +1
        DO 220 NB=1,NBT
        IFIECUUE.[O. EVENT(NHI) GO TO 240
        CONTINUE
        IF{ECOBE.EG.BLAINK) r, TO 290
        PRI:NT 23J, ECOUL
        FORMATI?SHI* UNKNOH'N tVEHT CODE - ,AE//1
```

```
        GO TO 28O
        J=NS
        IFHB
P(I,J):AMAG
    NRB(I)=NPRG(1)+1
    NRS(J)=NRS(J)+1
    I*I+NST
    260 A(l.J)=WT
    B(J)=B(J)+AMAG*WT
    GO T( 1270,100),IND
    2 7 0
    ND=2
    NB=1
    I= J
    J=NB
    GO TO 260
    280 PRINT 285
    285 FORMATI24H THE INCORRECT CARO IS -)
    PRINT 105, SNAME,ECODE,AMAG,NWT
    RETURN
    290 CALL INPUT
    PRINT 295
    295 FORMATI 3OHIEC ONLY INPUT PRINT REQUESTEO///I2M NO SOLUTIONI
    GO TO 10
C
    NR-1
    LS=NST+1
    DO 320 J=1,NST
    AD=0.
    DO 310 I=LS,N
    AD=AD+A(I,J)
    310
    CONTINUE
    A(J,J)=AD
    A(J,N+1)=AD
    A(N+1, j)=AD
    CONTINUE
    OO 340 J=LS,N
    AD=0.
    DO 330 1=1,NST
    AD=AU+A(1,J)
    vuE
    A(J,J)=AD
    A(J,N+1)=AD
    A(N+I,J)=AD
    340
    CONTINUE
    AC=O.
1 .
AMAG=0.
DO \(350 \mathrm{~J}=1, \mathrm{~N}\)
\(A D=A D+A(J, J)\)
\(A M A G=A M A r_{2}+B(J)\)
continue
\(A(N+1, N+1)=A D / 2\).
\(8(N+1)=A M A G / 2\).
DO \(370 \mathrm{~J}=1\), NST
DO \(360 \quad 1=1\), \(115 \mathrm{~S} T\)
\(A(1, J)=A(1, J)+1\).
CONTINUE
370 CONTINUE
U0 \(390 \mathrm{~J}=\mathrm{LS}, \mathrm{N}\)
DO \(380 \quad I=L S, N\)
\(A(1, J)=A(1, j)+1\).
380 CONTINUE
390 CONTINUE
CALL INPUT
\(N=N+1\)
DO \(420 \mathrm{~J}=1, \mathrm{~N}\)
IF(A)J,J)-1.) 420,410,420
410 PRINT 415, J
415 FORMATI2OHI** DIAGONAL ELEMENT,14,6H LERO/I/12H NO. SOLUTIONI GO TO 10
WRITE (DISK) (IA(I, J), I \(=1, N \mid, \downarrow=1, N)\)
CALL SOLVE(B, X,N,D)
WRITE (DISK) \(((A \mid I, J), I=1, N), J=I, N)\)
REWIND DISK
READ (U)ISK) ( (AlI,J), I=1,V),J=1,N)
XMEAN \(=X(N)\)
\(00470 \quad I=1\), \(A B T\)
\(J=I+N S T\)
\(Y(I)=X(J)\)
STAN=AHS(X(1))
ISTAN=I
DO \(490 \mathrm{~J}=2, \mathrm{NST}\)
IF(STAN-ABS(XIJ)I)490,490,420
\(S T A N=A B S(X \mid J))\)
ISTAV=J
\(c\)
\(R B A R=0\).
RSQD=0.
DO \(690 \mathrm{~J}=1, \mathrm{NST}\)
\(00680 \quad l=1\). NB \(^{T}\)
\(A D=P(I, J)\)
\(R B A R=R B A R+A D\)
RSQD=RSQD+AO*AD
continue
continue
IF(NDF.GT.O) RSQD=RSQD/FLOAT(NOF)
DO \(710 \mathrm{~K}=1, \mathrm{~N}\)
\(\operatorname{VARX}(K)=R S O D-D(K)\)
\(C L X(K)=T=S Q R T(V A R X(K))\)
CONTINUE
DO \(720[=1, N B T\)
J=I + NS T
VARY(I) = VARX(J)
CLY(I) \(=\) CLX(J)
CONTINUE
VARM=VARX(V)
\(C L M=C L X(N)\)
DO \(740 \quad 1=1\), NBT
\(J=I+N S T\)
DO 730 LS \(=1,1\)
\(K=L S+N S T\)
\(P(L S, 1)=T * S \cap R T(R S Q D * A B S(A(K, K)+A(J, J)-2 . * A(K, J)))\)
CONTIVUE

IF(NDF.GT.O) RSGO=RSQD*FLOAT(NOF)
call table
call triang
CALL SECCLK(TF)
TS:TF-TS
PRINT 885, HEAD, OATE
formatis initable 6 variables used during computation
1 9A8/ll3X,6HDATE ,A8////I
PRINT 886, NR,N,RSQD,RBAR,T,NDF, XMEAN, CLM,TS
fORMATI


60 TO 10
END
SUGTYPL, FORTRAN, LMAP, LSTRAP
LSMF HEADIVG PRIVT ROUTIVE
************************
THIS ROUTINE REAUS AND PRINTS HEADING CARDS TILL IT FINDS A IERO IN COL. 80 THE CONTENTS OF THE FIRST CARD IS STORED IN ARRAY HEAO N.B. COLS.I-72 ONLY
subkout ine header
COMMON DATE,HEAD(9)
CATA ENDIIBH ENI,END2(8HO JOB )
READ 1, HEAD, IT
FORMATI9AR,7X,11)
IF(HEAD (1).EQ.END).ANU.HEAD (2).EQ.ENU2) CALL EXIT
PRINT 2, DATE,HEAO
FORMAT(IHI/II3x,6HDATE ,AE////2bx,9A8////I
IFIIT) 20,30,20
READ 3, IT
PRINT 3

GO 1010

34 PRINT 35
FORMATI 19H1＊＊TUO MANY EVENTS）
GO TO 41
［F（LIINE－40）39，37，37
7 LINE＝0
PKINT 33，HEAD，DATE
FORMAT（SSHITABLE 1．2 EVENTS
19 98／113X，GHDATE ，A8／
2 BOH COUE EVENT DATA AND COMMENTS
PRINT 32，ECODE
LINE＝LINE＋I
EVENT（NBT）＝ECOODE
GO TO 31
RETURN
CALL EXIT
END
SUBTYPE，FORTKAN，LMAP，LSTRAP
LSMF INPUT PRINT ROUTINE
＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊
THIS SUBROUTI IE PRINTS OUT THE MATRIX OF MAGNITUDES（P）
WITH II ALL STATIONS
2）EVENTS IN SETS OF TEN（10）
PRINTS THE WEIGHT BY EACH MAGNITUDE READ IN ZERO AND BLANK INDICATE NO VALUE

SUBROUTINC INPUT
COMMUN UATE，HEAD（9），NUM（60），AWT（60）
COMMON／MTPCES／A（26），261），B（261），P（60，200）
CCMMON／CODES／STN（200），SNAME，NST，EVENT（60），ECODE，NET
OIMENSION FCHAR（10）
C
CATA（FCHAR（I），I＝1，10）（EOH
\(J=0\)
\(J=J+10\)
\(N B=J-9\)
IF（J－VBT）440，440，430
430
\(J=N\) HT
440 LINE＝40
```

 DO 480 NS=1,NST
 IFILINE-40)460,450,450
 4 5 0
 LINE=0
 PRINT 454, HEAD,DATE,(ANUM,NUM(I),I=NB,J)
 45
 | 9AB/|IBX,OHDATE,AB/
 2 9H STATION, 4X,A5,13,914X,A5,131)
 PRINT 455, (EVENTII),I=NB,J)
 455 FORMAT(I3x,A ,9(4x,AB))
 460 DO 470 I=NB,J
 INSTEI+NST
 WTEA(INST,NS)
 INST=IFIXIWT+0.5I +I
 AWTII)=FCHAR(INST)
 470
 CONTINUE
 PRINT 475, NS,STN(NS),(P(1,NS),AWT(1),I=NB,J)
 475 FORMAT\{X,{3,2X,A6,F6,3,A3,9(3X,F6,3,A3))
 LINE=LINE+I
 480 CONTINUE
 IF(J.NE.NBT) GO TO 420
 RETURN
 END
 I SUBTYPE,FORTRAN,LMAP,LSTRAP

the method used is called triangular decomposition
FROM N.P.L. MODERN COMPUTING METHODS
GASED ON LIBRARY SUBROUTIVE MBOIA
SUBROUTINE SOLVE(B,X,M,DI
COMMON IMIRCES/ A(261,261)
COMMON /ARRAYS/ QQQ(902),C(261),INO(261)
DIMENSION B(MI,X(M),D(M)
C
100 AMAX=0.0
DO 2 I= 1,M
INO(1)=I
IF(ABS (A(1,|))-AMAX)2,2,3
3 AMAX=ABS (Al1,1)|
I4=1
2 CONTIVUE
MM=M-1
DO 111 J=1,MM
MBOIAOO3
M801A004 MBOIA005 MBOIAOOO M801A007 MBO IAOOB MBO IAOO9 MBOIAOIO MBOIAOII
(F(14-J)6,6,4
MBOIAO 12
4 ISTO=IND(J)
IND(J) $=1$ IND(14)
INDI 14) =(STO
$00 \quad 5 K=1, M$
$S T O=A(14, K)$
$A(I 4, K)=A(J, K)$
$A(J, K)=S T 0$
contivue
6 AMAX=0.0
$J=J+1$
DO $11 I=J 1, M$
$A(I, J)=A(I, J) / A(J, J)$
DO $10 \mathrm{~K}=\mathrm{J} 1, \mathrm{M}$
$A((, K)=A(I, K)-A(1, J) \neq A(J, K)$
IF $(K-J 1) 14,14,10$
14 [F(ABS (A|I,K))-AMAX) $10,10,17$
17 AMAX=ABS (A(I,K))
14: 1
10 continue
11 continue
III CONTINUE
$6500 \quad 140 \quad 11=1, M M$
$I=M+1-11$
12:1-1
Do $41 \mathrm{~J} 1=1,12$
$J=12+1-\rfloor 1$
$\mathrm{J} 2=\mathrm{J}+1$
Wle-Al $1, j)$
IF (I2-J2) $141,43,43$
$430042 \quad K=J 2,12$
$W 1=W I-A(K, J) * C(K)$
42 CONTIVUE
$141 \mathrm{Cl} \mathrm{Cl}^{2} \mathrm{WI}$
41 CONTINUE
$0040 \mathrm{~K}=1,12$
$A(1, K)=C(K)$
40 CONTINUE
140 CONTINUE
$00 \quad 150 \quad 11=1, M$
$I=M+1-11$
$12=1+1$
$W=A(1,1)$
DO $56 \mathrm{~J}=1, \mathrm{M}$
IF (I-J)52, b3,54

```
        52 WI=0.0 MBOIAOST
        GO TO 55
        M1-1.0
        GO 10 55
    54 Wl=All,J
    55 [F|||-||\56,156,57
    57 DO 58 K=12,M
        WI=WI-A(I,K)=A(K,J)
    5 8 ~ C O N T I N U E ~
    156 C(J)=W1
    5 6 ~ C O N T I N U E ~
        00 50 J=1,M
        A(I,J)=C(J)/W
    so continue
    150 CONTINUE
    0060 I=1,M
    63 IFIINDIII-11661,60,61
    6) J=1ND(i)
        DO 62 K=1,M
        STO=A(K,I)
        A(K,I)=A(K,J)
        A(k,J)=STO
    62 CONTINUE
        ISTO=IND(J)
        IND(J)=J
        IND(J)=J
        G0 10 63
    6 0 ~ C O N T I N U E ~
C
    64 00 66 J=1,M
        STO=0.
        DO 67 I=1,M
        STO=STO+A(I,J)*B(I)
    6 7
        CONJINUE
        X(J)=STO
        O(J)=A(J,J)
    6 6 ~ C O N T I N U E ~
        RETURN
        ENO
            SUBTYPE,FORTRAN,LMAP,LSTRAP
        LSMF OUTPUT PRINT ROUTINE
        LSMFOUTPUT PRINAN,LMUTIN
    thIS ROUTINE COMPUTES ANO PRINTS OUT THE MATRIX OF RESIDUALS OF mAGNITUDES P
    WITH II ALL STATIONS
C
    N.b. the true residuals are printed out
    BUT WEIGHTED RESIDUALS ARE RETURNED TO LSMF
        SUBROUTINE OUTPUT
        COMMON DATE,HEAD(9),NUM(60),AWT(60),N,NR,DISK,
    I
    COMMON IMTRCES/ AMEAN,CLM,VARM,RSOD,RBAR,ISTAM,STAN
    COMMON HARRAYS/ A(26),261),B(261), P(60,200)
    COMMON /CODES/ STN(2001,SNAME,NST, EVENT(60),ECODE,NBY
    INTEGER DISK
C
C
    4 2 0
    J=0
    J=J+10
        NB=J-9
        IF(J-NBT)440,440,430
    4 3 0
    00490 NS=1,NST
    IF(LINE-40)460,450,450
    450
    PRINT 454, HEAD,DATE,(ANUM,NUM(I),I=NB,JI
    FORMATISSHITABLE 3
                        MATRIX OF RESIDUALS OF MAGNITUDES
    I 9AB//lI3X,GHDATE ,AB/
    2 9H STATION,4X,A5,13,914X,A5,131)
        PRINT 455, (EVENT(1),I=NB,d)
        FORMAT(ISX,AB,9(4X,AB))
    455 FORMATIISX,A,
    IF(P(1,NS)-1000.1464,462,464
    4 6 2
    ANT(I)=BLANK
        P(I,NS)=0.
        GO to 470
    4 6 4
        P(I,NS)=P(I,NS)-X(NS)-Y(I)-XMEAN
        CONTINUE
        PRINT 475,NS,STN(NS),(PII,NS),AWT(I),I=NB,J)
        475 FORMAT(IX,13,2X,A6,F8.5,A1,9(3X,F8.5,A!)I
        LINE=LINE+I
        DO 480 l=NB,J
        INST=I+NST
        INST=I+NST
        P(I,NS)=P(I,NSI* A(INST,NS))
    480 CONTINUE
```

CONTINUE
RETURN
END
SUBTYPE,FORTRAN,LMAP,LSTRAP
LSMF TABLE PRINT SURROUTINE
*\&\&****日***************日***
this subroutine prints out tables of station aivu event corrections
THE NUMBER, 95 PERCENT CONFIDENCE LIMITS, AND VARIANCE ARE PRINTED OUT FOR EACH NUMBER

SUBROUTINE TABLE COMMON		OATE,HEAD(9),NUM(60), AWT(60), N,NR, DISK,
1		XMEAN, CLM, VARM, RSQD, REAR, ISTAN, STAN
COMmON	/MTRCES/	A(26),261),8(261), $P(60,200)$
COMMON	/ARRAYS/	X(26) , Y(60$)$, NRS(200), NRB(60), D(261),
1		CLX(261), CLY(60), VARX(26), VARY(60)
COMMOV	/CODES/	STN(200), SNAME,NST, EVENT(60), ECOUE,NHT
COMMON	/STUDT/	ST(57), T, IDF,NDF
INTEGER	DISK	

CATA STAR!BH*** I, BLANKIBH)
LINE $=40$
DC 350 NS=I,NST
IFILINE-40) 320,310,310
LINE=0
PRINT 315, HEAD, DATE

340 PRINT 345, NS,STIN(NS),X(NS),DIAG,NRS(NS),CLX(NS),VARX(NS)
345 FORMAT(IX,13, 2X,A5,6X,F6.3,AG,15,6X,3H+/-,FB,5,6X,F8,6)
LINE=LINE+1
CONTINUE
LINE $=40$
$00 \quad 380 \mathrm{NB}=1$, NBT
IFILINE-40) $370,360,360$
LINE=0
PRINT 365, HEAD,DATE

```

```

PRINT 375, NB, EVENT(NB),Y(NB), NRB(NB), CLY(NB), VARY(NB)
375 FORMAT 1 IX, 12, $2 \mathrm{X}, \mathrm{A} 8,4 \mathrm{X}, \mathrm{F} 6.3,6 \mathrm{X}, 15,6 \mathrm{X}, 3 \mathrm{H}+/-, \mathrm{FB} .5,6 \mathrm{X}, \mathrm{F8} .6$)
LINE:LINE+1
CONTINUE
RETURN
END
SUBTYPE, FDRTKAN, LMAP, LSTRAP
LSMF TRIANGULAR MATRIX PRINT ROUTIVE

PRINTS THE LOWER TRIANGULAR MATKIX (P) IN SETS OF 5 EVENTS
for all events from the start of the set
SUBROUTINE TRIANG
COMMON
COMMON IMTRCES/ A(261,261), B(261), P160,200)
COMMON /ARRAYS/ $\times(261), Y(60)$
COMMON /CODES/ STN(200),SNAME,NST, EVENT(60),ECODE,NBT
data anumibhevent)
$J=0$
$J=J+5$
$\mathrm{NB}=\mathrm{J}-4$
IF(J-NET)440,440,430
J=NBT
440 LINE: $=40$
DO $4 Ч 0$ NA=NIE,NBT
IFILINE-40)460,450,450
LINE:O
PRINT 454, HEAD, UATE, (ANUM, NUM(1),IENG,J)
FORMATIS5HITABLES MATRIX OF UIFFERENCES OF MAGNITUUES
1 9AB/ll3X, कHDATE ABI

```
            2 9H EVEN| , BX,A5,13,4(15x,Ab,13,1)
            PRINT 455, (EVENT(1),I=NP,J)
    4 5 5
        FORMAT(17X,AR,4(15X,A(S))
    460 DO 470 I=VA,J
        AWT(I)=Y(NA)-Y(I)
        IF(NA-J)482,482,484
    482 NC=NA
    484 PRINI 4日', NA, EVENT(NA), (AWT(I),P(I,NA),I=NA,NC)
    485 FORMATIIX,12,2X,AЯ,SIFII.5,5H +/-,F7.511
    LINE=LINE+I
    4 9 0
        IFIJ.NE,NIBTI GO TO 42.0
        RETURN
        END
T SUBTYPE,NATA
    12.70 4.30 3.18 2.78 2.5? 2.45 2.36 2.31 2.26 2.23 2.20 2.18 2.10 2.14 2.13
    2.12 2.11 2.10 2.09 2.09 2.08 2.07 2.07 2.06 2.06 2.06 2.05 2.05 2.05 2.04
    2.02 2.01 2.00 2.00 1.99 1.99 1.99 1.98 1.98 1.98 1.98 1.93 1.98 1.97 1.97
        1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.96 1.96 1.96 1.96
        STAKT JOB
        RUSSIAN LOG AMPLITUUE A/T KI ONLY 12/01/66 WWSSS
        STU STUTTGART" GERMANY 48 46 15.0N 9 16 36.0E
        BOZ BOZEMAN* MONTANA 45 36 00.0N 111 38 00.ON
        SCP STATE COILEGE PENNSYLVANIA
        PRE PRETORIA*
        NUR NURMIJARVI*
        NAI NAIROBI*
        NAI NAIROBI*
        MON KONGSBERG*
        KEV KEVO.
        IST ISTANBUL.
        GOL GOLDEN.
        GEO GEORGETOWN.
        FLO FLORISSANT. MISSOURI
    DAL DALLAS*
    BUL BULAWAYO*
    BUL BULAWAYO*
    BUL BULAWAYO** RHODESIA
    AAM ANN ARBOR*
    MUN MUNDARING*
    bag eaguio city
    MUN MUNDARING* BAG EAGUIO CITY* PHSTRALIA
    BAG GAGUIO CITY* PHILIPPINES
    atl atlanta*
        SOUTH AFRICA
        FINLANO
        KENYA
        PHILIPPINES
        lllllllll}\begin{array}{lllll}{45}&{36}&{00.0\textrm{N}}&{111}&{38}\\{40}&{00.0\textrm{ON}}\\{40}&{35.5N}&{77}&{52}&{09.0\textrm{N}}
        BOZ BOZEMAN*
        vORWAY
        FINLANO
        TURFEY
        COLORADO 41 02 36.ON 28 59 06.0E
        COLORADO 39 42 01.ON 105 22 16.0W
        WASHINGTON DC }3854\quad00.0N\quad77 04 00.0W
        laSHINGTON DC 
        TEXAS
        COL COLLEGE OUTPOST A
        RHODESIA
        RHODESIA
        NEW MEXICO
        [RAN
        MICHIGAN
        AUSTRALIA
        llllll
        lllll
        60 30 32.4N 24 39 05.1E
        1 16 26.2S 36 48 13.2E
        14 4C OO.ON 121 O5 OO.OE
        59 38 57.0N }93755.0
        MAN KONGSHERG* PHILIPPINES
```



```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline MaL & Malaga* & SPAIV & 36 & 43 & 39.0N & 4 & 24 & 40.0W \\
\hline TOL & TOLEDO* & SPAIN & 39 & 52 & 53.0 N & 4 & 02 & 55.0W \\
\hline ESK & ESKUALEMUIR* & scotlano & 55 & 19 & 00.0 N & 3 & 12 & 18.0N \\
\hline TRI & TRIESTE* & Italy & 45 & 42 & 32.0 N & 13 & 45 & 51.0E \\
\hline COP & COPENHAGEN* & denmarik & 55 & 41 & 00.0N & 12 & 26 & D0.0E \\
\hline BLA & BLACKS BURG* & VIRGINIA & 37 & 12 & 40.0 N & 80 & 25 & 14.0W \\
\hline ATU & ATHENS UNIV.* & GREECE & 37 & 58 & 22.0 N & 23 & 43 & 00.0E \\
\hline AKU & AKUREYRI* & ICELANO & 65 & 41 & 12.0 N & 18 & 06 & 24.0W \\
\hline KOD & KODAIKAMAL* & INDIA & 10 & 14 & 00.0 N & 77 & 28 & 00.0E \\
\hline LON & LONGMIRE* & WASHINGTON & 46 & 45 & 00.0N & 121 & 48 & 36.0W \\
\hline NDI & NEN DELHI* & india & 28 & 41 & 00.0N & 77 & 13 & 00.0E \\
\hline P00 & POONA* & india & 18 & 32 & D0.0N & 73 & 51 & O0.0E \\
\hline SEO & SEOUL* & KOREA & 37 & 34 & 00.0N & 126 & 58 & 00.0E \\
\hline WIN & WINCHOEK* & SOUTH AFRICA & 22 & 34 & 00.05 & 17 & 06 & O0.0E \\
\hline COR & CORVALLIS* & ORESON & 44 & 35 & 08.6N & 123 & 18 & 11.5 W \\
\hline PEL & PELCEHUE* & CHILE & 33 & 08 & 37.05 & 70 & 41 & 07.04 \\
\hline ANT & antofagasta* & CHILE & 23 & 42 & 18.05 & 70 & 24 & 55.0\% \\
\hline ARE & AREQUIPA* & PERU & 16 & 27 & 43.55 & 71 & 29 & 28.6K \\
\hline LPB & LA PAL* & BOLIVIA & 16 & 31 & 57.6S & 68 & 05 & 54.1W \\
\hline RCD & RAPIU CITY* & South dakota & 44 & 04 & 30.0 N & 103 & 12 & 30.0r \\
\hline TAU & tasmania univ.* & tasmania & 42 & 54 & 35.7S & 147 & 19 & 13.5 E \\
\hline MNN & MINNEAPOLIS* & minve Sota & 44 & 54 & 52.0 N & 93 & 11 & 24.0 W \\
\hline PMG & PORT MORESBY* & NEW GUINEA & 9 & 24 & 33.05 & 147 & 0.9 & 14.OE \\
\hline AQU & AQU ILA* & ITALY & 42 & 21 & 14.0 N & 13 & 24 & 11.0 E \\
\hline BKS & bYERLY* & CALIFORNIA & 37 & 52 & 36.0N & 122 & 14 & 06.0W \\
\hline GDH & GODHAVN* & greeivland & 69 & 15 & 00.0N & 53 & 32 & 00.0W \\
\hline CHG & CHIENGMAI* & thailand & 18 & 47 & 24.ON & 98 & 58 & 37.0E \\
\hline CTA & CHARTERS TOWERS & - australia & 20 & 05 & 18.0S & 146 & 15 & 16.0E \\
\hline Que & QUETTA* & PAKISTAN & 30 & 11 & 18.0 N & 66 & 57 & 00.0E \\
\hline KJG & Kap tobin* & GREENLAND & 70 & 25 & 00.0N & 21 & 59 & 00.06 \\
\hline
\end{tabular}
    END STATIONS
        R1150364
        R|160564
        R1190764
        H1161164
        R1040265
        R1040265
        R1030365
        R11110565
    STU R1030365 2.2U
    STU K1150364 2.30
    STU R116U564 2.20
    STU R1190764 2.00
    STU R1161164 2.30
    STU R1040265 2.21
\begin{tabular}{|c|c|c|}
\hline 802 & R 1030365 & 1.58 \\
\hline B02 & R1150364 & 1.70 \\
\hline 802 & R1160564 & 1.70 \\
\hline 802 & R1190764 & 1.50 \\
\hline 802 & R1161164 & 1.76 \\
\hline 802 & R1110565 & 0.78 \\
\hline SCP & R1150364 & 1.30 \\
\hline SCP & R1161164 & 1.60 \\
\hline Phe & R1030365 & 1.19 \\
\hline PRE & R1150364 & 1.08 \\
\hline pre & R1160564 & 1.00 \\
\hline PRE & R1190764 & 0.80 \\
\hline PRE & R1161164 & 1.11 \\
\hline nur & R1150364 & 1.60 \\
\hline nur & R 1160564 & 1.70 \\
\hline NUR & R1190764 & 1.50 \\
\hline NaI & R1030365 & 1.58 \\
\hline NAI & R1150364 & 1.30 \\
\hline NAI & R1160564 & 1.40 \\
\hline NAI & R1040265 & 1.30 \\
\hline MAN & R1030365 & 2.09 \\
\hline MAN & R1150364 & 2.20 \\
\hline MAN & R1190764 & 2.00 \\
\hline man & R1161164 & 2.20 \\
\hline MAN & R1040265 & 2.20 \\
\hline KON & R1030365 & 1.67 \\
\hline KON & R1160564 & 1.90 \\
\hline KON & R1110565 & 1.00 \\
\hline KEV & R1150364 & 1.70 \\
\hline KEV & R1160564 & 1.60 \\
\hline IST & K1030365 & 1.62 \\
\hline 1St & R1150364 & 1.80 \\
\hline ist & R 1160564 & 1.70 \\
\hline IST & R1190764 & 1.70 \\
\hline 151 & R1161164 & 1.84 \\
\hline GOL & R1030365 & 1.18 \\
\hline GOL & R 1150364 & 1.08 \\
\hline GOL & R1160564 & 1.08 \\
\hline GOL & R1190764 & 0.90 \\
\hline GOL & R1161164 & 1.36 \\
\hline GEO & R1150364 & 1.20 \\
\hline GEO & R1160564 & 1.30 \\
\hline flo & R1150364 & 1.08 \\
\hline FLO & R1160564 & 1.08 \\
\hline FLO & K1161164 & 1.23 \\
\hline \multicolumn{3}{|l|}{} \\
\hline & & \\
\hline OAL & R)150364 & 1.08 \\
\hline DAL & R1161164 & 1.41 \\
\hline COL & R1030365 & 1.85 \\
\hline COL & +1150364 & 1.90 \\
\hline COL & R)160564 & 2.00 \\
\hline COL & R1190764 & 1.80 \\
\hline COL & R1161164 & 1.97 \\
\hline COL & R1110565 & 1.18 \\
\hline bul & k1030365 & 1.30 \\
\hline BUL & K1150364 & 1.50 \\
\hline BUL & R1160564 & 1.50 \\
\hline BUL & R1190764 & 1.40 \\
\hline BUL & R1161164 & 1.37 \\
\hline BUL & R1040265 & 1.48 \\
\hline ALQ & H1030365 & 0.70 \\
\hline ALO & R1150364 & 0.90 \\
\hline ALO & R) 160564 & 0.90 \\
\hline ALQ & H1190764 & 0.80 \\
\hline SHI & K1030365 & 1.81 \\
\hline SHI & K1160564 & 1.90 \\
\hline SHI & R1190764 & 1.80 \\
\hline SHI & R1161164 & 1.91 \\
\hline SHI & R1110565 & 0.81 \\
\hline AAM & R1030365 & 1.30 \\
\hline AAM & R1160564 & 1.50 \\
\hline AAM & R1190764 & 1.56 \\
\hline AAM & R1161164 & 1.55 \\
\hline MUN & R1160564 & 1.50 \\
\hline MUN & R1190764 & 1.40 \\
\hline MUN & R1161164 & 1.53 \\
\hline 8AG & K1150364 & 1.77 \\
\hline bag & R1160564 & 1.80 \\
\hline BAG & R1190784 & 1.60 \\
\hline NOR & R1190764 & 1.73 \\
\hline NOR & R1161164 & 1.73 \\
\hline ATL & R1160564 & 1.08 \\
\hline arl & R1161164 & 1.15 \\
\hline MAL & R1160564 & 1.80 \\
\hline Mal & R1190764 & 1.60 \\
\hline MAL & R1161164 & 1.74 \\
\hline TOL & R1160564 & 2.09 \\
\hline TOL & R1190764 & 1.90 \\
\hline TOL & R1161164 & 2.00 \\
\hline ESK & R1030365 & 1.83 \\
\hline ESK & kl160564 & 2.00 \\
\hline
\end{tabular}

1
\begin{tabular}{|c|c|c|}
\hline ESK & K1161164 & 1.91 \\
\hline ESK & K1110565 & 0.95 \\
\hline TRI & K1160564 & 1.80 \\
\hline TRI & K1190764 & 1.70 \\
\hline COP & K1190764 & 1.70 \\
\hline COP & K1040265 & 2.0) \\
\hline HLA & R1161164 & 1.18 \\
\hline ATU & R1040265 & 1.90 \\
\hline ATU & R1101164 & 1.78 \\
\hline AKU & R1030365 & 1.40 \\
\hline AKU & K.1161164 & 1.95 \\
\hline KOD & R1030365 & 1.92 \\
\hline KOD & R1161164 & 1.94 \\
\hline LON & K103036: & 1.53 \\
\hline LON & k 1161164 & 1.02 \\
\hline LON & R 11110565 & 0.81 \\
\hline NOI & R1110565 & 1.8 .4 \\
\hline NLI & K1030365 & 2.71 \\
\hline POO & R1030365 & 1.60 \\
\hline POO) & R1161164 & 1.60 \\
\hline POO & Kl040265 & 1.76 \\
\hline SEO & K1161164 & 1.34 \\
\hline WIN & K1161164 & 1.30 \\
\hline COR & K1161164 & 1.95 \\
\hline PEL & K1161164 & 1.140 \\
\hline ANT & R. 1046265 & 1.52 \\
\hline ANT & R1030365 & 1.48 \\
\hline ARE & R1030365 & 0.96 \\
\hline LPG & R1161164 & 0.60 \\
\hline RCO & K 1030.365 & 1.30 \\
\hline TAU & K1161164 & 1.30 \\
\hline MNN & K1161164 & 2.11 \\
\hline PMG & K1040265 & 1.82 \\
\hline PMG & K1030365 & 1.60 \\
\hline PMC & R1150364 & 1.68 \\
\hline PM G & R1101164 & 1.73 \\
\hline AOU & R1161164 & 1.48 \\
\hline BK S & K1161164 & 1.55 \\
\hline COH & K1040265 & 1.72 \\
\hline CHS & k1030365 & 1.70 \\
\hline CTA & K103036\% & 1.23 \\
\hline QUE & R1030365 & 2.66 \\
\hline KTG & K1030365 & 1.50 \\
\hline END & MAGNITUDES & \\
\hline & END JOB & \\
\hline
\end{tabular}```

